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Abstract. We consider the classical spin models where the Hamiltonians are small
modifications of the Hamiltonians of Dyson's hierarchical models. Under some assumptions
we investigate rigorously the neighbourhood of the critical point and find the critical
indices. It follows that in the cases under consideration phenomenological Landau's
theory of phase transitions is valid.

Introduction

In classical lattice ferromagnets the critical temperature Tcr separates
the domains with zero and non-zero spontaneous magnetization. The
behaviour of different thermodynamical parameters near Tcr was
considered rigorously for the two-dimensional Ising model using On-
sager's exact solution (see [1,2]), and some other models (see [3]) also
using the exact formula for the free energy.

Recently Dyson introduced so-called hierarchical models immitating
in many respects the lattice systems with pairwise long-range power
interaction. Under several natural assumptions Dyson proved that the
spontaneous magnetization in his models is non-zero for sufficiently
large β ([4-6]).

We consider in this paper a class of models slightly generalizing
hierarchical models and find rigorously under some conditions critical
indices for them. Recently some non-rigorous results in this direction
were obtained by Baker [7]. Our case corresponds to the "gaussian case"
of his paper. Closely related results were presented also in [8] (see
also [9]).

Now we want to describe briefly our main results. We impose certain
conditions on the distribution of the mean spin in a finite volume of
fixed size for an interval of temperatures. Under these conditions we
prove the existence of a critical temperature Tcr inside this interval and
for T= Tcr we establish the limit distribution for the mean spin which is
a gaussian distribution with a non-usual normalization. This permits
us to find the asymptotic of binary correlation functions for T=Tcr.

For T > Tcr we obtain the asymptotic expression for the susceptibility
and binary correlation functions. For T< Tcr we find an asymptotic
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expression for the spontaneous magnetization. The critical indices are
just as predicted by Landau's theory ([10, 9]).

The case T=Tcr was considered by both authors. The cases T< Tcr,
T > Tcr were considered by the first author.

1. Hierarchical Models and Asymptotically-Hierarchical Models

We begin with the description of general hierarchical models.
Assume to be given a sequence of positive integers rn9 rn^2,

n = l, ...,qn = Y\rh and for any integer r^2 some positive quadratic
i=l

form Qr(tl9 ...9tr). In general hierarchical models one considers the
sequence of volumes Vn= Fn>0 in which each volume Vn >0 consists of qn

points. The volume Fw>0 is decomposed into rn subvolumes F π _ 1 > ί 5

ί= 1, ..., rn9 each of which consists of qn_± points; the sub volume F n _ 1 > f

is decomposed into rn^.1 subvolumes Vn_2,t
 eacn of which consists of

qn~2 points, and so on. For any fc^O the volume Vn>0 is decomposed
into rn - ... rn_k subvolumes Vn_k_ίJ each of which consists of qn-k-ι
points. The Hamiltonian is defined by a sequence of positive numbers bp

and has the form

n <lnlqp - 1

Hn= ~ Σ bP Σ (US*ι>5^ >SO

Here sίz is the mean spin in the volume F p _ l j ί z . We assume that the spin
sx9 x e Vn>0 takes values +1.

Dyson ([4-6]) considered the case rn = 2 and Q2(tί912) =

Baker considered the cases rn = 2,4, 8 ([7]).
We shall consider below slightly more general models which we shall

call asymptotically-hierarchical models (a.h.m.). The Hamiltonian in
these models is defined by an integer n0 and can be written for n > n0

in the following form

(Zn/<Jn0 n
γj V~l TTJ / ς \ V~l t ^Γ~l Λ / \

n Z—t no\ riQ,i/ £j p £_j z£rp\ i i ' •••> ίr )
i = l p = n0 + l i Γp γ =v

k=ί

Here Snθti is the configuration of spins in Vno>ί and Hno is an arbitrary
Hamiltonian in the volume of qno points, satisfying the symmetry con-

In the sequel only the case rn = r and bp = cp will be discussed. Moreo-
ver we shall assume that the quadratic form Qr(tί9 ...9tr) is symmetric
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in its arguments and has the form

we shall assume that gr = g, hr = h, h + g > 0, rg + ch > 0. The extension
of our results to other cases will be done in another paper.

For a.h.m. the limit free energy per particle χ exists and is a convex
function of its arguments if c < r. An extension of Dyson's arguments
shows that spontaneous magnetization for sufficiently large β is non-
zero if c> 1.

2. Formulation of Results

For a.h.m. let us denote gk(s\ β) = Probk(sk 0 = s\β), where Probk( |β)
means the Gibbs probability distribution with parameter β and zero
magnetic field in the volume Vk > 0.

For k > nQ one can write the following recurrence relations :

(1)

where Ξk(β) is the grand partition function in the volume Vk>0. For all fe
the probabilities gk(s; β) are even functions of s.

k

Let us introduce some normalization for spins sk>0 putting c2 sk>0 = zk.

It is evident that zk takes the values - r - <?, 0 ̂  m ̂  rfe. Therefore
r/c

c!

for zlk = — ̂  and /k(z; 8̂) = ̂ k(zc β) we have instead of (1)

Here Lk is a normalization constant.
It is natural to assume that for large fc the behaviour of the functions

fk is the same as the behaviour of the iterates of the non-linear integral
transformation

p J
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The investigation of such transformations begins with the search
for the fixed points or the eigenvectors, i.e. the functions / which satisfy
the equality

f(z) = λ J exp(βQ(z1,...,zr))f(z1) ... f(zr)Y\dzi = Qβ(f) (3)

for some constant λ. Having such a fixed point it is necessary to investigate
its stability properties. Only fixed points with some stability properties
can appear as limits of our difference transformations (2).

It is easy to verify that the function exp( — α0(/?)z2) satisfies the

Eq. (3) with a0(β) = - β, i.e. it is an eigenfunction of the transforma-

tion Qβ. Thus the function / — — exp( — aQ(β)z2) = eβ(z) is a fixed point

for the transformation Qβ.
To investigate the stability properties oϊ eβ(z) let us consider now the

differential of the transformation Qβ near the point eβ(z). It is easier to
consider the differential of the transformation Qβ near the point eβ(z).
Taking e(z) = eβ(z) + sh(z) one finds easily

aε \ π

Λ2

'τ=-zλ + aΰ(β)zl
\ '"• i -oo \ \vc I

h(Zl)dZl

where
h-β-a0(β)r

r-i

which is the well-known integral transformation with Gaussian kernel
(see [11]). This operator is a compact selfadjoint operator in the Hubert
space ffl(y0) = L2

QV(]R1; e~y°z2) of real valued even square-integrable

functions with the weight e~γ°z\ where y0 = y0(β) = ζ(β) ί 1 - —) +2α0(jδ);

the spectrum of this integral operator in the space J^(y0) consists of the
Γ T T

infinite sequence of numbers r, —,•—,—,.... The corresponding
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eigenfunctions are {e~αo(/0z2G2ί(z;y)}?L0,

where

(2;)! (/-;)!

is the 2i-th Hermite polynomial.
The first eigenvalue r is determined by the fact that our transforma-

tion is r-linear. The second eigenvalue is always more than one. If c> ]/r
then all other eigenvalues are less than one. We shall show that in an
a.h.m. the convergence of /fe(z;J?) to a gaussian distribution for β = βcr

is in general possible if c> J/r. Thus we impose the first important
condition.

Condition 1. o|/r.
Now we are going to discuss our next condition. As the reader will

see its exact formulation is not too short. Therefore we want to explain
its meaning. One can hope that fn(z\β) for β = βcr will tend to eβcr(z)
if the functions /no(z; βcr) are sufficiently close to eβcr(z) in an appropriate
sense for some sufficiently large n = n0. Here we give the exact formula-
tion of what we mean by "sufficiently close" for our problem. The number
no = no(c> Q) depends only on the constant c and the quadratic form Q.
Its exact value is defined by some number (near ten) of inequalities
appearing during the proof. Therefore we shall not give its explicit
expression here.

Furthermore, if we are given a family of probability distributions
fno(z; β) for some interval of temperatures β = [/?", β+~] we don't know
the value of the critical temperature without solving the whole sequence
of recurrence Eqs. (2). However it is possible to formulate conditions
which guarantee that the critical temperature will lie inside the interval β.

Now we proceed to the exact formulation.
Condition 2. Let us choose three numbers 0 < ρ, q, ξ < 1 depending

only on c in such a way that

(4)

r
There exist a number nϋ(c), an interval of inverse temperatures

no = Lβn0,βn0l and a differentiable function bno(β) = b(β), defined on
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this interval, the number d satisfying the inequalities

0<d, r + l<d? for d, = ,
2yc

for which
/ c \"° / c \"° / r \"°

ai) b(β-0) = - (Y β) > W = (2 ή ' Wl < (Y <?) for

/M/ς,/O
a2) for each βeβno the function f n o ( z ; β ) can be represented in the

following form

fno(z; β) = Lno(β) exp - α0(j5) + "° b(β) z2 (1 + qno(z; β))

with Lno(jS) being a constant factor (with respect to z) and for the "small
perturbation" qno(z;β) satisfying

α0

with y = yOS) = ί(/J)(l-y and δno(β), Rno(z;β) are differentiate

functions of βe βno,

Remark. The proof of Theorem 1 below shows that the Condition 2
is stable in the sense that it is fulfilled for n > n0 if it is fulfilled for n = n0.

Now we can give the exact formulation of our theorems.

Theorem 1. If the Conditions 1, 2 hold, then there exists one and only
one βcr £ βno for which

2L 1 ί2 -—
lim P r o b ί 1 < s c 2 < ί 2 ; = - = = e 2σ du

for some positive σ and arbitrary tl9 t2.
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Theorem 1 shows that for β = βcr the mean spin sw>0 has gaussian
distribution with non-usual normalization.

Corollary 1. For β = βcr the binary correlation function <sx, sy>π>j8cr,
x, yε Vn>0 satisfies the inequalities

with some constants C l 5 C2, vvfere d(x, y) is the least number k such that
x,ye Vkj for some I

Theorem 2. Under the conditions of Theorem 1 let βn0<β<βcr
Then for the mean spin sn> 0

lim Probn{tί<sn<t2ιβ}= e~^ du
y2πσ1(β) tί

where σ1 (β) ~ const (βcr-β)~l.

Corollary 2. Under the conditions of Theorem 2 the binary correlation
functions (sx,Sy)nίβ, x, y e FΠ t 0 satisfy for all n the inequalities

γ2\-d(x,y) £> 2\-d(x,y)s s ~
c

with some constants C\, C2.

Theorem3. Under the conditions of Theorem 1 let βcr

<β<βn0

Then there exist positive functions m(β\ σ2(β\ m(β)~ const(β — βcr)^>
σ2 (β)~ const (β — βcr), such that for a sequence mn(β\ lim mn(β) = m(β\

lim Probπ{ t ί< (sn>0 -m n (β))r^<t 2 ;β}=~ * '* "̂ ^ *
2 J/SπσzOSK,

1 1 '?
lim ^ ^^^π *."! ^ v^n.υ ' "vn\rπ' ^ ^ z ? ^ j ^ Ί //•» ~ /^ j
«^°° 2 |/2πσ2(σ) ί]L

3. Thermodynamical Limit of Hierarchical and
Asymptotically-Hierarchical Models

Let F be a countable set and rn be a sequence of integers, rn >1.
Following Vershik let us say that a hierarchical (rj-structure is defined
on V if there is defined a decreasing sequence £ι §; £2 = "' °f partitions
of V with the following properties :

aι) £ι = ε where ε is as usual the partition of V into separate points;
a2) any element of ξt consists of rt elements of ξ f _ ί

a3) for any two points x,yeV there exists a number d(x, y) such that
x, y belong to the same element of any partition ξi9 i ̂  d(x, y).
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In the following d(x, y) will be the least number with this property.
d(x,y)

The number γ[ rt plays the role of a distance between x, y. All spaces
i = l

with {rj-structure are naturally isomorphic.
If V is the space with {rj-structure then V(k) = V\ ξk is the space with

{/^-structure where r'n = rn+k.
Let us denote by G = G(V) the group of all finite permutations of V

leaving each ξt invariant, and let Ω(V) (Ω0(V)) be the space of all real-
valued (± 1-valued) functions on V. We can define in the usual way the
probability distributions on Ω(V) and Ω0(F), gaussian probability
distributions on Ω(V\ the distributions invariant under the group G,
and so on.

Now let us return to the definition of Dyson's hierarchical models.
One can consider the volumes Vn>0 as an increasing sequence of subsets

00

of the infinite space V with {rj-structure such that (J F W j 0 = F. The
n = l

sequence of probability distributions Probn( |/?) can be considered as
a sequence of probability distributions on Ω0(V) defined on an increasing
sequence of corresponding σ-algebras. Dyson in [4] proved in fact the
following theorem.

Theorem 4. For any β > 0 the sequence of probability distributions
Probn( |β) converges in a natural sense to a limit Gibbsίan distribution
P('\β) defined on the σ-algebra of measurable subsets of Ω0(V) and in-
variant under the group G.

For the asymptotically-hierarchical models the same considerations
lead to the following theorem.

Theorem 5. Under the conditions of Theorem 1 the probability
distributions ProbM( |/J) converge in a natural way to a limit Gibbsian
distribution P( \β). The distribution on Ω(V(no}) = Ω(V\ξnJ induced by a
map

πno:Ω0(V)^Ω(VJ where πno(f)(x) = ̂ — £ f(y)

Π r. ""
i = l

is invariant under the corresponding group G.

Now we shall formulate the results concerning the limit distributions

P( I β) which are equivalent to the Theorems 1,2,3. Let be sn = —- £ s(x)
r xeCn

where Cn is an arbitrary element of the partition ξn entering into the
definition of a hierarchical structure on V. We shall consider the distribu-
tion of sn which depends only on n but not on Cn.
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Theorem 1'. Under the conditions of Theorem 1 for β = βcr and
arbitrary fixed tί912

_! 1 ί2 —
HmP{t1<sn'C

2<t2ιβcr} = t \e 2σ'du
"->«> l/2πσ f l

for some positive constant σ'.

Corollary 1'. There exist constants C1? C2 such that for β = βcr

£ ~-d(x,y) < /„ „ \ <i'C £~d(x,y)

Theorem 2'. under the conditions of Theorems 1 and 2 for arbitrary
fixed tl912

1
™ du2 ? r J \/2^ϊ(β)l

where σ[(β) - const(β^-β)' 1 .

Corollary 2'. Under the conditions of Theorem 2 the binary correla-
tions functions (sx, sy)^, x, y E V satisfy the inequalities

C' C'
^i r~d(x'y)<(s 5 > < r ~ d ( χ , y )

Per ~~ β βcr ~ β

with some constants C\,C'2.

Theorem 3'. In the notation of Theorem 3 under the conditions of
the Theorem 1 for βcr< β< β~o and arbitrary tί9 t2

lim P {t,< (sn-mn(β))r2 <t2}= ΐ Λ (β, e 2«'^ du
2 ]/2πσ2(β) tl

where σ'2(β) - const(β-β c r}~^

4. Proof of Theorem 1

We shall consider only the case r = 2 and Q(zl9z2) = cl 1 2 .

The generalization to other cases is straight-forward. We shall construct
a sequence of imbedded segments βn = [βn,βn^\ an<^ a sequence of
differentiable functions bn(β) defined on βn such that for all βεβn the
functions fn(z\ β) can be represented in the following form

/n(z; β) = Ln(β) exp - (β) + ( ba(βί ί1 + Intel β)} &
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where Ln(β\ bn(β\ qn(z; β) satisfy some estimates listed below. From these
estimates it follows that

nOΪ)-^^0;0^1+ ί l l(z;j8)g2 for βεβn

and — oo < z < oo

f l - f o f l h ^ * 0 uniformly f o r \z\< - -

β<Ξ βn, d is a constant depending only on c, Ln(β)-+L=

we get the assertion of Theorem 1 for /J c r= (°) /?„.
M

The representation (5) is non-unique because one can change bn or
L,, and include the difference in qn without changing /„. The most
crucial part of the proof is the special choice of Ln and bn. This will be
described precisely during the proof.

n n n

The variable z in (5) varies from —c2 toe2 with the step An = 2c2 2~".
The set of values of z will be denoted as Mn.

The substitution of (5) into the formula (2) gives one should remember

(6)

where

λn = λn(β) = a0(fl) + \-\ bn(β\ An = 2cΎ2-.

Z Z
The summation goes over u for which —7=- — u e Mn? -—=- + u e M, and

l/c 1/c
z e Mn +!. Let us put

l + §n+ι(z;/ί)=Ί/—^Σ^~ 2 λ n" 2(l + ̂ ίτ4-- -w; j8 | )in + i v '^ i/ π ^ ^ ^ M \ 1/c p / /
(7)
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If we introduce the linear integral operator

9 3

and assume, that the function qn(z; β) is extended to the whole line 1R1

as a nice function of z e 1R1 then we can rewrite (1) in the following way

where £„(#„) will be treated as a remainder term. In fact Sn(qn) is the sum
of two terms. The first one appears from the non-linear part of the for-
mula (1) :

The second term S^(qn) has the form

where

These properties of j/n can be easily verified:
1°. s$n is a self-adjoint compact operator in the Hubert space
yn) = L2

ev(JRί',e~γnz2) of real- valued even square-integrable functions

with the weight e~ JnZ\ yn = 2λn ( 1 - .

3°. The spectrum of $tn in the space J^(γn) consist of the numbers
2 I0 0

— > the corresponding eigenfunctions are even Hermite polynomials
^ J j - o

V. iK<7llci2|M!c

||ja4̂ ||cι̂ K||̂ ||c

where K is some constant.
From 3° it follows that two eigenvalues 2, 2 c~l are always greater

than 1 the others are smaller than one because of the condition c > J/2.
The main idea is to choose bn(β) and Ln(β) in such a way that the projec-
tions of qn(z;β) on the expanding subspaces ^eκp(yn) generated by
eigenvectors G0(z; γn), G2(z; γn) are equal to zero or at least very small.
The possibility of doing so for n = n0 follows easily from the Condition 2.
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Let us fix ω = ω(c) > 1 so that ω — 1 is sufficiently small and consider
the sequence ni = [n0ω

l']9 / = 0, 1,. . . . We shall prove that for
n = n0, nl9 n2, ..., the representations

Jn(z β) = Ln(β] exp (- L(β) + (-)" &„(/?)) z2) (1 + qa(z; β))

can be chosen in such a way that
1) Ln(β\ bn(β) are differentiable functions of β e βn,

2) qn(z',β), zeMn, \z\< -rγ=^9 can be represented in the form
Vao

(11)

where δn = δn(β) is a differentiable function oϊ βe βn and

\ n - n o / O \«-«o

I n y-D*

where K(j} = δnolγ[ (1 + αj) I , i = 1,2, 0< α = α(c)< 1, .Rtt(z; )8) is a
V/ = wo /

differentiable function of β e βn,

\Rn(z;β)\<q». (12)

/7iΛ7
3) for z\ >

with

/ 2 \»-»o «
v"=v«ohr Π

\ C / J = «o

In order to use the contractive properties of jtfn we shall employ a
more detailed representation of qn(z',β) for nt<n^ni + 1. Namely, let
us write

0/\ f I I2) for |z|<
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where N = N(c) is so big that

2 \w

*

cjco

The function Hn(z; β) is extended to the whole segment

d]/n d]/^}_

α0

as a C^-function and Hn(zιβ) = Q for zφDn and

N

j = 2 C™(Dn}

m = 0,1, Km = Km(c) is a constant,

^j^N, Hn(z',β), Tn(z\β) are differ-

zeDn

All the functions δ^ =
entiable functions of β e βn and

It is very important that in 2), 2'} the main role is played by the
projection of qn on the third eigenspace generated by G4(z; yn) and that
this projection is negative. From this fact it follows that 1 + qn(z\ β) has
the form drawn in Fig. 1 :

Fig. 1
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Let us denote by (<%n) the properties 1), 2), 3) and by (fQ the prop-
erties 1), 2'), 3). Now Theorem 1 will follow from the next three lemmas.

Lemma 1. (fn) implies (%„) for n = ni + i if N = N(c) is sufficiently
large.

Lemma 2. For ni<n^ni+ί, qn + 1 can be chosen in such a way that
TO implies (τTΛ + 1).

Lemma 3. For n = nt,qn + 1 can be chosen in such a way that (%n) implies
tra+1).

Proof of Lemma 1. Only the implication 2f)=>2) must be proved.
From 2') one has

I \Hn(z;β)\2dz^ed2" f \Hn(z; β)\2e~^2 dz (13)
z<=Dn zeDn

+ Σ \W\\\G2J(z ,γJ\\ci(D^l,
j=2

because N = N(c) is fixed, ||G2j (z; j8)||cι(Dn) increase as some power of n,
\δ(J}\ decrease as a geometric progression and n0 can be assumed to be
sufficiently large.

Let us introduce the function φ(z) where

From the inequality

φ(z) 10 for other z

< 1 one has
dz "v

\Hn(z;β)\^\Hn(z0;β)φ(z-z0)\

for any z0 >0, z0 < —1=. This gives

Now the desired estimate for the C(DJ-norm of Hn(z; β) follows from the
^f(yj-norm of Hn(z;β). Other terms in Rn(z\β) have good C-norms,
as can be seen directly from 2'). Thus we have the desired estimate for
the C-norm of Rn(z; β). Q.E.D.

Proof of Lemma 2. We shall use an important local property of the
expression (7) for 1 + qn+ x(z; β). Namely, the part of the sum in (7) for u,

\u\ > y— , with some constant d1 =d1(c) gives a value which is less
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then ε = 5e~dΐn because from 2') and 3) one has 0^ 1 +qn(z\β)^2.
Therefore qn + ί(z0; β) depends mainly on the values of qn(z; β) for

with β-error. In particular for

d]/n + l d]/n + i
α0

qn + ι ( z ι β ) is defined with ε-error by the values of q n ( z ; β ) for zeDn

because it follows from the Condition 2 that

Now we proceed to construct qn + 1 ( z ; β). First of all let us include the

part of the sum in (7) with \u\ ̂  1/— in Tn + 1 ( z ; β). If d± is sufficiently
l/ f lo

large this term will satisfy the estimates for Tn + 1.
Now we shall estimate the remainder term Sn(qn) = S(

n

1)(qn)
[see (9)]. Due to the quadratic character of S(

n

l\qn) one has

This inequality shows that S(*\qJ can be also included in Tn + 1(z',β)
if the estimate of \\qn\\c(Dn) which follows from 2') is better than the estimate
of Tn + ί(z',β) in 2'). The last assertion is true when ω — 1 is sufficiently
small.

Let us denote

ueDn

It is easy to see that

\\Bnq\\c^29\\\q\\c.

So we can include the term BnTn(z; β) into Tn + 1 ( z ; β). Next we consider
- / I N \

instead of the function B J — + ^ δ(

n

j}G2j(zι yn) + Hn(z\ β) the function
/ 1 N \ j = 2\ '

stfn —- -f ]̂ δ(

n

j}G2j(z; yn) + Hπ(z; )8) . The error can be estimated using
\ 2 j=2 /

N

the ^-estimate of 2') of the function £ &?G2j(z\ yn) + Hn(z; j8) and the
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following inequalities:

\\(Bn-Bn)q\\cί\\q\\clAn

(which follow from a simple interpolation formula) and

d,]/n

Due to these inequalities we include the error into TΠ+1(z; β). From the
property 3° of the operator s$n it follows that X,(i) = 1 and

= f δ(^G2j(z'^n)j = 2 C

+ ^nHn(z;β), HnA.G2j in

and consequently

It follows from the last estimate that

^nHn(z;β)= X ^^G.Xz
j = o

where Hn+1(z; β) is a smooth function of z e J5n + ! , Hn + j (z /?) = 0 for

2

ll^n + l l l^(y n )= "~ΛΓ H^nll^(yn)

Therefore denoting δ^+ 1 = — 5ij) + ̂ i i we have
cj

l+qn + 1(z;β)=ί+ Σ δ^+1G2j(z γn)+ ^
j=0 j=2

where δ(

n

j}

+1,Hn + 1, fn + 1 satisfy 2'). Let us put

and rewrite the last equality putting yn + 1 instead of yn

l+qa+1(z;β)=ί+ Σ W+1G2j(z;yn+1)+ Σ ̂ ι
7=0 j=2
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where δ^+1J = 29..., JV, Hn + ί, Tn + 1 also satisfy 2} because

c

7 = 0,1.
ForzεDn+1

n

1 + Σ δ(

n

j}

+1G2j(z;yn+1) = e^
7 = 0

where TM

(+\ satisfies the estimate of Tn+1 in 2'). Now we can define
qn + 1 from the expression

1

- Σ δ(

n

j)

+ίG2j(z',γn+1)

l + qn + 1(z',β} = e j = Q (l+9Λ +ι(*;j8)).

It follows from the above estimates that with this definition of qn + 1(z', β)
2') is true.

i
The function £ ^+ιG2j(z;y I I + 1) is the even quadratic polynomial

7 = 0

of z. Thus we have the representation (5) for fn + ί ( z ; β ) where the
Gaussian multiplier is

-Γ bn(β)]z2+ Σ^
/ / 7=0

The last expression gives also the definition of the bn+ί(β). It follows that

C

is a constant. Therefore

2 \"

and in a similar way — bn + 1(βn)< -ρn. Furthermore bn + 1(β)

is a differentiable function of β and we can find a segment

&+ 1 = Cfc i, ̂ +

+ il C Λ satisfying 1).
Next we consider the estimate 3) for 1 +qn+ί(z; β). It can be easily

seen from 2) that the estimate 3) is true not only for |z| > *Γ but also
Ί
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for |z| > d2 where d2 is some constant not depending on n. Therefore
{z: 1 + qn+ί(z; β) > 1} C D = [— d2, d2~\ and we can write for all z

where vn = vno — [] (1 + ajΓ ί

9 μn = 2|<5i2)|, and χD is the indicator
\C I J = n0

of D. Substitution of the last inequality into (7) gives

'c
r

It is easy to see that for

-V A Z 4 | M _
Vn -> ^ -1-

c2 ]\ n + ί

where K0 is a constant not depending on n,

α 3=0 because χD(-4--uWD(-4-+« =0 for |z| >
\]/c / \]/c

This gives

Now 3) for 1 + qn+l(z; β) is a simple consequence of the last inequality.
Lemma 2 is proved.

Proof of Lemma 3. We rewrite the formula (7) in the following way

where _ z

-2

 q(u)An (14)

is the linear part of the transformation (7) and S(

n

1}(qn) defined in (9),
is the nonlinear part of this transformation. One can easily verify the
following properties of the operator jtfn :



Critical Point 41

1°. The formula (14) is meaningful for all zeIR1 even if qn(z;β) is
defined only for z e Mn and

jr||C(Mn) K is a constant

not depending on q and n.
/ίiΛΓZT

2°. For \z\ < -

-̂
where X, is the integral operator, defined in (8) and Tn

(ί\(z; β) satisfies
the estimate of the Tn + 1(z; β) in 2').

It follows from these properties of the operator s/n and from the
estimate of S(

n

1}(qn) (z; β) during the proof of Lemma 2 that

7 ~
where the sum — ̂ δnG4(z;γn)-i-j/nRn(z;β) satisfies the Cm-estimate,

w = 0, 1, of 2') because of property 1° of the operator s$n and Tn + 1 ( z ; β )
satisfies the corresponding estimate of 2') too. Next we decompose the sum
2

— δnG4(z;yn) + j t f n R n ( z ; β ) (this decomposition is unique):

ι β) (15)
7 = 0

where Hn+ί(z; β) = 0 for |z| >

The desired estimates of δ^+ 1 J = 2, . . ., AT and Hn+ί(z; β) of 2') follow from
the C-estimate of the Rn(z;β) of 2) and from the property 1° of the
operator jtfn. At last we annul the projections δj/^G^z; y^+iXj^O, 1, in
the formula (15) on the expanding eigenvectors of the operator jtfn + ί

in the same way as in the proof of the Lemma 2, i.e. changing a little
the Gaussian multiplier in the representation (5). One can see that for
qn + 1 ( z ; β) all the estimates of 2') are true. The proof of the properties
1) and 3) of the function qn + 1 ( z ; β ) is just the same as we used during
the proof of Lemma 2. This completes the proof of Lemma 1 and also
the proof of Theorem 1.

Proofs of Theorems 2, 3 will be published in another paper.
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