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Abstract

Regularization of the Navier-Stokes equations by adding hyperviscosityderaf),

1> 0is considered. We proved convergence of Galerkin’s approximations to the strong
generalized solution of the regularized Navier-Stokes equations; existence and unigue-
ness of the strong generalized solution.
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1 Introduction

The 3D Navier-Stokes equations describe the motion of a viscous incompressible fluid in
R3. The equations are to be solved for an unknown divergence-free velocity vector-function
u = (Uj)1<i<3 and scalar functiom called pressure [1], [2]. We use dimensionless coordi-
nates and consider the case when the velocity, pressure and the externalifareeseal
periodic functions with the periodr2in all space coordinates, i = 1,2, 3; that is defined
on a 3D torus := R3/27Z3. The Navier-Stokes equations in the dom@ip= Qx [0, T)
have the form

u; ap 23: au;

——VAUiZ— uJa_X
J

ot ax +fi; (xt)eQr, v>0,

=1

3

OU;i
divu= > — =0, (x,t) € Qr,
;axj

u(x,0) = u(x), divul =0.
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Notations.LetQt = Qx[0, T), Qu = QX[0, +00). Norms in the Sobolev spacég-2(Q)

are denoted as 12
Ul 2 = {L[’(—A)K/Zu(zﬂulz]dx} . (1.1)

We also use pre-norms

, Y2
lullo2 := {LK—A)K/ZU' dx} )

For a mapping [0T] 3t — f(-,t) € W*%(Q) the norm of the element(-,t) € W<2(Q)
is denoted agf(-,t)ll, 2, the Lo(22) norm of a vector-functiorf as||f||, a scalar product
of vectorsf,g in C2 as f - g, magnitude of a&C2 vector f as|f| and a scalar product in the
spacel»(Q) as (,-). A scalar product in the Hilbert spa®é-?(Q) is denoted asf(g),.», a
norm in the spacé(Q) as||-|l,, but for the norm in the spade(€2) we use notatiot-||. A
subspace of functionsl : u € Lo(Qt), u(-,t) € Jo(Q)} is denoted asg(QT).

A set of solenoidalvectors inC*(2) we denote ag(Q2), and a completion 03(Q)
in the normwW%2(Q) asH(Q). Let J>(Q) be the completion of the sé(Q) in Lo(Q), and
let P be the orthogonal projection (Leray’s projection) of the Hilbert sdag¢€) onto the
subspacd,(Q). Direct calculations give for Leray’s projectidghan expression

(PF)(X) = Z { fic— k(fic- K) Ik} expti(k- )} + fo. (1.2)
keZ3 k+0
through the Fourier cdicients fy of a function f € L,(Q) [2]. Evidently on functions
ue W2(Q)NH(Q), k = 1,2,..., we havePA*u = Au.
Applying Leray’s projectiorP to the Navier-Stokes equations we exclude the presser
from the equations and write the Navier-Stokes equations in the equivalent form [2]

% —vAu=-P(u-V)u+Pf, (xt)eQr, u(,t) e H(Q).
The Navier-Stokes equations are regularized by adding to the viscosityAerthe hy-

perviscosity term-uA2u. So the Cauchy problem for the regularized Navier-Stokes equa-
tions inQr has the form

%—vAu+yA2u:—P(u-V)u+ Pf, (xt)€Qr, (1.3)
divu=0,(xt) e Qr; u(-0)=uw, divu®=0. (1.4)

Generalized solution to problem (1.3), (1.4) can be found in the Sp&a€€) obtained
as the completion of functions

{u:ueC™(Qr), u(-,t) e H(Q)} (1.5)

in the norm

.
Ullyery 1=[%UTF)){llu(',t)lliz+||U(',t)||§,2}+ fo {IouC. I + UG- I5 ) dt. (1.6)
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Definition 1.1. 1° A vector function & Wr(T), T < « is called the generalized solution
to the regularized Navier-Stokes equati@hs3), (1.4) (abbreviation SRNS) in the cylinder
Qr with data

W e HIQ) NW?(Q), f e Ly(Qr) (1.7)

if: a) ||u(-,t)—u0(-)’|2’2 —0 as t—0,

b) divu=0,

c) the generalized derivatives, Wy, , Ux,x, Ux xxmx, P€l0NG to L2(Q7) and satisfy equa-
tion (1.3).

2° A vector function u defined i@, is called the SRNS of proble¢h.3), (1.4)in the
Qw ifitis the SRNS in all cylinder®r, T < oo.

The SRNSsolution is usually referred to as the strong generalized solutiofier®nt
regularizations of the Navier-Stokes equations were considered in numerous publications.
O. A. Ladyzhenskaya and J. L. Lions in the papers [3], [4] proposed to change the viscosity
vAu for the hyperviscosityAu—(-A)', | > 5/4 and proved the existence of the global weak
solution (in the integral sense) to the regularized Navier-Stokes equations. In tHe=case
we proved the existence of the strong global generalized solution and the convergence of
Galerkin's approximations to such solution in the sp#¢gT) for all T < co. There are

many publications on the Navier-Stokes equations with hyperviscosity where attractors, a
turbulence and computational methods were considered [5], [6], [7], etc.

2 Main Results
Now we deduce a priory estimates for the classical solution to the Navier-Stokes equations.

Lemma 2.1. 1) The C°(Q.,) classical solution to probleri.3), (1.4)satisfies the following
inequalities on the intervdD, co):

t
UC- )1 < ol + f 1. Dlldr; (2.1)

. 0

U Ol +2 fo (UGB + U TR 5}
ol [} [
< ol +2{||uo||+ [Cntcoomarx [uteone (2.2)
2) Let
t t
()= 3 ol + fia + [ tc.onefx [Citc.onrs

t t
o) =zl + [ 1t eIl 1.0+ [t + SO, 2:3)

Coi= (VP + 2vi + %) + 2(v + ).
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Then the following inequality holds for alkt[0, o), with some constanto depending
onvandu,

VIUC, O1Z 5+ pllu(- )., < {vlluol 5 + plluoli3 o) X exp{%@(t)}
t c1
+ f 9(7) exp{—[(D(t) —cp(T)]}dT. (2.4)
0 7%

3)Forall T €[0, o), the normi|ullwry Of the classical solution satisfies the inequality

2
2
Hu”Wr(T) < "

C1
{v||uo||i2+u||uo||§,2}xexp{5®(T)}

T T
+ f g(T)EXp{&[(D(T)—(D(T)]}dT xO(T) + f g(7)dr. (2.5)
0 1224 0

Proof. Let u e C*(Q.) be a real classical solution to problem (1.3). Taking the scalar
product inL»(Q) of the left and right hand-sides of equality (1.3) with the solutipnve
obtain the inequalities

d

G UG- DI < 21uC, O, B, (2.6)
d
G IUC DI+ 20 IUC,B1IG . 5+ 20U DG 2. < 21U DX C DI (2.7)

Inequalities (2.1), (2.2) are a direct consequence of inequalities (2.6), (2.7). Further, taking
scalar square ih,(Q) on the left and right hand-side of equality (1.3), and summing up
the result with inequality (2.6) multiplied by ¢ 1) and with the square of inequality (2.1)
multiplied by (2 + 2vu + %), we obtain the inequality

d
o UG DI 2+ UG O o) + 1O I + v 1. D1

+2 v |uC- O3 5 + 2 UC- DIZ 2 < LU VYU IR + g(t), (2.8)

where the functiomy(t) is defined in (2.3). By the embedding Theorem [8], for the dimen-
sion 3, we have maxq |u(X, t)|2 < c||u(-,t)||§’2, hence the following inequality holds

I[(u- VYUl DI < e luCbIg o U DIE,

C
< ;l{V||U(‘,t)||i2+,U||U(’,t)||§,2}||U(',t)||(2),1,2’ (2.9)

with some constart;. From inequalities (2.8), (2.9) we infer the inequality

d
i VUG + G )15

C1

< [V UG O 5 + I, DI o} UG 1) 1o + 9(E)- (2.10)
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Applying Gromwell’s inequality to inequality (2.10) we have

c t
(VUG O 5+ plluC, D13 ) < {v||u(-,0)||i2+u||u(-,0)||§,2}xexp{#—i fo ||u(-,r)||§,1,2dr}

t c t
+fg(r)e><p{—1fIIU(-,s)llé,des}dr (2.11)
0 MY Jr

for all t € [0, o). Note that inequality (2.2) implies the estimate

t 1 1 t t
f ||u(-,r)||8,1,2drs2—||uo||2+—{||uo||+ f ||f(-,r)||dr}>< f 1£CDlldr = ). (2.12)
0 vV v 0 0

Thus, substituting estimate (2.12) in inequality (2.11), we obtain inequality (2.4).

Now we replace the terrff(u- V)u](-,t)||° in the right-hand side of inequality (2.8) by
its estimate (2.9) and further we replace the t%fzrnu(-,t)lli2 +p||u(-,t)||§,2} by its estimate
(2.11). Then integrating the obtained inequalitytbye obtain estimate (2.5). |

The existence of the SRNS is proved by Galerkin's method. We obtain the convergence
of Galerkin’s approximations in the space {W) to the SRNS for all kK +co.

The orthonormal real vector eigenfunctiofissink - X), gkcosk- X) : k = (k, ko, K3),
ki €Z, f-k=0, gk-k = 0 of the operaton: W22(Q) N H(Q) — J»(Q) are numerated from
1 to o by the indexl and are denoted bg. Evidently, the functionga'}®, form the
basis in the Hilbert spac®&(Q). Galerkin’s approximationg" for the SRNS have the form
u(xt) =YL, cin(t)a (x) where the functions, , are defined below. The functioss, are
determined by Galerkin’s conditions

3
(8tu”—f,al')+,u(Au”,Aa')+Z{v(6xiu”,6xja')—(u{‘u”,&xia')}:0, l=1,....n, (2.13)
i=1

and the initial data; ,(0)=¢, | =1,...,n, whereu? = nglqa'.

Conditions (2.13) were obtained formally from system (1.3) by replacing the solution
u by Galerkin’s approximation”, multiplying equations (1.3) by the functiah and inte-
grating overQ. Galerkin’s conditions (2.13) is a system of ordinarffeliential equations
with respect to the functions,:

dC n n .
d:ﬁn —vZajkckn+ Z ajpkCpnCkn=fj, j=1,...,n, (2.14)
k=1 p.k=1

whereaj, ajpk are some constants arfig= (f,al).
Define inL,(Q2) a projectionP,: Pyf := Zﬂzl(f,ak)ak. Evidently Galerkin’s approxi-
mationsu” satisfy the problem

n

a_ut — VAU + uAZU" = =P (U - VUM + P f; (Xt) € Qco. (2.15)

We have P,(u"- V)u",u") = ((u"- V)u",u") and||P,(u"- V)u"|| < [|(u"- V)u"||, thus we can
apply to equation (2.15) considerations of the Lemma 2.1 and deduce Lemma 2.2.
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Lemma2.2. Let P € H(Q) NW?%(Q) and fe L,(Qt) forall T < co. Then:
1) Galerkin’s approximations'usatisfy all inequalities of Lemna 1
2) Galerkin’s approximations'yn=1,2,..., for all T < oo satisfy the inequality

.
”UHH\Z/W(T)SC(T, v, i, IIUoll,f0 IIf(-,s)||2ds) (2.16)

with some constant depending orv,'ﬁz,lluon,fOT (-, 9)l?ds

It follows from the orthogonality 4,a') = dj, that |lu(,, HI° = J 1 Jn(t) Hence in-
equality (2.1) for the functions" implies that Galerkin’s approximationg'(-,t) exist on
[0, o0).

Now we prove the convergence of Galerkin’s approximations in the sp@e) for all
T < o0 and deduce the existence of the SRNS.

Theorem 2.3. (3D case)

Let the initial data and the right-hand side f of the Navier-Stokes prole®), (1.4)
satisfy conditiong1.7), then the SRNS to problefh.3), (1.4) exists and is unique Q.
Galerkin’s approximations'uconverge to the SRNS in the nojtafiy, y for all T < co. The
SRNS satisfies inequalitiéz.1)-(2.5).

Proof. Fix T > 0. By inequality (2.16), the norm|$J”||\2Nr(T) of Galerkin's approximations
are bounded uniformly in index Therefore we can choose from Galerkin’s approximations
u" a subsequencgi™} such that functionsi™, utq, uxm, u)qX are weakly converging in

L»(Qr). Let us study the strong convergence of the sequehgn&s {u"a} in Lo(Qt) by
using the Friedrich inequality and the argumentation of the book [1], pp 173-178. The
Friedrich inequality asserts [1] that for aay- O there exist, functionswj, j=1,...,N,

such that an inequality

j:Ns 2
fuzdxs (f Ua)jdx) +sf(grad u2dx (2.17)
Q =1 \WQ Q

J:
holds for every function fronw2(Q). Evidently for functionsu € W?(Q) we can chose
the sel{w,} *as 1 fgsink-X), gkcosk- X), k= (ky, ko, ks), ki € Z; |kl < 1/ v/e. It follows

directly from [1] that there exists a subsequemfb} that converges ih(Qr).
1
Applying the Friedrich inequality to the functiam:= 6Xk(u”i1 —u") and integrating it
with respect to the variabkefrom 0 toT, we have

) 2
f dxdt< Zf f{axk(ul ulni)}wjdx] dt
j=1
2
1
+sf 82Xm(u|nil—ulnj)
0

Note that Galerkin’s approximatiorué‘il satisfy inequality (2.16). Therefore, the last inte-
gral in the right-hand side of inequality (2.18) does not exceed a fixed constant multiplied

dxdt (2.18)
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by . The first integral in the right-hand side of inequality (2.18) can be considered arbi-
trarily small for the large valuersﬁ, nt because the sequer{a:éil} converges in»(Qr), and
hence the sequence

f wm(¥)d U (xHdx= - f (Orxom() U (x. DX
Q Q

converges for almost alle [0, T]. Therefore we obtain
2

T n.1 I’l:-L
f [f {axk(ul' —ul‘)}wmdx dt—0
o lJa

asnjl, ni1 — o0, Thus, the right-hand side of (2.18) can be considered arbitrarily small for

1
suficiently large indicesnil, njl. This proves that the sequenclél‘k} converges strongly

in L2(Qr). Passing to subsequences we get the sequeuz;esk =1,2,3, converging in
L»(Qr). To simplify the notation in what follows for these converging sequences we use the
notation{uy. }, k= 1,2,3.

a) Now let us prove that the sequer{¢e™ - V)u"} strongly converges in4d(Qy). With
this goal in mind we deduce from the multiplicative inequalities [1], [9] the following in-
equality

fg W (0 U)ZdX < ClIWIIE , ||0x ul| U2 (2.19)
Then we putv = U - ulnj, v=uy in the above inequality (2.19) and obtain
fT dtf |t —u™a u”i|2dx< cymax|u ¢, O, , + max||u ¢, 0| i
0 Q | | X Mg - [O,T] | ’ 1,2 [O,T] | ’ 1,2

T .
< [ e =t

Due to inequality (2.16) the numbers

|1,2><||UEi (',t)“z,zdt. (2.20)

sup|lu’(.t)

o] |1,2 , [%UTF]) ”ulnj ("t)Hl,z

are bounded in the interval [U] by some constan€(T) uniformly with respect to the
indicesn;, nj, |. Hence, applying the Cauchy inequality to the right-hand side of (2.20), we

have
- | | T N 1/2
[ et [ - Paxscn{ [ oo
T . o 5 1/2
WEEETEAYA d . .
o [Clep a2y

1/2
By virtue of inequality (2.16), the numbe{%T [Ju (.,t)szdt} are uniformly bounded
by the constant€(T) in the interval [QT], and it was proved above that

T Nj n;j 2
L e -0l o o
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asn;, nj — co. Therefore, the right-hand side in inequality (2.21) can be considered arbi-
trarily small asn, nj — co.
In a similar way we obtain the following inequalities:

T n no N2
f dtf|uk'8xk(u|'—u|‘)| dx
0 Q
.
<m0 e 168 -0l -0l )

T 1/2 T 1/2
s [ o e offa) | [ lep -ueolf o)

T 1/2
sCl(T){ fo | u —u{”)(-,t)||i2dt} . (2.22)

Inequality (2.22) implies the convergence:

.
{f dtf|uEi8Xk(u|r“—urj)|2dx}—>O as n, nj — oco.
o Jo

Combining inequalities (2.21) and (2.22), we infer that the sequénte V)u"} strongly
converges in.,(Qr) to a function

W= nljiLnoo(u”J' -V)uli, (2.23)

b) Here we prove the convergences of the sequéuitgin the space W({T). From
equation (2.15) we derive a Cauchy problem for the functién-u™),

AU —u™ = vAU" —u™) + AU - u™)
= —(Pn=Pm)(U"- V)U" + (Pn— P f + Pmf (u™- V)U™ = (u" - V)u"}, (2.24)

U =u"|._o = (Pn—Pm)°.
By standard calculations from (2.24) we have the inequality
2 0112
Ju” - um“Wr(T) <c||(Pn—Pmu “2,2
T
2
+ ¢ [ {ln =P DO+ Pa =P 1.0

i w0y o)t (2.25)

Evidently||(P, - Pm)u0||§2 -0 andfoT I{(Pn - Pm) f} (-, 1)][2dt — 0 asn,m — co. Above we
proved thatfoT I{(uM - V)uMi — (U™ - V)u"} (-, t)|[2dt — 0 asi, j — co. Further note that

.
fo [[{(Pa = Prm) (- W)U B[P dit (2.26)

! LYY — o (- D)IP T _ a2
<4 fo (W™ - V) — g} ()Pt + 4 fo (P~ Prur] (. BI20l,
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wherey = limp, ., (u" - V)u". Therefore the right-hand side of inequality (2.25)fiet n;,
m = n; tends to zero ag ] — c. Hence Galerkin’s approximatiorig"i} converge in the
norm||-|lwry to the function
u:= lim u e Wr(T). (2.27)
]—)oo

If in inequalities (2.21) and (2.22) we substitute the expressiafis-¢")dx Uy and
U Ay (U —U) by (U — )y U andugdy (Ut - u), respectively, then similarly to part a)
of the proof we obtain in the spate(Qr) the convergence

nIim W)U = (u-V)u=y.
j—00

Note that linear combinations of the functioajsj =1,... with time dependent coef-
ficientsdj(t) are dense in.3(Qr). Thus, integrating the scalar product of the right-hand
and left-hand sides of equality (2.15) with a functigr L;(Qr) and passing to limit at
n=n; — co we deduce that function (2.27) satisfies an integral equality

-
fo ({% —vAU+uA?u+P(u-V)u-— Pf}(-,t), g(-,t))dt: 0 (2.28)
for everyg € L5(Qr). Evidently, the function u has all properties of the SRNS solution. By
[1, p. 144] the SRNS solution is unique.

¢) Now we define the SRNS in the cylindes.@ix T1 > 0. We proved that for initial
data (1.7) there exists a unigue SR8 [0, kT + ], £ >0 andue Wr(kTy +¢). It follows
from the definition of thaV/r(T) norm that the mapping

[0,kT1] 3t u(-,t) € W22(Q) (2.29)

is continuous in. Henceu(:,kTy) € H(Q) NW?2(Q) and by parts a) and b) of the proof there
exists a uniqgue SRN®&on the interval KTy, (k+ 1)T1 + £] with the initial datau(-,kT;). On
the other hand, on the interval,[& + 1)T1 + ] there exists a unique SRNBwith initial
data (1.7). Evidentlyi(-,t) =U(-,t) on [kT1, (k+ 1)T1 + &]. Thus by induction we continue
the SRNSu in the cylinderQr, to the SRNS in the cylindels, = Q x [0, +c0). Estimates
for the normg|ullw) » t > O, of this global solutioru give inequality (2.5).

d) Let us prove that the sequen¢e” - V)u"} converges irL»(Qr), and hence obtain the
convergence of Galerkin’s approximationsin the spacaVr(T) to the SRNS. Note that
the sequencg} converges in the nor|lw) to the unique SRN8 and

fT (- V) = - V) P dt— 0 as - .
0

Now suppose the opposite, i.e. that the sequé¢fufeV)u"} does not converge iy (Qr) to
the function (- V)u. Then there existsy > 0 and such a subsequer{og} that

LT _ 2
f ||{(unq V)u™ — (u-V)ul (-,t)” dt> &g forall {Ti).
0
Applying considerations of parts a) and b) we can find a subseqyence{ng} such that

T i 0 2
fo H{(uni.v)uni_(u.V)u}(.,t)H dt— 0 as j — .
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The obtained contradiction proves that the sequéfufe V)u"} converges ir,(Qr) to the
function (U, V)u. As all the sequendgu”- V)u"} converges irLo(Qr) to the function (- V)u,
then it follows from (2.25) thaftu" - ullyyty — 0 asn — co. o
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