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The transitions of solutions of a linear differential equation from oscillatory 
to exponentially growing or exponentially decaying behavior as the indepen­
dent variable, for example, changes sign are phenomena of interest to physi­
cists and other scientists, primarily in the past sixty years, and continuing even 
today. The simplest equation exhibiting such behavior is Airy's equation 

(A) / ' + xy = 0, 

obtained from his study of the rainbow [2]. If we set x = [\p(0)e~2]l/3t, then 
the rainbow equation (A) becomes 

(A*) e2d2y/dt2 + txp(0)y = 0, 

which might well be expected to have solutions close to solutions of the 
equation 

( A # ) e2d2y/dt2 + t^(t)y = 0 (^(0) * 0). 

This idea occured to R. Gans in 1915 [6] in his investigations of total reflection 
in physical—as opposed to geometrical—optics. The point / = 0 is called a 
(simple) turning point, one where solutions of (A#) change from oscillatory to 
exponential behavior. An obvious mathematical question, only answered much 
later by R. E. Langer [8, 9] and others, is whether one can find changes of 
variables in (A) such that (A#) becomes (A*) with ^(0) = 1 and with a small 
error term included. If the transformation from (A#) to A(*) is exact, it turns 
out that often it is but a formal power series in e with coefficients holomorphic 
in the complex variable x, i.e., an asymptotic series which converges only for 
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e = 0. The construction of such formal series has connections with topology 
and algebra (see V. I. Arnol'd [3]) and is related to problems in celestial 
mechanics and existence of normal forms in bifurcation theory; see Arnol'd [4, 
Chapter 5] and Hassard, Kazarinoff and Wan [7, Chapter 1 and Appendix 1]. 

When one deals with linear systems of differential equations, the situation is 
much more complex, and there are open problems in abundance. In linear 
systems new phenomena appear: transformations reducing a system to "sim­
pler" form can introduce many new turning points and thus complicate, rather 
than simplify, analysis in the large. 

Wasow's book is a mathematician's view of this important subject. It is the 
only such book. Y. Sibuya's monograph [11] treats only the important, and 
highly difficult, class of linear second-order equations with polynomial coeffi­
cients. The author's earlier book [12] is much broader in focus, and is out of 
date with respect to the problems treated in the book under review. For any 
graduate student who wants to do research in linear turning point theory, this 
book is a treasure house of methods and open problems. The specialist will 
also find much of interest. This reviewer, for example, learned of Gans' early 
contribution from Wasow's comprehensive Historical Introduction. Chapter 
IX on Fëdoryuk's global theory of second-order equations [5] contains new, 
nontrivial and interesting contributions by the author. Existence of a solution 
of 

(B) eu" +f(x,e)u' + g(x,e)u = 0 on [-1,1] with 

w(0,e) =A, w(l,e) = B 

that converges uniformly to a bounded nonzero function on [-1,1] as e -> 0 
has been called asymptotic resonance by Ackerberg and O'Malley [1]. In 
Chapter XII, Wasow establishes new sufficient conditions for asymptotic 
resonance in the case where the differential equation in (B) has a simple 
turning point f(x, 0) = -xh(x), h(x) > 0 on [-1,1]). Little is known when (B) 
involves a turning point of higher order. 

Your reviewer expresses but one dissatisfaction: specific applications to 
physical problems are omitted. Fortunately there are sources in which these 
can be found; for example, C. C. Lin's book on hydrodynamic stability [10]. 

The fruits of the work of Henri Poincaré are still ripening. Linear turning 
point theory is a particularly attractive one in taste and quality. 
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1. Multipliers. One of the simplest examples of a multiplier in a space of 
differentiable functions is a measurable function y(x), x G RW, such that the 
operator of pointwise multiplication u -> y • u is bounded from the Sobolev 
space W^ on Rn into L2 on Rn\ equivalently, there is a constant c such that 

(1) ƒ \y(x) • <t>(x) fdx < cƒ (| V*(x) |2 + |* (x) f) dx 

for all <j> e C0°°(R"). The space of all such y is denoted by M(W} -* L2), with 
the smallest c in (1) the square of the multiplier norm of y. Clearly, one can 
easily extend this notion to pairs of higher-order Sobolev spaces: Wp

m -> Wf, 
k < m, 1 <p,q < oc, or for that matter, to any of the various pairs of 
function spaces that naturally occur in analysis. The coefficients of a differen­
tial operator acting on Sobolev functions can be interpreted as multipliers. For 
example, if P(x, D)u = L{a{<kaa(x)D?u, then P: Wp

m -> Wp
m~k is continu­

ous when aa e M(Wp
m~lal -» Wp

m~k). The function y is called a compact 
multiplier if the operator of pointwise multiplication is a compact operator. 
The principal theme of the book under review (referred to below as Multi­
pliers) is the characterization of multipliers and compact multipliers in the 
basic Sobolev-type spaces used in analysis. Because of their connection to 
differential equations, it is not surprising that there are plenty of sufficient 
conditions in the literature for multipliers or compact multipliers. For example, 


