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Integral formulas are difficult to discuss in just one chapter. For one thing, 
there are many different formulas; for another, their construction and use has 
remained a rather technical enterprise. Krantz limits himself to constructing 
and estimating the "Leray-Stokes" formula of Henkin in the case n — 2, a 
choice which strikes a good compromise between generality and technicality. 

As a text, this book should be excellent for a second course on complex 
analysis. It covers many of the basic results and connects them up with 
harmonic analysis and P.D.E.; and the final three chapters provide an in­
troduction to more specialized material. 
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" The original and basic concept of functional analysis is that of an operator. 
Just as an analytic function has its complete domain of definition, so an 
operator has a complete set of spaces on which it can be examined." This 
maxim is from the 1966 survey article of S. G. Krein and Yu. I. Petunin on 
interpolation spaces [5], who also refer to " the victory of the operators over the 
spaces." For a nice example of this phenomenon, consider some recent results 
of Marshall, Strauss, and Wainger [6] concerning the nonlinear Klein-Gordon 
equation 

(NLKG) vtt - At; + v + A | v \av = 0 

and its linearization at v = 0, 

(KG) utt - AM + u = 0. 

Here A is the Laplace operator on Rn, and one assumes a > 0, X > 0. Given a 
function ƒ in L2(R"), there is a unique (weak) solution u{x, t) to (KG) with 
initial data u(x, 0) = 0 and ut(x, 0) = f(x). Let Tt : ƒ -> u( •, t) be the operator 
which takes initial velocity ƒ into position u( •, t) at time /. The problem is to 
construct a finite energy solution to (NLKG) which is asymptotic in the energy 
norm as t -> -oo to Tt ƒ. As was shown previously by Strauss, this can be 
reduced to the problem of obtaining certain bounds (in terms of t) for the 
norm of the linear operator Tt from Lp(Rn) to L*(R"), with \/p + \/q = 1. 
This is carried out in [6] by using results of Fefferman and Stein about the 
operator (1 — A)", s G R, on the space BMO, together with the Stein interpo­
lation theorem applied to a holomorphic family of operators Tt

a (a e C) 
containing Tr The result is that the nonlinear scattering problem at t = -oo 
has a solution when the exponent a in (NLKG) and the space dimensionality n 
satisfy A/n < a < [A/(n — 1)]. In particular, the physically interesting case 
n — 3, a = 2 is included in this treatment. 
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This example illustrates the fruitfulness of using such "exotic" spaces as 
BMO, together with interpolation theory, to prove results for the more familiar 
Lp spaces. An additional ingredient in the example is that the operators 
considered are all functions of the selfadjoint, translation-invariant operator A. 
Now in general, if £ is a selfadjoint operator on an L1 space, with spectral 
resolution 

XdEx, 
- 0 0 

then for any bounded Borel function <p on R the operator 

<p{t) = r<p(\)dEX 

is bounded on L2, with norm II <p II ^ (the essential supremum of | <p | relative to 
the maximal spectral measure class of £). By the general principle enunciated 
above, this definition of (p(£) via the spectral theorem is analogous to the 
definition of an analytic function such as the Euler gamma function by an 
integral formula with a limited domain of convergence. A complete description 
of the properties of cp(£) requires determining, e.g., the values of (p, q) so that 
<p(£) is bounded from Lp to Lq

9 and calculating the operator norm. The 
standard way to do this is to prove "endpoint" estimates and then to invoke 
the theory of interpolation spaces [1]. The "endpoint" estimates in turn are 
typically obtained using another realization of the operator <p(£), e.g., as an 
integral operator whose kernel has singularities of some specific type. 

A class of operators £ for which the above program is particularly natural 
are the generators of symmetric diffusion semigroups [7]: £ > 0, and the opera­
tors e~lt for / > 0 preserve pointwise positivity and are contractions on Lp

9 

1 < p < oo. The classic example of such an operator £ is the Laplace-Beltrami 
operator on a compact Riemannian manifold. Here the property of hypo-
ellipticity ("Weyl's lemma") gives the selfadjointness of £, and the maximum 
principle gives the pointwise positivity and L ̂ -contraction property. A signifi­
cant generalization of this situation has been intensively studied in recent 
years, in which £ is a degenerate elliptic operator of the form - 2 Xf9 where 
Xl9...9Xn are real vector fields on a manifold whose iterated commutators 
[Xk9...[X2, Xx]9...] for 1 < k < / span the tangent space to the manifold at 
each point. These operators are hypoelliptic, by a theorem of Hörmander, and 
the corresponding "heat" operator 9, + £ satisfies a version of the maximum 
principle due to J. M. Bony. The prototypical case is that of a "stratified" 
/-step nilpotent Lie group G (the most regular of the class of "homogeneous 
groups" treated by Folland and Stein). Here Xl9... 9Xn are left-invariant vector 
fields which generate the Lie algebra g of G. The "homogeneity" condition 
requires that the map Xt -» rXi9 for fixed r > 0, extend to a Lie algebra 
automorphism Sr of g. In this case det(ôr) = rQ

9 where the integer Q is called 
the "homogeneous dimension" of G. The operator £ is selfadjoint on L2(G)9 

and the "heat semigroup" e~lt
9 t > 0, is given by right convolution with a 

positive C00 function ht on G (this function is a natural analogue of the 
classical Gauss kernel on Rn). Thus the general machinery of the theory of 
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diffusion semigroups is available, together with the theory of analysis and 
representations of nilpotent Lie groups, to attack the problem of finding "a 
complete set of spaces on which £ can be examined." 

Having provided background and motivation for some of the topics treated 
by Folland and Stein, the reviewer feels that it is best now simply to refer the 
reader to the lucid introductory sections, notes, and references in their book 
for a guide to this latest chapter in the story of Hardy spaces. In fact, the 
theory of these spaces has been the subject of much outstanding expository 
writing, which treats in depth the major theorems and the technical machinery 
of the subject (cf. C. Fefferman [3] and Coif man and Weiss [2]). Further 
attempts along these lines in this review would be redundant. For those readers 
who are familiar with the situation on Rw but have some uneasiness about the 
intrusion of Lie groups into "classical analysis" (perhaps akin to the attitude of 
physicists in the 1930s who hoped to stamp out the "group pest" that was 
beginning to infect quantum mechanics), the reviewer is of course happy to 
recommend his own expository efforts in this area [4]. Such readers should 
perhaps be warned that some of the technical underpinnings of the theory 
erected by Folland and Stein include the recent convolution factorization 
theorem of Dixmier and Malliavin for C™(G), and the theorem of Helffer and 
Nourigat characterizing homogeneous hypoelliptic operators on a homoge­
neous group G in representation-theoretic terms. 

Having abdicated the responsibility of defining the Hardy spaces HP(G) for 
the reader (where G is a stratified nilpotent Lie group), the reviewer would 
nonetheless like to give a sample of the results to be found in this highly 
detailed and carefully written book. The following multiplier theorem, due 
jointly to Stein and A. Hulanicki, fits most naturally within the framework of 
this review: Let Q be the homogeneous dimension of G, £ a subelliptic 
Laplacian on G as above. Suppose <p is a function of class Cs on (0, oo), r is a 
positive integer, and s > r + (3g/2) + 2. Assume that supx>01 \J<p(J\\) |< oo 
for 0 <7 < s . Then the operator <p(£) is bounded on HP(G) in the range 
Q/(Q + r) <p < oo. In particular, the operator (1 + £)" is bounded on 
HP(G) for s G R and 0 < p < oo. 
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