SPHERICAL FIBRATIONS

BY J. L. NOAKES

ABSTRACT. In [8], [9] we extend some theorems of I. M. James and J. H. C. Whitehead on the homotopy type of spherical fibrations. Here we sketch our results and methods.

1. Introduction. Let E_1 , E_2 be q-sphere Hurewicz fiberings $(q \ge 1)$ over the same connected finite CW-complex B. We suppose that the spaces E_1 , E_2 have the same homotopy type $(E_1 \simeq E_2)$, that E_2 has a cross-section, and that E_2 is orientable. Then by [9, Theorem 1] E_1 is also orientable. We suppose that B is nilpotent [1], and let $E_{j(p)} \longrightarrow B_{(p)}$ be the localization of $E_j \longrightarrow B$ at a prime p (j = 1, 2).

THEOREM 1. If dim B < 2q then, for any prime p, $E_{1(p)}$ has a cross-section.

In [3] I. M. James and J. H. C. Whitehead prove a similar result for the case where B is a sphere, but where the fibre of E_1 , E_2 is not necessarily a sphere. We comment on our proof in $\S 2$.

THEOREM 2. If $E_1 \simeq B \times S^q$ where E_1 has a cross-section then E_1 is fibre homotopy trivial.

In [4] James and Whitehead take B to be a sphere and prove a similar result. Our proof in [9] uses a counting argument in the spirit of [3], [7]. Comparing this proof with Theorem 1 we find that if $E_1 \cong B \times S^q$ where dim B < 2q then E_1 is fibre homotopy trivial. It was a conjecture along these lines by I. M. James that led me to write [8], [9]. I wish to thank Professor James for telling me his conjecture.

Recall that the fibre suspension [6] $\Sigma E \longrightarrow B$ of a map $\pi: E \longrightarrow B$ is defined as follows. Let ΣE be the quotient of $E \times [-1, 1]$ by the relations $(e, -1) \sim (e', -1)$ and $(e, 1) \sim (e', 1)$ for $\pi(e) = \pi(e')$. Then the projection of ΣE takes [e, t] to $\pi(e)$. We assume that E_2 has the fibre homotopy type of ΣE for some E.

REMARKS. (i) If dim B < q then this assumption holds automatically.

(ii) If E_2 is a fibre bundle then this assumption is equivalent to the requirement that E_2 have a cross-section.

Received by the editors November 16, 1979.

AMS (MOS) subject classifications (1970). Primary 55F25, 55D10.

THEOREM 3. If either $H^q(B; \mathbf{Z})$ is finite or $\pi_q B = 0$ then there is a homo topy equivalence $f: B \longrightarrow B$ such that E_1 has the fibre homotopy type of the induced fibration f^*E_2 .

EXAMPLE. Let $\Phi \subseteq \pi_{r+q}S^q$ (0 < r < q-1) be maximal with respect to the property that if $\alpha, \beta \in \Phi$ satisfy $\alpha + \beta = 0$ then $\alpha = \beta$. It follows from The orem 3 that there is a bijection from Φ onto the set of homotopy types of q-sphere fibrations over S^{r+1} .

Let S_j^q be the fibre of E_j (j = 1, 2).

THEOREM 4. If the pairs of spaces (E_1, S_1^q) , (E_2, S_2^q) have the same home topy type then there is a homotopy equivalence $f: B \longrightarrow B$ such that E_1 has the fibre homotopy type of f^*E_2 .

In [4] James and Whitehead prove a similar result for the case where B is a sphere. In [2] S. Y. Husseini considers the situation of Theorem 4, with the additional hypotheses that dim B < q and $\pi_1 B = 0$. Simple examples show that [2, Theorem 1.1] is false as stated.

2. Methods. Our proofs of Theorems 3 and 4 turn on an elementary con struction which is difficult to describe more briefly than in [9]. However, it may be helpful to say what this construction aims to do.

Let $\pi_j: E_j \to B$ (j=1,2) be the projections, let s_2 be a cross-section of E_2 and let $\gamma: E_2 \to E_1$ be a homotopy equivalence. (In the proof of Theorem 4 we take γ to be a map of pairs.) A calculation shows that $\pi_1 \gamma s_2$ is a homoto equivalence, and our construction aims to replace γ by a homotopy equivalence θ' so that the diagram

commutes.

The proof of Theorem 1 is easier to summarise. A counting argument

taken from [7] shows that the Gysin sequences of the $E_{j(p)}$ split

$$0 \longrightarrow H^{r}B_{(p)} \xrightarrow{\pi_{1}^{*}} H^{r}E_{1(p)} \xrightarrow{\psi_{1}} H^{r-q}B_{(p)} \longrightarrow 0$$

$$\gamma^{*} \downarrow \uparrow \tau^{*}$$

$$0 \longrightarrow H^{r}B_{(p)} \xrightarrow{\pi_{2}^{*}} H^{r}E_{2(p)} \xrightarrow{\psi_{2}} H^{r-q}B_{(p)} \longrightarrow 0$$

for all r. Here τ is a homotopy inverse of γ , and we take coefficients in the ring $\mathbf{Z}_{(p)}$ of integers localized at the prime p. Our notation does not distinguish a map from its localization.

We choose $a_0 \in H^q E_{2(p)}$ so that $\psi_2 a_0$ is the identity of $H^0 B_{(p)}$. Let $a_2 = a_0 - \pi_2^* s_2^* a_0$. Then we consider two cases separately.

- (1) There is no exchange at p when $\psi_1 \tau^* a_2$ is a unit of $H^0 B_{(p)}$.
- (2) There is an exchange at p when $\psi_1 \tau^* a_2$ is not a unit of $H^0 B_{(p)}$.

When there is no exchange a computation shows that $\pi_1 \gamma s_2 : B \longrightarrow B$ is a homotopy equivalence at the prime p. It quickly follows that $E_{1(p)}$ has a cross-section.

When there is an exchange we form the induced fibrations $\pi_1^*E_{1(p)}$, $E = \iota^*\gamma^*\pi_1^*E_{1(p)}$ over $E_{1(p)}$, $E_{2(p)}|(B^{q-1})_{(p)}$. Here B^{q-1} is the (q-1)-skeleton of B, and ι is the inclusion of $E_{2(p)}|(B^{q-1})_{(p)}$ in $E_{2(p)}$.

$$E \xrightarrow{\pi_1^* E_{1(p)}} E_{1(p)} \xrightarrow{E_{1(p)}} E_{1(p)}$$

$$\downarrow \qquad \qquad \downarrow \pi_1$$

$$E_{2(p)} | (B^{q-1})_{(p)} \xrightarrow{\gamma_l} E_{1(p)} \xrightarrow{\pi_1} B_{(p)}$$

Then $\pi_1^*E_{1(p)}$ has a cross-section and therefore E has a cross-section.

Next a computation using (2) and dim B < 2q shows that $\pi_1 \gamma \iota$ is almost a homotopy equivalence. So the cross-section of E gives rise to a cross-section of $E_{1(p)}$. For details we refer to [8].

Theorems 1, 2, 3 and 4 contain as special cases all the results of [4] except the case r=q of [4, Theorem 1.6]. This exception can be dealt with from our standpoint. There remains the question of what happens when neither E_1 nor E_2 has a cross-section: for background on this we refer to [5].

REFERENCES

- 1. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
- 2. S. Y. Husseini, *Spherical fibrations*, Lecture Notes in Math., vol. 249, Springer-Verlag, Berlin and New York, 1970, pp. 107-124.
- 3. I. M. James and J. H. C. Whitehead, Note on fibre spaces, Proc. London Math. Soc. 4 (1954), 129-137.

- 4. ———, The homotopy theory of sphere bundles over spheres. (I), Proc. London Math. Soc. 4 (1954), 196-218.
- 5. ——, The homotopy theory of sphere bundles over sphere. (II), Proc. Lon-Math. Soc. 5 (1955), 148-166.
 - 6. I. M. James, Overhomotopy theory, Symposia Mathematica 4 (1970), 219-229.
 - 7. ———, Which fibre spaces are decomposable?, Indag. Math. 37 (1975), 385-390.
 - 8. J. L. Noakes, Cross-sections and homotopy type (to appear).
 - 9. ——, Fibrations and homotopy type (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN AUSTRALIA, NEDLANDS. WESTERN AUSTRALIA 6009