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RESEARCH ANNOUNCEMENTS 

LEVELS IN ALGEBRA AND TOPOLOGY 

BY Z. D. DAI, T. Y. LAM1 AND C. K. PENG 

The level s(A) of a (commutative) ring A is the smallest natural number s 
such that -1 is a sum of s squares in A. (If -1 is not a sum of squares in A, we 
say that s(A) = °°.) If A is a field, a striking result of Pfister [3] says that s(A) 
(if finite) is always a power of 2, and indeed, all powers of 2 are possible. 
Knebusch and Baeza have obtained extensions of Pfister's result to semilocal rings, 
but little is known about levels of commutative rings in general. In [2, Problem 
13], Knebusch has asked what type of integers can be the level of a ring (see also 
[ l ,p . 184]). 

In this note, we announce the following. 

THEOREM 1 A. For any n > 1, there exists an integral domain A with 
s(A) = n. Moreover, A can be chosen so that its field of quotients has any pre­
scribed level 2r < n. 

A form (homogeneous polynomial) ƒ G A[xl9 . . . , xm] is said to be 
isotropic over A if there exists a unimodular vector u € Am such that ƒ (v) = 0. 
(Otherwise, ƒ is said to be anisotropic over A.) Define the sublevel s (A) to be 
the smallest integer n such that x\ + " • " + * » + ! is isotropic over A. If 2 is 
invertible in A, it is easy to see that s (A) is equal to either s(A) or s(A) - 1. If 
s(A) e {1, 2, 4, 8}, then in fact s (A) = s(A). 

THEOREM IB. For any n > 1, there exists an integral domain A with 
s(A) = s (A) = n. Ifn>3is odd, there exists an integral domain B with s(B) 
= nands(B) = n- 1. 

COROLLARY. The pythagoras number of a ring A (i.e. the smallest integer 
r such that any sum of squares in A is a sum of r squares) can be any positive 
integer. (In fact, for the ring A in Theorem IB, the polynomial ring A [t] will 
have pythagoras number n + 1.) 

While the above results are of an algebraic nature, their proofs (at least as 
so far discovered) are purely topological. One uses ideas from homotopy and 
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cohomotopy theory, and exploits the topology of the real spheres Sn and the 
real Stiefel manifolds Vn 2 . In the light of their proofs, 1A and IB take on the 
appearance of topological 'dimension theorems'. Indeed, our methods of proof 
suggest a natural way of carrying over the theory of level and sublevel from al­
gebra and topology, thus exhibiting a new interplay between the two subjects. 
The topological side of the story seems to be of interest in its own right, and may 
very well hold the key to other unsolved questions on sums of squares and py-
thagoras numbers in algebra. To sketch the main ideas involved, we proceed as 
follows. 

Let C be the category whose objects are topological spaces X equipped with 
a continuous involution *. Morphisms in C are continuous involution-preserving 
maps. The real spheres (Sn

9 e) with the antipodal map e constitute a distinguished 
family of objects in C. For any (X9 *) G Obj C, we define 

s(X9 *) = min{«|3 a C-morphism (X, *) —> (Sn~\ e)} (level), 

s(X, *) = max{«|3 a C-morphism (S""1, e) —> (X, *)} (sublevel). 

REMARK. By the Borsuk-Ulam Theorem, we have always s(X, *) < 
s(X, *); in particular, s'(Sn-1, e) = s^""1, e) = n. 

Another important object in C is (C, - ) with 'bar* = complex conjugation. 
For any (X9 *), let A^x # ) (or Ax for short) be the ring of all C-morphisms 
from (X9 *) to (C, - ) . This ring provides the important link between the algebraic 
level (resp. sublevel) and the topological level (resp. sublevel), in a way which 
refines the preceding Remark: 

THEOREM 2. For any (X9 *) G Obj C, we have s(X, *) < s(Ax) < s(Ax) 
= s(X,*). 

This theorem implies the first part of Theorem IB for, if we take (X, *) = 
(S*1"1, e), then Theorem 2 (plus the Remark) shows that s(Ax) = s(Ax) = n. 

Another important family of objects in C is affine varieties X = Vc{%) Q 
C2 (with the usual topology) defined over the reals by an ideal %^R[xl9...9xn]9 

with involution 'bar' given by complex conjugation. Let A = R[xt,...,xn]/% 
be the real coordinate ring of X. 

THEOREM 3. The following statements are equivalent 
(1) 5(Yf-)£oo,(2) « ' ( * - ) < - , (3) sÇ4;r)<oo,(4) *'(^)<~> 

(5) s(A) < o°9 (6) s (A) < <», (7) X has no real points. If this is the case, the 
(sub)levels in (1), (2), (3), (4) are < n. 

This follows essentially from the Real Nullstellensatz. To get more precise 
results, we consider the case of hypersurfaces. 
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THEOREM 4. Let % = (g) where gGR[x19 . . . 9xn] is absolutely irre­
ducible. Assume that the hypersurface X = Vc(g) has no real points, and that 
its projective closure is nonsingular. Then 

(1) s(X, - ) = s\Ax) = s{Ax) = s(X, -) = n< s'(A) < s(A) < ~ . 

(2) Let ƒ G R[xx, . . . , xn] be any real form which is anisotropic over R 
Then f remains anisotropic over A and Ax. In fact, iff(dl9 . . . , tfn) = 0, 
dj G A or Ax> then the {dA have a common zero on X. 

The first part of (2) above has the flavor of a 'Tarski Principle'. The re­
markable thing is that such a principle is being affirmed here in a 'nonreaP set­
ting, in which the quotient field of A is not formally real. 

The proof of (1) in Theorem 4 relies on the fact that X has the homotopy 
type of a bouquet of (n - l)-spheres. This implies that X is (n - 2)-connected, 
from which it is easy to show that s(X9 -)>n. The rest of Theorem 4 can then 
be deduced by an argument involving the topological degree of mappings between 
spheres. 

To convey the general flavor of the methods we used, let us give here a 
direct proof for the first part of Theorem 1 A. We claim that the 'generic9 

R-algebra A = R[xt,. . . , xn] /(l + x\ + • • • + x\) has level n. (This is, of 
course, a special case of Theorem 4.) Indeed, if s(A) < n9 there would exist an 
equation 

-1 = ƒ,(*)* + • • • +f„-1(x)2 +/0(*)(1 + A + • • • + x2
n) O) 

where fj(x) G R[x] = R[xx , . . . , * „ ] . For i = V e ! , one has fj(ix) = pfa) + 
iqfix), where Pj are even real polynomials and qj are odd real polynomials. Thus, 
replacing x by ix in (1) and comparing the real parts, one gets 

-1 = J! (Pfa)2 - qfa)2) + P0(x) (1 - x\ xl). (2) 
7 = 1 

Consider the continuous mapping Q: Rn —• R ^ 1 defined by the (n - l)-tuple 
(ql9 . . . , qn-i). By the Borsuk-Ulam Theorem, Q must collapse some pair of 
antipodal points on the sphere S""1 C Rn, say Q(-a) = Q(a), a G S"""1. But 
qfax) = -qfa) for all /, so we also have Q(~a) = ~Q(a), whence Q(a) = 0. Plug­
ging the vector a into (2), we get -1 = S^Tj1 pfa)2 G R, a contradiction. 

By a suitable generalization of this method, one can show that 
R[x1, . . . , xn] 1(1 + ffarf + • • • + fn(xnf) has level n as long as fxf2 • • • fn 

¥= 0 and each f fa) = 0 has a real root. Thus, for instance, in R[xx , . . . , * „ ] / 
(1 + jef" + • • • + x%\ -1 is a sum of n 2rth powers, but not a sum of n - 1 
2rth powers. 

We want to thank A. Kas, A. Wang and Q. M. Wang for several valuable sug­
gestions. Details of this work will appear elsewhere. 
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