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whose original proof was very difficult (and for which still a new, quite simple 
proof was found recently by Hörmander and Melin). Goodman's proof grows 
out naturally from his fundamental guiding idea of approximating one 
algebraic structure by another which he uses fruitfully at other points too. 

The notes are mainly oriented towards the Rothschild-Stein theory of 
hypoellipticity and they contain an account of singular integral theory in a 
rather general setting well adapted to this application. But there are also two 
long sections about the applications to intertwining operators and to the 
Cauchy-Szegö integral. These contain clear detailed explanations of the 
original problems and their connections with other things. A particularly 
attractive feature is the inclusion in the section on the Cauchy-Szegö integral 
of an account of the work of R. D. Ogden and S. Vagi which illuminates the 
problem from the side of harmonic analysis on Hn. There is also an interest­
ing appendix on generalized Jonquières groups, and there is a good 
bibliography. 

This set of notes, which could actually be called a book, is indispensable to 
anyone seriously interested in this promising new subject. 
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Stochastic processes, by John Lamperti, Applied Mathematical Sciences, vol. 
23, Springer-Verlag, New York, Heidelberg, Berlin, 1977, xiv + 266 pp., 
$9.80. 

Ever since the appearance of J. L. Doob's 1953 book of that name, 
Stochastic processes has been a term to conjure up visions of elaborate 
mathematics applicable to studying the passage of time in random 
phenomena. It has been aptly remarked (I believe by Professor Lawrence 
Marcus) that the real universe is either a mechanical system of infinite 
dimension, or a stochastic process. If we admit the presence of random 
elements then only the second alternative is possible. In a topic of this 
breadth, however, it is inevitable that one does not make headway with a 
frontal approach but only by the maxim of "divide and conquer". One 
postulates various special properties which lend themselves to mathematical 
development, but one leaves the question of their universal applicability to 
others (presumably, to philosophers and theologians). It is perfectly sufficient 
that the results be interesting mathematically, and that they apply (to a 
sufficient degree) within very restricted areas of validity. 

In writing a general text on stochastic processes, one is thus confronted at 
the outset with a dilemma. On the one hand, since a stochastic process is 
simply a family of random variables X0 t E T, on a probability space 
(Q, F, P), there is little or nothing to be said about the subject as a whole. On 
the other hand, as soon as special further properties are assumed, the subject 
divides into domains which are rather far apart, both physically and mathe­
matically, according to the differing natures of those assumptions. The 
situation is not unlike what one would encounter in biology if asked to write 
on the topic of "habitats". It is first of all necessary to specify what creatures 
are to be the inhabitants, and this makes a vast difference in the results! 
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Luckily, however, with stochastic processes the various assumptions almost 
never contradict each other except in very obvious ways, so that one can 
afterwards combine the various inhabitants without much jeopardy. Thus, for 
example, a Markov process of course cannot both have continuous paths and 
have jumps. But it is often quite easy to understand the sum of a continuous 
and a pure-jump process in terms of the separate components. The main 
conceptual difficulty of Markov processes with jumps arises rather from the 
fact that the general process (without discontinuities of the second kind) 
cannot be decomposed into a sum of continuous and pure-jump components. 
This problem, however, is outside the scope of the book under review. 

A more pervasive distinction is that between assumptions of stationarity, 
on the one hand, and the approach to processes through conditional proba­
bility. Unlike most other treatments, the present one begins with stationary 
processes. The practical meaning (somewhat paradoxically) is that "This sort 
of process often can describe a physical system which is in a steady state, but 
which continually undergoes random fluctuations." Mathematically, of 
course, it simply means that the structure is invariant under the additive 
group acting on the time coordinates. However, the novelty of the present 
work is even larger, since wide-sense stationarity precedes strict-sense 
stationarity. In wide-sense stationarity, only the moments up to order 2 are 
assumed invariant. This means in effect that the process Xt91 E T, is treated 
as a curve in Hubert space, associated with a group Ut of unitary operators by 
the equations Xt = UtX0. Since only these moments may be used in deriving 
results, all operations such as limits, derivatives, integrals, etc., are carried out 
in the Hubert space sense. The famous interpolation and prediction theory of 
A. Kolmogorov, N. Wiener, and others, falls within this framework, which 
occupies Chapters 2 and 3 of the present work. The actual content consists 
very largely of "old chestnuts", but it is expertly done and pleasingly 
organized. 

Nevertheless, one should not overlook the uncomfortable question of how a 
theory can accomplish so much which does not distinguish between the two 
processes Xn * f*Lw einXdBx and Yn * 2 ein\ where Bx is a Brownian motion 
and {AJ are the jump times in (-A-, TT) of a Poisson process with unit 
intensity. Here, of course, the entire distinction rests in strict-sense properties 
which are not of the wide sense. Accordingly, it is quite logical to let the more 
general and opaque wide-sense theory precede the more detailed and precise 
strict-sense theory, as Lamperti has done. We can only regret that the latter is 
allotted just 21 pages, permitting only a few standard examples and the usual 
short proof of the ergodic theorem. Thus the quotation of the text that the 
ergodic theorem is "a theorem looking for a theory" almost seems to be a 
self-fulfilling prophecy. 

The other approach to processes, namely through conditional probability, 
occupies the second half of the book. The heuristic, probabilistic meaning of 
this approach is roughly that the process is regarded as a kind of transient 
evolution from the given states to the yet unrealized states, according to fixed, 
conditional probability laws. The simplest case is that of Markov processes, 
where application of the laws requires only the present value of the process. 
The laws are then expressed by what is called the transition function. This, 
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together with the initial distribution, entirely determines the joint 
distributions of the process. To proceed very far probabilistically with 
Markov processes, however, one requires a knowledge of martingale theory. 
This last corresponds to Markov processes in somewhat the same way that 
wide-sense stationarity corresponds to strict sense. Thus the martingale 
assumption, viz. that the process is centered at conditional expectations given 
the entire past, does not lead to a complete determination of the process, but 
only to certain general qualitative properties. 

The author's strategy at this point, however, is opposite to that in the first 
half of the book, in the sense that martingale theory is postponed until the 
final chapter. Therefore, instead of beginning Markov processes with the 
probabilistic content, he leads into the subject through the analytic theory of 
the transition function "from a somewhat old-fashioned point of view." A 
rather general analytic discussion is first made of finite state Markov chains 
in both discrete and continuous time. Here the transition function is simply 
iteration or exponentiation of a finite matrix, and one can obtain the limiting 
behavior as / -> oo without much difficulty. The author does not strive for 
complete generality but rather emphasizes methods (at the cost of an extra 
positivity hypothesis). It is then easy to introduce the general state space in 
discrete time, and the compound Poisson processes in continuous time. Since 
all of this is only introductory to the following chapter entitled The application 
of semigroup theory, most of the hard questions and examples are carefully 
avoided. 

In Chapter 7, operator semigroups are introduced as "the skeleton key 
which brings order out of all this chaos." There is, of course, on any 
measurable space a one-to-one correspondence between time-homogeneous 
Markov transition functions, and positive contraction semigroups of 
measures. But what is most useful about the semigroup approach is that the 
adjoint semigroup on the bounded measurable functions is usually much 
more tractable than the original one. In most cases of interest, one has a 
metric space, and the adjoint has the "Feller property" of transforming the 
bounded continuous functions into themselves. It is then relatively innocuous 
to assume strong continuity on the subspace of uniformly continuous 
functions, in the uniform norm. With the additional hypothesis that the 
metric space is compact, we reach the basic setting of Lamperti's text. A nice 
form of the Hille-Yosida Theorem then provides a characterization of the 
infinitesimal generators A of the semigroups, chiefly by the property that 
4 / C*o) < 0 at a maximum JC0. This can be applied to identify the generators 
and transition functions of most of the familiar diffusion processes, for which, 
of course, A is an unbounded differential operator. 

By and large, all of this is classical analysis with a smattering of probabilis­
tic content. The semigroups are determined, but what about the behavior of 
the processes? More damaging than this question (which can be effectively 
postponed) is the related one of the probabilistic meaning and role of the 
analytical hypotheses which have been introduced. When, in the final chap­
ters, "We now turn to this neglected side of our subject," one cannot escape 
the feeling that to a degree the die is already cast. It is too late to effectively 
study complete intrinsic classes of processes probabilistically, since this would 
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clash with the restrictive nature of the analytical assumptions already made. 
The most that one can do is to examine the probabilistic implications of these 
hypotheses. In this way, the emphasis on semigroup theory tends to become a 
kind of analytical straight jacket for subsequent developments, as seen from a 
more probabilistic standpoint. Thus we would characterize the last 80 pages, 
not as a "survey of the mathematical theory," but rather as a succinct 
introduction to the probabilistic behavior of Markov processes. 

It is convenient here to distinguish qualitative from quantitative properties 
of a process. For example, right-continuity of paths is a qualitative property, 
while a first passage time distribution is quantitative (in the probabilistic 
sense). As a rule, qualitative problems arise only in continuous time. This is 
first apparent in the observation that a continuous time transition function 
does not really determine a process. Since there is latitude up to sets of 
probability 0 for each t, these sets can accumulate to be nonmeasurable or of 
positive probability. Consequently, there is a real basic difference between 
continuous and discrete-time processes, which cannot be obviated by use of 
discrete time approximations. It requires an entire chapter to show, for 
example, that for transition functions satisfying the analytical hypotheses 
noted above there always exist processes whose paths are right-continuous, 
with left limits for / > 0. But even this does not really explain "why". 
Analogous remarks apply to the result that the paths may be taken to be 
continuous if the generator A is of local character on a sufficiently large 
domain. 

In the penultimate Chapter 9, entitled Strong Markov processes, we begin to 
understand how these difficulties arose. The transition function provides 
information only about constant times. But with a continuous time param­
eter, even the simplest random times do not readily reduce to constant ones. 
In order to commence the solution of more quantitative problems, one must 
first define a suitably wide class of random "stopping times," at which the 
transition function continues to describe the conditional law of passage from 
past to future. Fairly delicate concepts and arguments are needed to reach the 
conclusion that passage times to open and closed sets indeed have this 
property. The next step is then to introduce the characteristic operators, 
which are analogous to the infinitesimal generators but with the roles of time 
and space more or less interchanged. This leads naturally toward the relative 
theory of processes on subdomains, and the introduction of boundaries and 
boundary conditions. 

Except for the final short chapter on martingales, the work concludes with 
two applications: a characterization of Brownian motion based on symmetry, 
and a probabilistic solution of the Dirichlet problem for bounded, convex 
domains. The latter is intended to give "a glimpse . . . into the extensive and 
rewarding new topic of probabilistic potential theory," thus making it clear 
that the book is intended to be an introduction as well as a survey. 

Despite the uniformly high standard and quality of the work, we must 
conclude with a couple of mildly critical remarks. First, it seems regrettable 
that there are no applications of the machinery of strong Markov processes to 
the computation of actual probabilities. Granting that the emphasis is on 
processes rather than probabiUties, it nevertheless seems premature to go on 
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to applications to analysis without first computing even one real probability 
distribution, be it for a passage time, a hitting probability, an occupation 
time, or some more involved functional. Secondly, the overall tone of the 
work is already set in the preface as follows: "The great day of the dedicated 
solitary researcher is over, if indeed it ever existed.... In their stead, concern 
for the human consequences of scientific and technological achievement must 
become part of our working lives,.. . Only through organized collective 
action can this be achieved." This being so, it is easy to imagine why the 
methods and ideas of a generation of researchers should be presented here in 
a condensed and transparently clear form, with no suggestion of the effort 
that must have gone into developing them. Professor Lamperti has indeed 
done a highly praiseworthy job in providing us with a careful and painless 
review of stochastic processes. For some readers, however, the work may be a 
trifle unoriginal. A few more novel calculations, descriptive generalities, or 
even loose ends, might have alleviated the collective mentality and given the 
reader more to remember. 
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Vector measuresy by J. Diestel and J. J. Uhl, Jr., Math. Surveys, no. 15, Amer. 
Math. Soc, Providence, R.I., 1977, xiii + 322 pp., $35.60. 

I am an avid reader of the mystery novels of John Dickson Carr and the 
Poirot stories of Agatha Christie. I was led to these authors by a keen earlier 
interest in the works of Edgar Allen Poe and the Sherlock Holmes Stories of 
Sir Arthur Conan Doyle. Thus, in good faith, I cannot say that this book 
under review is the most entertaining book I've read; however, I can say that 
it is the most entertaining mathematics book I've ever read (including a 
famous measure theory book much enjoyed in my wasted youth). Indeed this 
serious, but sometimes irreverent, romp through vector measures can be 
enjoyed even by those misguided souls with a strong dislike for vector valued 
integration and the geometry of Banach spaces. 

I will go so far as to say that the introduction alone is worth the 
(exorbitant?) price of the book: " . . . shortly after 1936, Dunford was able to 
recognize the Dunford-Morse theorem and the Clarkson theorem as genuine 
Radon-Nikodym theorems for the Bochner integral. This was the first 
Radon-Nikodym theorem for vector measures on abstract measure spaces." 

"B. J. Pettis, in 1938, made his contribution to the Orlicz-Pettis theorem for 
the purpose of proving that weakly countably additive vector measures are 
norm countably additive." 

" . . . Dunford and Pettis, in 1940, built on their earlier work to represent 
weakly compact operators on Lx and the general operator from Lx to a 
separable dual space by means of a Bochner integral. By means of their 
integral representation they were able to prove that Lx has the property now 
known as the Dunford-Pettis property." 

"Then came the war! By the end of the war, the love affair between vector 
measure theory and Banach space theory had cooled. They began to drift 
down separate paths. Neither prospered. Much of Banach space theory 


