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PSEUDOCONVEXTTY AND THE PROBLEM OF LEVI 

BY YUM-TONG SIU1 

The Levi problem is a very old problem in the theory of several complex 
variables and in its original form was solved long ago. However, over the 
years various extensions and generalizations of the Levi problem were pro­
posed and investigated. Some of the more general forms of the Levi problem 
still remain unsolved. In the past few years there has been a lot of activity in 
this area. The purpose of this lecture is to give a survey of the developments 
in the theory of several complex variables which arise from the Levi problem. 
We will trace the developments from their historical roots and indicate the 
key ideas used in the proofs of these results wherever this can be done 
intelligibly without involving a lot of technical details. For the first couple of 
sections of this survey practically no knowledge of the theory of several 
complex variables is assumed on the part of the reader. However, as the 
survey progresses, an increasing amount of knowledge of the theory of several 
complex variables is assumed. 
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1. Domains of holomorphy. 
(1.1) One of the great differences between one complex variable and several 

complex variables is the concept of a domain of holomorphy. On any open 
subset G of C there is a holomorphic function which cannot be extended 
across any boundary point of G. This is not the case in several complex 
variables, as was first pointed out by Hartogs [43]. The simplest example is 
the domain 

Q - (A, X A1/2) u ((A, - A1/2) X A,) 

where A, is the open disc in C with center 0 and radius r. Any holomorphic 
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function ƒ on Q can be extended to a holomorphic function on A! X Aj, 
because the function 

i U W M*.w)<-<') 
is holomorphic on A, X A, and agrees with ƒ on A! X A1/2 by virtue of 
Cauchy's formula. 

Such an example calls for the introduction of the concept of a domain of 
holomorphy. A domain of holomorphy is a domain on which there exists a 
holomorphic function which cannot be extended to a larger domain. 

Hartogs [43] obtained the following necessary condition for a special kind 
of domain (now called Hartogs' domains) to be a domain of holomorphy. 

(1.2) THEOREM. Let D be a domain in C and R be a positive function on D 
such that the set 8 in C2 defined by zx E D and |z2| < R (*i) is a domain of 
holomorphy. Then — log R(zx) is a subharmonic function on D. 

We will indicate the idea of its proof a little bit later. The domain Q in the 
above example is a domain of the type described in Theorem (1.2), where 
R(zx) * 1 for \ < \zx\ < 1 and R(zx) * \ for \zx\ < \. In this case - log R 
is not subharmonic, because zx * 0 is a maximum. So the theorem gives an 
explanation for the example. 

The most obvious way to get a domain of holomorphy is to start with a 
holomorphic function on a domain and then use analytic continuation to 
continue the function to its maximum domain of definition, which, of course, 
is a domain of holomorphy. However, in this way one gets in general only a 
domain spread over C* instead of a domain in C1. Such a domain is also 
called a Riemann domain. More precisely, a Riemann domain is a complex 
manifold together with a locally biholomorphic holomorphic map into some 
C\ When one considers domains of holomorphy, it is natural to consider 
Riemann domains instead of just domains in C . 

Cartan and Thullen [13] gave the following characterization of domains of 
holomorphy. 

(1.3) THEOREM. The following conditions for a Riemann domain IT: Q - » C 
are equivalent. 

(i) Qis a domain of holomorphy. 
(ii) Q is holomorphically convex in the sense that, for every compact subset K 

of 12 the holomorphically convex hull K of K is compact, where K is defined as 
the set of all points xofQ such that \f(x)\ < the supremum \\f\\K of \f\ on K 
for every holomorphic function f on Î2. 

(iii) For every compact subset K of Q, the infimum of d on K equals the 
infimum of d on K, where for x E Q, d(x) is the largest positive number such 
that IT maps an open neighborhood of x biholomorphically onto the ball in C 
with center IT (X) and radius d(x). 

We indicate the idea of its proof only for the case Q c C*. 
For (ii) =» (i), we exhaust Ö by an increasing sequence of K„ with compact 

Kv. Take a discrete sequence {xy} in Q with x¥ £ K¥ which has every 
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boundary point of Q as an accumulation point. Construct ƒ * n„(l - f^Y 
for suitable positive integers ^ , where ƒ„ is a holomorphic function on Q with 
fÀxw) " 1 a nd \f9\ < 1 on Kv. Then ƒ has too high a vanishing order near the 
boundary of Î2 to be extended across any boundary point of Q. 

For (iii) =» (ii), one simply notes that K is bounded because the coordinate 
functions of C1 are holomorphic. 

(i) implies (iii), because, if ƒ is a holomorphic function on Q which cannot 
be holomorphically extended across any boundary point of Q and tf there is a 
boundary point x of Q whose distance y\ from a point y of K is < the 
infimum o of d on K, then for any n-tuple k the &th partial derivative 2)^ of 
ƒ, being a holomorphic function on Î2, satisfies 

\{Dkf){y)\<\\D%K< k\t-M\\f\\K. 
where t\ < t < a and Â  is the set of points having distance < t from K. By 
forming the power series of ƒ at y, one concludes that ƒ extends holomorphi­
cally across JC, which is a contradiction. 

(1.4) Now we want to indicate the idea of the proof of Theorem (1.2). First 
we introduce a definition. A complex manifold M is said to satisfy the 
Kontinuitàtssatz if the following holds. For any sequence of maps <p„: A -» M 
(where A is th£ open unit disc in C) which are holomorphic on A_and 
continuous on A, if U„<p„(3A) is relatively compact in Af, then U„<p,,(A) is 
relatively compact in M. In the literature a manifold satisfying the Kontinui­
tàtssatz is more commonly called pseudoconvex. We use our present terminol­
ogy, because the adjective "pseudoconvex" is sometimes used to mean other 
things too in the literature. Because of the maximum modulus principle for 
holomorphic functions, it is obvious that a complex manifold which is 
holomorphically convex satisfies the Kontinuitàtssatz. 

We prove Theorem (1.2) by absurdity. If -log R is not subharmonic, then 
for some z? E D and some positive number r there exists a holomorphic 
polynomialp(zx) such that -log R < Rep on \zx — z?| • r and -log R(z^) 
« Rep(zi). Then the Kontinuitàtssatz property of Î2 is contradicted by the 
following sequence of discs indexed by v: 

*, H (z„(i-})«-'«*>) (h-*?M-

2. The original Levi problem. 
(2.1) Suppose a domain Î2 is given by r < 0, where r is a C2 function whose 

gradient is nowhere zero on the boundary of Ö. Ö is said to be pseudoconvex 
(respectively strictly pseudoconvex) at a boundary point x if the complex 
Hessian (32r(x)/3zl3^) is positive semidefinite (respectively positive definite) 
when restricted to the complex tangent space of 30. This property is indepen­
dent of the choice of r. Î2 is said to be pseudoconvex (respectively strictly 
pseudoconvex) if it is pseudoconvex (strictly pseudoconvex) at its every 
boundary point. When one wants to emphasize that a domain is only 
pseudoconvex and not necessarily strictly pseudoconvex, one also says that it 
is weakly pseudoconvex. 

It is very easy to see that if 0 is strictly pseudoconvex at x then there exists 
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an open neighborhood U of JC in C and a holomorphic local coordinate 
system on U so that with respect to the new coordinate system U f) fl is 
strictly Euclidean convex at JC. 

(2.2) THEOREM (E. E. LEVI [56]). A domain of holomorphy Q with smooth 
boundary is pseudoconvex at every boundary point. 

The idea of the proof is as follows. Suppose the domain Q is not pseudo-
convex at a boundary point JC. Then one can find a plane H of complex 
dimension 2 containing JC such that H ç\Q has smooth boundary at JC and 
H - 12 is strictly pseudoconvex at JC as a domain in H. There is an open 
neighborhood U of JC in H such that H — Ö is strictly Euclidean convex at JC 
with respect to some coordinate system S of U. Hence in Î2 n U one can find 
a sequence of one-dimensional closed discs Dv with respect to S such that 
U pdDp is relatively compact in £2 n U but U VDV is not relatively compact in 
l / " n ö , contradicting the Kontinuitâtssatz for Q. 

(2.3) The original problem of Levi is to prove the converse that every 
domain Ü with smooth pseudoconvex boundary is a domain of holomorphy. 

The Levi problem was first solved by Oka. He did the case n = 2 in [67] 
and the general case in [68]. The case of a general n was also solved at the 
same time independently by Bremermann [8] and Norguet [66]. 

Before we state Oka's result in its general form, let us first observe that for 
the Ü in the Levi problem, —logrf is a plurisubharmonic function on Q, 
where d{x) is the distance from JC to the boundary of Q. To prove the 
observation, we assume the contrary. Then for some JC E Q and some com­
plex line L through JC the Laplacian of the restriction of -logrf to L is 
negative at JC. We can assume that JC is the origin and L is given by 
z2 a . . . s zn = 0. From the power series expansion of —log d\L at JC, it 
follows that for some e > 0 and r > 0 there exists a holomorphic function 
f(z{) on |z,| < r such that - log d(x) = Re /(O) and 

- log d(zl9 0 , . . . , 0) < Ref(zx) - t\zxf 

for |z,| < r. Let y be a point of 9Î2 such that |JC — y\ = d(x). Consider the 
disc 

for |z,| < r. This disc is tangential to 3 Q at y and it is easy to verify that the 
restriction of the complex Hessian of r to the tangent space of this disc is 
negative, which is a contradiction. 

(2.4) THEOREM (OKA [68]). For a domain Q spread over C1, the following 
conditions are equivalent. 

(i) Î2 is a domain of holomorphy. 
(ii) Q satisfies the Kontinuitâtssatz. 
(iii) —log d is plurisubharmonic, where d is as defined in (1.3). 

It is easy to see the equivalence of (ii) and (iii). (iii)=>(ii) is simply a 
consequence of the maximum principle for subharmonic functions, (ii) => (iii) 
can be proved in more or less the same way as (1.2). To get (i) from (ii), Oka 
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used the Cauchy-Weil integral formula to obtain a solution of the Cousin 
problem. 

3. Stein manifolds. 
(3.1) For the domain Q in the original Levi problem, when fl is bounded, 

—log d is a plurisubharmonic function on 0 which is at the same time an 
exhaustion function on Q in the sense that for any c E R, { — log d < c) is a 
compact subset of Q. In general, - log d + \z\2 is an exhaustion function on 
Q. Moreover, — logd+ \z\2 is strictly plurisubharmonic, in the sense that 
locally when one adds to it any C2 function with sufficiently small second 
order partial derivatives, the result is still plurisubharmonic. From this point 
of view, a stronger version of the original Levi problem is to prove that every 
domain with a strictly plurisubharmonic exhaustion function is a domain of 
holomorphy. This was solved by Grauert [30] whose result is actually more 
general than this and deals with a general manifold instead of a domain. In 
the case of a general manifold, as an analog to a domain of holomorphy we 
have the concept of a Stein manifold. 

A complex manifold is said to be Stein if it is holomorphically convex and 
its global holomorphic functions separate points and give local coordinates at 
every point. A result of Bishop-Narasimhan-Remmert [3], [63], [71] says that a 
complex manifold is Stein if and only if it is a (closed) complex submanifold 
of some C^. 

(3.2) THEOREM (GRAUERT [30]). A complex manifold which admits a smooth 
strictly plurisubharmonic exhaustion function is Stein. 

Grauert's method is to use the bumping technique to prove the finite-di­
mensionality of the first cohomology group of a sublevel set of the exhaustion 
function with coefficients in a coherent sheaf. 

Narasimhan [64] generalized Grauerfs result to the case of a complex 
space. 

(3.3) THEOREM (NARASIMHAN). A complex space which admits a continuous 
strictly plurisubharmonic exhaustion function is Stein. 

A complex space is the generalization of a complex manifold to allow 
singularities. More precisely, it is defined as follows. A subvariety of an open 
subset of a complex Euclidean space is a closed subset which locally is the set 
of common zeros of a finite number of holomorphic functions. A holomor­
phic or a (strictly) plurisubharmonic function on a subvariety is a function 
which locally is the restriction of such a function on some open subset of the 
Euclidean space. A holomorphic map from a subvariety to another subvariety 
is locally the restriction of a holomorphic map from an open subset of a 
Euclidean space to another Euclidean space. A complex space is constructed 
by using biholomorphic maps to piece together subvarieties. A complex space 
is Stein if it is holomorphically convex and its global holomorphic functions 
separate points and give local embeddings at every point. 

A by-product of the results of Grauert and Narasimhan is the following. 

(3.4) THEOREM. If X is a Stein space, p is a continuous plurisubharmonic 
function on X and Y = {p < c} for some real number c, then the pair (X, Y) is 
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a Runge pair in the sense that every holomorphic function on Y can be 
approximated uniformly on compact subsets of Y by holomorphic functions on X. 

Grauert's characterization of Stein manifolds by the existence of smooth 
strictly plurisubharmonic functions can also be proved by using the L2 

estimates of 3. This approach is due toKohn [50], Andreotti-Vesentini [2], and 
Hörmander [48]. Roughly speaking, this 3 method is a generalization of 
Kodaira's vanishing theorem for compact manifolds to the case of manifolds 
with boundaries. Like the proof of Kodaira's vanishing theorem it depends on 
Bochner's formula for the Laplacian. 

4. Locally Stein open subsets. 
(4.1) Because of Oka's characterization of domains of holomorphy by the 

plurisubharmonicity of - log d, a domain $2 of Cn is Stein if and only if it is 
locally Stein in the sense that for every x E 3Q there exists an open neighbor­
hood U of x in C such that U n Q is Stein. 

A natural question to raise is the relationship between Steinness and local 
Steinness for open subsets of a general complex space. For example, we have 
the following problem. 

(4.2) Problem. Is a locally Stein open subset of a Stein space Stein? 
This problem still remains unsolved. The main difficulty is, of course, the 

lack of an analog of —log d for the case of a complex space. In the manifold 
case, Docquier-Grauert [18] proved the following. 

(4.3) THEOREM. Every locally Stein open subset G of a Stein manifold M is 
Stein. 

Their proof consists in finding a holomorphic retraction m\ U-*M from a 
Stein open neighborhood U of M in some C^ in which M is an embedded 
closed complex submanifold. Since ir~~l(G) is locally Stein, it follows that 
TT~X(G) is Stein and G, being a submanifold of ir"\G\ is Stein. Such a 
holomorphic retraction cannot exist whenever there is any singularity. So this 
technique cannot be applied to the general case of a complex space. 

For complex spaces Andreotti-Narasimhan [1] proved the following partial 
result. 

(4.4) THEOREM. Let X be a complex space, S be its singular set, and G be a 
locally Stein open subset of X. If there exists an open neighborhood U of 
S n 3(7 in X such that U n G is Stein, then G is Stein. 

The main idea of their proof is as follows. One can assume that X is of pure 
dimension n. Find a finite number of holomorphic maps <nv\ X-+Cn so that 
S * D „ Z„ where Z„ is the singular set of mv, i.e. the set of points of X 
where m¥ is not locally biholomorphic. For z E G - Z„, define dp(x) to be the 
largest positive number so that mv maps an open neighborhood of x biholo-
morphically onto the ball of radius dv(x) centered at <nv(x\ Th e n ~"l°g d? *s 

plurisubharmonic on G - Z„, but approaches oo on Z„. To get a plurisub­
harmonic function on G, we define the following plurisubharmonic function 

<p„= - log dv + log 2 \U\ 
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on G, where f (1 < /i < k,) are suitable holomorphic functions on X whose 
common zero set is Z„ (for example, if vï9..., vk are holomorphic vector 
fields on X generating the space of tangent vectors at every point of X — S, 
then one can take fvyL to be the value of the Jacobian determinant of IT, at 
2cjf| A • • • A *>,;)• Let p (respectively q) be a nonnegative smooth strictly 
plurisubharmonic exhaustion function on X (respectively U n G). Let 

i//=/?+max(<p,,,0) 

and let a be a smooth function on U with compact support which is 
identically 1 on an open neighborhood of S n 9G. Then one can find a 
smooth increasing convex function T such that T ° \p + oq is a strictly 
plurisubharmonic exhaustion function on G. 

(4.5) In both the proof of the theorem of Docquier-Grauert and that of 
Andreotti-Narasimhan —log of the Euclidean distance is used. Docquier-
Grauert used it injectively, so to speak; and Andreotti-Narasimhan used it 
projectively. 

It is natural to try to construct distance functions directly on Stein spaces 
to take the place of the Euclidean distance. There are two obvious choices. 
Unfortunately neither one works. 

The first one can be described as follows. Suppose there is a proper map IT 
from a Stein space X onto an open subset Q of C*. Let G be a locally Stein 
open subset of X. For x E G let dx(x) be the largest positive number such 
that for some open neighborhood U of x in G, 7r(£7) is the open ball in C1 

with center T̂(JC) and radius dx(x) and it maps U properly onto TT(E/). In 
general - log dx(x) is not plurisubharmonic even at the regular points of X. A 
simple counterexample is the following: X - C and TT: X-+C is given by 
TT(Z) * z2. G * the complement of (-oo, - 1] U [V2, oo) in X. Then 
—log^ assumes its maximum 0 at the point 1 of G. As a consequence, 
—log dx cannot be plurisubharmonic on G. 

The second obvious choice is the following. Suppose X is a subvariety of C 
and G is a locally Stein open subset of X. For JC E G, define d2(x) to be the 
largest positive number so that the intersection of X with the ball in C1 of 
center x and radius d2(x) is contained in G. Again, in general, —log d2 is not 
plurisubharmonic even at regular points of G. The following is a simple 
counterexample. X * C is embedded in C2 by q>(z) * (z, z2). G » X — 
{ - 1 } . Then - log d2 assumes a local maximum -log(5 V5 /4) at the point 1 
of G. As a consequence, - log d2 cannot be plurisubharmonic on G. 

(4.6) The recent work of Hirschowitz [45] sheds some light on the problem 
of finding distance functions whose —log is plurisubharmonic for locally 
Stein open subsets. He considered a complex manifold X on which there are 
enough global holomorphic vector fields to generate the tangent space of X at 
every point of X. Such a manifold is called inflnitesimally homogeneous. For 
this kind of manifold X one can find a finite number of holomorphic vector 
fields € „ . . . , % on X so that they generate the tangent space of X at every 
point of X. Suppose G is an open subset of X. For x E G, we define d(x) as 
follows. For a * (al9... 9aN) E CN, let q>Xi0(t) be the trajectory for the vector 
field Re 2 £ . i akvk whose initial point q>Xta(0) is JC. NOW d(x) is defined as the 
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largest positive number such that <pXta(t) E G for all 0 < f < d(x) and all a 
satisfying 2£«i|tf*|2 = 1. 

(4.7) THEOREM (HIRSCHOWITZ). If G satisfies the Kontinuitàtssatz, then 
—log d is plurisubharmonic on G. 

The main idea of his proof is as follows. The function d(x) can be 
alternatively described in the following way. From the existence theorem for 
ordinary differential equations, one can construct a holomorphic map a from 
an open subset Q of X XCN into X such that 

(i) a maps X XO biholomorphically onto X, 
(ii) (x X C^) n Q is connected for every x E X, 
(hi) for every x E X and a = (al9... 9aN) E C^, 

3 N 

-r- o(x, ta) « 2 0*t?*(a(x, ta)) 

for / E C with (*, to) E Q (where the left-hand side means, of course, the 
image of 3/3/ under the differential of the map / h» o(x, ta)). 

We can assume that £2 is the maximum open subset of X X Q with these 
properties. Now d(x) can be alternatively defined as the largest positive 
number such that (x, a) E o~\G) for every a belonging to the ball in C* of 
radius d(x) and center 0. From this alternative definition one easily sees (as 
in the proof of (1.2)) that —log d is plurisubharmonic on G, because o~l(G) 
satisfies the Kontinuitatssatz and we are measuring distance only along the 
Euclidean direction of 0. 

Hirschowitz's result was used by Brun to obtain the following result [9]. 

(4.8) THEOREM. Let IT: X -> S be a holomorphic fiber bundle whose base S is 
a Stein manifold and whose fiber F is a compact homogeneous manifold. Let A 
be a locally Stein open subset of X such that A C\ TT~\S) is Stein for every 
s E S. Then A is Stein. 

The main idea of his proof is as follows. By considering the holomorphic 
vector bundle over S whose fiber at s E S is the vector space of all 
holomorphic vector fields on v~l(s), we conclude that X is infinitesimally 
homogeneous and we can construct, by the method of Hirschowitz, a distance 
function d to the boundary of A. It suffices to prove that for every c E R, the 
open subset Ac 2» { — log d < c) is Stein. We need only produce a strictly 
plurisubharmonic function <p on Ac. Since A n ir~l(s) is Stein for every 
s E S9 we can cover S by an open cover {l^} such that Ac n v~l(Ut) is a 
relatively compact open subset of a Stein open subset Wt of X. Take a strictly 
plurisubharmonic function ifc on Wt and take a partition of unity {p,} 
subordinate to { Uê}. Then one can find a strictly plurisubharmonic function a 
on S such that o ° m + 2(ft ° tf)^ is strictly plurisubharmonic on Ac. 

The special case where F is a 1-dimensional torus was proved earlier by 
Matsugu [59]. 

(4.9) In general, - log of the distance function constructed by Hirschowitz 
is not strictly plurisubharmonic. So in general we cannot conclude that a 
locally Stein relatively compact open subset of an infinitesimally homoge­
neous manifold is Stein. The following counterexample is due to Grauert [33]. 
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Let JC„ . . . , x2n be the coordinates of R2n and let L be the lattice of R2n 

generated by ev = ( 0 , . . . , 0, 1, 0 , . . . , 0), 1 < v < 2n9 where 1 is in the *>th 
place. Let IT: R2n -» R2n/L be the natural projection. Choose an R-linear map 
o: Cn -> R2n such that for some v E C , o(Cv) is contained in {xx = 0} and 
*r(o(Ct>)) is dense in TT{{XX = 0}). Let X = Cn/o~\L) and r:Cn^>X be the 
natural projection and G = r(o~l({\xx\ < |})). Then G is locally Stein, but 
every holomorphic function ƒ on G is constant, because, by applying Liou-
ville's theorem to the composite of C -» r(Ct>) and ƒ, we conclude that ƒ is 
constant on the submanifold T(O~1({XX = 0})) of real codimension 1 in G9 

which is possible only when ƒ is constant on G. In [57] Malgrange showed that 
one can construct Grauert's example in such a way that Hl(G, 6G) is not 
Hausdorff. 

The key ingredient in the preceding example of Grauert is the existence of 
the relatively compact curve r(Cv) in G. This holomorphic curve is a 
maximum integral curve for a holomorphic vector field on G. Hirschowitz 
[47] proved that under the assumption of the nonexistence of such a curve, a 
locally Stein relatively compact open subset of an infinitesimally homoge­
neous manifold is Stein. More precisely, we state his result as follows. Let X 
be an infinitesimally homogeneous manifold. An interior integral curve is a 
holomorphic map y: C->X with relatively compact image whose tangent 
vectors belong to some holomorphic vector field on X. 

(4.10) THEOREM (HIRSCHOWITZ). If an infinitesimally homogeneous complex 
manifold X admits a continuous plurisubharmonic exhaustion function <p and 
admits no interior integral curve, then X is Stein. 

The main idea of his proof goes as follows. Since it suffices to show that 
each Xa := {<p < a} is Stein and since we can use local automorphisms 
defined by holomorphic vector fields to smooth out functions on compact 
subsets, we can assume without loss of generality that <p is C00. For any open 
subset Y of X, let C(Y) be the set of all tangent vectors 8 of Y such that the 
differential of every C00 plurisubharmonic function on Y is zero at 8. It 
suffices to show that C(Xa) is empty. For it follows from the emptiness of 
CXa+x that there exist a finite number of C00 plurisubharmonic functions 
^ i , . . . , \f/k on Xa+X such that <ty l 9 . . . , dfyk do not simultaneously vanish at 
any tangent vector of Xa. Then 

k 

(a-<p)_1+ 2 exp^. 
J-1 

is a strictly plurisubharmonic exhaustion function on Xa. Now, suppose 
80 e C(Xa). Let y: D-*Xa (where D is a domain in Q be the largest 
connected integral curve in Xa for a holomorphic vector field ü o n l such 
that 80 is a tangent vector to y(D). Let £ be the set of all z E D such that the 
tangent vector of y(D) at y(x) belongs to C(Xa). Obviously E is closed. We 
want to show that E is open. Take z E E. Let x = y(z) and Ô be the tangent 
vector of y(D) at JC. Let G be the 1-parameter group of local automorphisms 
defined by v. For g E G sufficiently close to the identity of G, g is defined on 
Xa and gx E Xa and g(Xa) c Xa+X. The image gô of 8 under g belongs to 
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C(g(Xa)) c C(Xa+l). We claim that gS G C(XJ. For otherwise there exists 
a C00 plurisubharmonic function ƒ on Xa whose differential at gô is nonzero. 
We can find a smooth increasing convex function a on R such that a ° q> > ƒ 
outside some compact subset of Xa and a ° <p < ƒ at x. Let A be the function 
on A' which agrees with o ° <p on X — Xa and agrees with the maximum of 
o ° <p and ƒ on Jfa. By smoothing out h by using local automorphisms, we 
obtain a C00 plurisubharmonic function on I a + 1 whose differential at 8 is 
nonzero. This contradicts gô G C(Xa+1). For g G G sufficiently close to the 
identity of G, g(x) covers an open neighborhood of x in y(Z>). Hence E is 
open in Z). It follows from the connectedness of D that E * D and every 
tangent vector of y(D) belongs to C(Xa). In particular, the differential of <p is 
zero at every tangent vector of y(D) and <p ° y is constant on D. Hence y(D) 
is relatively compact in Xa and D * C, contradicting the nonexistence of any 
interior integral curve in X. 

By using the above result, Hirschowitz [47] proved the following. 

(4.11) THEOREM. Suppose X is a compact homogeneous complex manifold and 
U is a noncompact domain spread over X which admits a continuous plurisub­
harmonic exhaustion function. If X is rational (i.e. birationally equivalent to the 
projective space), then U is holomorphicalfy convex. If X is rational and 
irreducible (as a homogeneous space), then U is Stein. In particular, every 
noncompact subdomain of a Grassmannian which satisfies the Kontinuitàtssatz is 
Stein. 

The case of the projective space was earlier obtained by Takeuchi [84] and 
Kieselman [49]. 

Another method of constructing a distance function whose - log is pluri­
subharmonic for locally Stein sets is to consider Kàhler manifolds with 
suitable curvature conditions. It was first used by Takeuchi [85]. The follow­
ing result in this direction was independently obtained by EUencwajg [19] and 
Suzuki [83]. 

(4.12) THEOREM. Suppose M is a Kàhler manifold whose holomorphic bisec-
tional curvature is positive. Then for any open subset Q of M with the 
Kontinuitàtssatz property, —log of the distance d (calculated from the Kàhler 
metric) to the boundary of 0 is a continuous strictly plurisubharmonic function 
on U n 0 for some open neighborhood U of 3 Î2 in M. 

The idea of the proof is as follows. Since locally we can approximate 30 
from within Ö by C00 strictly pseudoconvex boundaries and since we can 
approximate the potential function defining the Kàhler metric by real-
analytic functions, we can assume without loss of generality that 30 is C00 

strictly pseudoconvex and the Kahler metric is real-analytic. Take a point x 
sufficiently close to 30 and let y be the geodesic joining JC to the pointy on 
30 which is closest to x. Since y is real-analytic, we can assume that we have 
a local coordinate chart zx,..., zH around y withy as the origin such that 

(i)x = (l,0,.. . ,0), 
(ii) y lies along the Re zraxis, 
(iii) [zx = 0} is tangential to 30 at y and lies outside 0, and 
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(iv) the given Kâhler metric 2 gjkdzj ® dzk satisfies dgjk * 0 and 2 gjkdzj ® 
dzk = 2dzj ® dzj at 0. 

For ( Z | , . . . , zn) E Q let S (z„ . • , , zn) be the distance of the curve 

t-*(tzl9z2,...,zn), 0 < t < 1, 

calculated with respect to the given Kâhler metric, that is, 

8(zu . . . , *„) «|z, | f ign(tzv z2>... 9zn) dt. 

Since 8 agrees with </ at x and S > d everywhere, to prove the plurisubhar-
monicity of -logrf at x, it suffices to prove the plurisubharmonicity of 
—log 8. Since 

33 (- log 8) = -^ 38 A38 - | 938, 

it suffices to look at 338. 

338 (z„ . . , zn) = - -~- ƒ gn(^„ 2̂» • • • » z * r V 2 9 Uiï('*i> *»•••» ZJ) 

Ad (giï(fei»** ••-•*!•)) df 
1 1 

+ T " ƒ giï('z>' z2' • • • » *«r l / 2 99 (ftïC^i» z2> • • • » *«))#• 

Since 2/t* 9%iï(0)^\fc/<^9** (f°r 2|Xy|
2 = 1) is the holomorphic bisectional 

curvature at 0 in the direction of (1, 0 , . . . , 0) and (A„ . . . , ÀJ and since 
dgjk * 0 at 0, it follows that 338/8 is strictly positive when x is sufficiently 
close to y. Moreover, when the holomorphic bisectional curvature is not 
positive, this proof shows that the smallest eigenvalue of the complex Hermi-
tian of - log 8 is > some positive number depending only on n times the 
lower bound of the holomorphic bisectional curvature. Hence we have the 
following corollaries [19]. 

(4.13) COROLLARY. If X is a complex manifold admitting a continuous strictfy 
plurisubharmonic function <p then every locally Stein relatively compact open 
subset Q is Stein. 

(4.14) COROLLARY. Suppose ir: X -* Y is a holomorphic submersion of 
complex manifolds such that every y E Y admits an open neighborhood U with 
ir~l(U) Stein. Assume that Y is Stein. Then every locally Stein relatively 
compact open subset Q of X is Stein. 

The proof of (4.13) is as follows. By Richberg's result [72], continuous 
strictly plurisubharmonic functions can be approximated on compact subsets 
by C00 strictly plurisubharmonic functions. Hence we^can assume that <p is 
C00. We use the Kâhler metric whose Kâhler form is 33<p. Then - log d + Aq> 
is a strictly plurisubharmonic exhaustion function on ti for A sufficiently 
large. 

Corollary (4.14) is proved by constructing a strictly plurisubharmonic 
function on a neighborhood of 12 in the following way. Find a locally finite 
open cover {Lf} of Y with v~\UÙ Stein. Let {p,} be a C00 partition of unity 
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subordinate to {f^}, let \pt be a C00 strictly plurisubharmonic function on 
ir~l(Ui) and let <p be a C00 strictly plurisubharmonic function on Y. Then for 
A sufficiently lar^e, A(q> ° IT) + 2(p, ° if)^ is strictly plurisubharmonic on a 
neighborhood of Q. 

By using Ellencwajg's result instead of Hirschowitz's result, Brun [10] 
showed that in Theorem (4.8), F can be assumed to be a compact Riemann 
surface instead of a compact homogeneous manifold. 

5. Increasing sequence of Stein open subsets. 
(5.1) Because of the Oka theorem, a domain in C (or a domain spread over 

C") is Stein if it is the union of an increasing sequence of Stein open subsets. 
This was first proved by Behnke-Stein [4] prior to Oka's theorem. 

It is natural to ask when a manifold which is the union of an increasing 
sequence of Stein open subsets is Stein. 

By the result of Docquier-Grauert (4.3), such a manifold is Stein if it is an 
open subset of a Stein manifold. By Hirschowitz's results (4.7) and (4.10) such 
a manifold is Stein if it is a relatively compact open subset of an infinitesi-
mally homogeneous manifold. By the result of Ellencwajg and Suzuki 
(4.12), such a manifold is Stein if it is a relatively compact open subset of 
another manifold which either admits a continuous strictly plurisubharmonic 
function or carries a Kàhler metric of positive holomorphic bisectional 
curvature. 

As a partial answer to this question, in [18] Docquier-Grauert proved the 
following. 

(5.2) THEOREM. The union of an increasing l-parameter family of Stein 
manifolds is Stein. 

The idea of their proof is as follows. Suppose X = U /e[o,i)^r It suffices to 
show that for any 0 < tx < t2 < I, (Xh, Xt) is a Runge pair. Take t2 < /3 < 
1. Embed Xh as a submanifold of some C*. We can find a Stein open 
neighborhood U of Xt in C^ so that there is a holomorphic retraction m\ 
U^>Xh. Let K be an arbitrary compact subset of Xt. Find a strictly 
plurisubharmonic exhaustion function <p on U such that K c {<p < 0}. There 
exists e > 0 with the following property: for tx < s < t < t2, with t — s < 6, 
one can find a positive number y such that 

*c{<p<o}n{4>y}c *-'(*,) 
where dt(x) for x E ir~\Xt) is the Euclidean distance in C* from x to the 
boundary of ir~l(Xt). Since *n~x(Xt) and {<p < 0} n {dt > y) form a Runge 
pair, it follows that for every holomorphic function ƒ on Xs, the function ƒ ° m 
can be approximated on K by holomorphic functions on ir~l(Xt). By choos­
ing tx « s0 < s2 < • • • < sk** t2 with 5,+! - Sj < e, we conclude that every 
holomorphic function on Xti can be approximated uniformly on K by 
holomorphic functions on Xh. 

In order for the above proof to work, it suffices to require as the definition 
of a l-parameter family the following two conditions for every 0 < t0 < 1. 

(i) U 0<t<tXt is a union of components of Xt^ 
(ii) Xt is a union of components of the interior of f) t <t<\Xr 
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Moreover, it suffices to assume that Xt is Stein for t in a dense subset of 
[0, 1). 

(5.3) Very recently Fornaess [23], [24], [25] (and Fornaess-Stout [27]) gave 
examples of a non-Stein union of an increasing sequence of Stein open 
subsets. We sketch below one of his examples. Choose natural numbers mn 

f or n > 1 such that 
00 j 

<P(*) = 2 — log 

is a subharmonic function. Let 

Q = {(z, w) G C2|0 <|w| < 2, \z\ < 2, <p(z) - logjwj < 0}. 

Blow up C2 - {0} at the set {(l//z,0)}£L, to get TT: M -» C2 - {0}. Let X be 
the interior of the closure of ir~l(Q). For k > 1, let Z* = X -
v~l({(l/n,0)}n>k). Then each ** is Stein. For, the pullback of \w\2 + 
*2n<k\(z - l/n)/w\2 (respectively <p(z) - log|w|) by IT can be extended to 
plurisubharmonic functions a (respectively r) on Xk9 and 

- I 1 1 
T 2 -Jz | 2 - | w | a 

is a strictly plurisubharmonic exhaustion function on Xk. However, X is not 
Stein. For X contains the closed disc ir~l({0 < |w| < 1, z = l /«}) for every 
/i and this sequence of closed discs contradicts the Kontinuitatssatz property. 

(5.4) Markoe [58] announced that the union X of an increasing sequence of 
Stein spaces Xv is Stein if and only if H \X, 6X) = 0, which is also equivalent 
to the condition that for any compact subset K of Xv there exists jn > v such 
that holomorphic functions on Xv can be approximated on K by holomorphic 
functions on X^. 

The answer to the following question is still unknown. 
(5.5) Question. Suppose Xv c X¥+l are open subsets of a Stein space X. Is 

U f-i*„ Stein? 

6. Tlie Serre problem. Serre [73] raised in 1953 the question whether a 
holomorphic fiber bundle with a Stein base and a Stein fiber is Stein. In the 
same paper he proved the following case by using the Theorems A and B of 
Oka-Cartan. 

(6.1) THEOREM. A principal holomorphic fiber bundle whose base is a Stein 
manifold and whose structure group is a closed complex subgroup of a complex 
general linear group is Stein. 

Very recently Skoda [79], [80] gave a counterexample in which the base is 
an open subset in C and the fiber is C2. In the intervening years many 
affirmative answers to special cases of Serre's problem were given. We will 
discuss these special cases and then sketch Skoda's example. 

Stein [81] proved the following. 

(6.2) THEOREM. The topological covering X of a Stein space Y is Stein. 

This is the special case of the Serre problem where the fiber is 0-dimen-

z - i/n 
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sional. The proof is as follows. We can assume without loss of generality that 
Y is embedded as a complex subspace of some Cn. One can find a Stein open 
neighborhood U of y in Cn and a continuous retraction a: t/~> Y. We pull 
back A" by a to form a topological covering W of U. By using -log of the 
Euclidean distance and applying Oka's theorem, we conclude that W is Stein. 
Being a complex subspace of W, X is Stein. 

Recently LeBarz [54] generalized Stein's result to the following. 

(6.3) THEOREM. Let m\ X -» Y be a holomorphic map of complex spaces. 
Assume that every point of Y admits an open neighborhood U such that the 
restriction of ir to every component of TT~1(U) is proper and has only finite 
fibers. If Y is Stein, then X is Stein. 

The proof is as follows. We can assume without loss of generality that Y is 
Cn and X is connected. Cover Cn by a locally finite cover { Uj] of bounded 
Stein open subsets such that the restriction of m to every component Wjm of 
ir~x(Uj) is proper and has only finite fibers. Let {pj be a C00 partition of 
unity subordinate to {£/,}. Fix some WJQ>mQ. Let kjm be the length of the 
shortest chain WUmo, WJx„x,..., W^ sucé that Wj^ intersects WUx,^x 

and (Jh mi) - U> "0- D e f i n e / - 27,m(p7 ° ir)kjtm. Since ƒ « kfM + 
2y,m(py ° fl*X&,,m - kfM) and ƒ « ir ° g locally, by calculating d2g/dzjdzk we 
conclude that there exists a C00 increasing convex function a on R such that 
ƒ + a ° \z\2 ° m is a strictly plurisubharmonic exhaustion function on X. 

Matsushima and Morimoto [60] solved the Serre problem for the case of 
the structure group being a connected complex Lie group. 

(6.4) THEOREM. A holomorphic fiber bundle E whose base B and fiber F are 
Stein manifolds and whose structure group G is a connected complex Lie group 
is Stein. 

The idea of their proof is as follows. A complex Lie group H is said to have 
property (P) if no compact subgroup of H contains a positive-dimensional 
complex subgroup of H. By using Lie group theory, they first showed that 
any complex Lie group H with property (P) contains a positive-dimensional, 
invariant, connected, closed, complex subgroup A of H such that H /A has 
property (P) and A is isomorphic to a closed complex subgroup of a complex 
general linear group. By considering P-+P/A and using the preceding 
results of Serre and Stein, we conclude by induction on the dimension of H 
that every principal holomorphic bundle P whose base is Stein and whose 
structure group H is a complex Lie group with property (P) is Stein. Now, we 
can assume without loss of generality that G operates effectively on F. G must 
have property (P). Otherwise any orbit C of any relatively compact positive-
dimensional complex subgroup of G is the relatively compact holomorphic 
image of C in F and by Liouville's theorem any holomorphic function on F 
must be constant on C. Let K be a maximal connected compact subgroup of 
G. Since G has property (P), G has a connected complex subgroup H whose 
Lie algebra is the complexif ication of the Lie algebra of K. Since the structure 
group G of E is continuously reducible to K9 by Grauert's result on the 
equivalence of holomorphic and continuous bundles [31] it follows that the 
structure group G can be holomorphically reducible to H. Thus we have a 
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principal holomorphic bundle P of base B and structure group H so that E is 
an associated bundle of P. Since H has property (P), P is Stein. Consider the 
principal bundle P X F-+E of structure group H. We can find a finite 
number of holomorphic functions f l 9 . . . ,fN so that they embed P X F a s a 
closed submanifold of CN. We average ƒ over the action of K on P X F to 
obtain^. Since^ is constant on the subgroup K in each fiber of P X F^>E 
and since H is the complexification of K, it follows that ft is constant on each 
fiber of P X F-> E and gives rise to a holomorphic function g, on E. The 
functions g „ . . . , gN embed £ as a closed submanifold of C .̂ We would like 
to remark that in this proof the connectedness of G is very important. It is 
used in reducing the structure group G to H. 

(6.5) Because of the condition that the structure group is complex and 
connected, the result of Matsushima-Morimoto cannot be applied even to the 
case where the fiber is a bounded Stein domain in Cn. For the automorphism 
group of a bounded domain is a real Lie group which cannot be made into a 
complex Lie group unless it is regarded as a discrete group. With the case of a 
bounded Stein domain in Cn in mind, Fischer [20], [21], [22] introduced the 
concept of a Banach-Stein space and gave an affirmative answer to the Serre 
problem when the fiber is Banach-Stein. He called a Stein space F Banach-
Stein if there exists a Banach space H of holomorphic functions which are 
invariant under the automorphism group Aut F of F and which satisfy the 
following conditions: 

(i) H separates points of F, 
(ii) for every sequence {*„} of F which has no accumulation point in F, 

there is an element of H which is unbounded on {JC„}, 
(iii) for any map from a complex space Y -» Aut F such that the associated 

map Y X F-+F is holomorphic, the induced map y~» Aut H is holomor­
phic. 

THEOREM (FISCHER). A holomorphic fiber bundle ir:X-*B with Stein base B 
and Banach-Stein fiber F is Stein. 

The idea of the proof is as follows. From the bundle X we can in a natural 
manner construct a holomorphic fiber bundle % -* B with base B and fiber 
H. Theorems A and B of Oka-Cartan can be generalized to the case of 
holomorphic Banach bundles (see [11]). The set T(B, 3 0 of all holomorphic 
cross sections of % over B can be identified in a natural way with a subset of 
the set of all holomorphic functions on X. We can thus conclude that 
holomorphic functions on X separate points. To prove the holomorphic 
convexity of X, we take a sequence of points {xy} in X having no accumula­
tion point in X and want to produce a holomorphic function on X which is 
unbounded on {x„}. We can assume without loss of generality that ir(x^ 
approaches a limit point b in B. Let En be the set of all ƒ E T(B, 3 0 which, 
when regarded as functions on X, are bounded on {xv} by n. By the Baire 
category theorem, it suffices to show that the complement of En is dense in 
T(B, 30. Take g 6 £ „ , e > 0 , and a seminorm || • || in T(B, 30. We want to 
find h E T(B9 3 0 - En such that \\h - g\\ < e. For some open neighborhood 
U of b in B, we have a trivialization ®:TT~\U)-^>U X F. For ƒ E H denote 
by ƒ the holomorphic function on IT~\U) obtained by pulling back ƒ through 
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IT~\U) -> U X F-* F and denote by/" G r(I7, X) the element correspond­
ing to/'. By Theorem B applied to % and the open mapping theorem, there 
exists a constant C independent of v with the property that for every ƒ G H 
there exists ƒ G T(J5, 9 0 such that ƒ agrees with ƒ" at 9T(JC„) and ||/|| < 
C\\f\\H- Write &(xp) = (^(JC,),^). Choose ƒ E H so that ƒ is unbounded on 
{>>,}. Choose v such that | /0v) | > 2nCe~l\\ f\\H. Then A - (C\\f\\Hylef + g 
satisfies the requirement. 

It is not easy to verify whether a given Stein space is Banach-Stein. 

(6.6) THEOREM (FISCHER [22]). A bounded domain Q in Cn with strictly 
pseudoconvex boundary is Banach-Stein. 

For one can find a smooth function <p on Î2 which is plurisubharmonic on Q 
and whose zero-set is precisely 3Q. By Hopfs lemma, for g G Aut Ö, the 
lower derivate of <p <> g in the outward normal direction of 3 Ö is positive at 
every point of 30. One can actually refine the argument to conclude that 
<p(g(x))/d(x) > c for d(x) < e, where d is the distance to the boundary of 
30 and c, e are positive constants. Hence d(x) < (l/c)<p(g(*)) < Cd(g(x)) 
for some positive constant C when d(x) < e. This shows that the Banach 
space Hk of all holomorphic functions ƒ on Q with | f(x)\ < Mjd(x)~k for 
some Afy is invariant under Aut Q. For a suitable A:, Hk separates points and 
contains elements unbounded on sequences of points of Ù approaching 3Q. 
The above proof is not Fischer's original proof. This proof is in Pflug [70] and 
is known also to R. M. Range. 

Another example of a Banach-Stein space is any plane domain. 

(6.7) THEOREM (SIU [76]). Every domain Ö in C is Banach-Stein. 

When Q is C, one simply uses as the invariant Banach space H the set of all 
polynomials of degree < 1. When S2 is not C, let d(z) be the distance from 
z G Q to C - Ö and let a(z) be the infimum of IgXO)!""2» where g is a 
univalent holomorphic function from the open unit 1-disc into 12 such that 
g(0) * z. By the \ -theorem of Koebe-Bieberbach, a(z) > (4d(z))~2. Fix 
z0 G Q and for z G Q let h(z) be the distance from z0 to z measured by the 
invariant metric a(z)dz ® dz of S. By considering the functions z and 
(z - b)~l for b G C — Q and the Banach space H of all holomorphic 
functions ƒ on Û with | ƒ (z)\ < Mf exp(4A(z)), one easily concludes that Q is 
Banach-Stein. Hence every holomorphic fiber bundle over a Stein space 
whose fiber is an open subset of C is Stein [76]. This result was also obtained 
by Hirschowitz [46] and Sibony [75] by other means. 

(6.8) THEOREM (HIRSCHOWITZ [44]). A bounded domain Q in C is Banach-
Stein if it is strongly complete with respect to the Carathéodory metric d in the 
sense that for xQEQ and c G R, the set of all x GO with d(x9 x^ < c is 
compact. 

The invariant Banach space used is the set of all holomorphic functions ƒ 
on Q with |/(JC)| < Mf exp(d(x9 x0)) for some x0 G Q and MfER. 

Stehlé [82] introduced another method of proving the Steinness of a 
holomorphic fiber bundle. The method is to piece together plurisubharmonic 
functions to get a global plurisubharmonic exhaustion function. 
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(6.9) THEOREM (STEHLÉ [82]). A holomorphic fiber bundle IT: X-±B with 
Stein base B is Stein if its fiber F is hyperconvex in the sense that there exists a 
strictly plurisubharmonic function <p on F which defines a proper map from F to 
[c, 0)for some c < 0. 

We sketch below the main idea of his proof. In general, the product of two 
plurisubharmonic functions is not plurisubharmonic. In order to guarantee 
the plurisubharmonicity of a product, one has to introduce a stronger notion 
of plurisubharmonicity. A positive function ƒ is called m-plurisubharmonic if 
(1 - m)~lfl~m for 0 < m ^ 1 (or log/for m = 1) is plurisubharmonic. The 
usual plurisubharmonic functions are precisely the O-plurisubharmonic func­
tions. For m > m\ every m-plurisubharmonic function is m'-plurisub-
harmonic. The maximum of m-plurisubharmonic functions is also m-pluri­
subharmonic. The function (—cp)"1 is a 2-plurisubharmonic exhaustion func­
tion on F. For l/(p - 1) 4- \/\q - 1) = l/(r - 1), the product of a/?-pluri-
subharmonic function ƒ and a ^-plurisubharmonic function g is r-plurisub-
harmonic. We prove this for the case/? > 1, q < 1, andpq > 1, which is the 
only case we need. By the convexity of the exponential function and because 
p - 1 > 1 - q and r < 1, one has 

and, setting 

s — (l — q)\o% and / = (1 - p)\o% 
*(«) v " * f (a) ' 

one obtains 

with equality at x — a. The sub-mean-value property of the right-hand side 
for circles centered at a follows from the sub-mean-value property of the 
left-hand side. Now we describe the key step in the procedure of piecing 
together plurisubharmonic functions. Let m > 1. Suppose U, V are two 
relatively compact open subsets of B and we have a plurisubharmonic 
function g on ir~l(U) whose restriction to every fiber is m-plurisubharmonic 
and which is relatively exhausting on ir~l(U) in the sense that for every 
compact subset K of U and every c ŒR, {g < c) n n'XK) is compact. We 
want to construct a relatively exhausting plurisubharmonic function g' on 
v" \ U U V) whose restriction to every fiber is m-plurisubharmonic. We have 
to assume that 

(i) X is trivial over an open neighborhood WofV~*9 

(ii)g is continuous up to ir~\U~), 
(iii) (U - V)" and (V - U)~ are disjoint, 
(iv) there exists a plurisubharmonic function h on U U V such that h > 1 

on F - l / a n d A < 0 o n £ / - V. 
Every point of ir~\W) can be denoted by (b, y) with b E W and y e F. 
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Define/onTr^CWOby 

f(b,y) - sup{g(6', y)\V 6 T n r }. 

Then ƒ is a relatively exhausting m-plurisubharmonic function on ir~\W). 
Choose a positive integer v such that m(l - \/v) > 1. Then h" is (1 - l/v)-
plurisubharmonic at points where h is positive and (h ° irff is m'-plurisub-
harmonic on TT"!({A > 0}), where 

, m(l - \/v) - 1 ^ 
m' = J-. r— > 0. 

m - l /> - 1 
Define g' on ^ ' ( t / u V) as the maximum of g and (A ° ir)yf in the obvious 
sense. Then g' satisfies the requirement. By using this procedure, one can 
construct a strictly plurisubharmonic exhaustion function on X. 

The following example of a hyperconvex space is due to Diederich-For-
naess [16]. 

(6.10) THEOREM. A bounded Stein domain in C1 with C2 boundary is 
hyperconvex. 

They proved this by showing that -rfT?exp(-T|L|z|2) for sufficiently large 
positive L and sufficiently small positive TJ (in relation to L) is strictly 
plurisubharmonic at points of Q which are sufficiently close to 9Q, where d is 
the distance function to C — Q. The idea of their proof is as follows. First, 
using the plurisubharmonicity of — logd, they showed that the Levi form 
£d(P> 0 of d is positive semidefinite on the subspace of all tangent vector t 
satisfying (3^X0 * 0 at points p sufficiently close to 9Q. Hence for some 
negative constant C, £d(p\ i) is bounded from below by the product of C and 
the length of ((&/X0)' for all tangent vector / at points/? sufficiently close to 
312. Then a direct computation of the Levi form of — <f*exp(-TjL|z|2) gives 
the desired plurisubharmonicity. It follows from this and Stehlé's result that 
every holomorphic fiber bundle whose base is Stein and whose fiber is a 
bounded Stein domain in C with C2 boundary is Stein. 

Stehlé's technique of piecing together plurisubharmonic functions yields 
also the following result [82]. 

(6.11) THEOREM. A holomorphic fiber bundle with Stein base is Stein if there 
exists a strictly plurisubharmonic exhaustion function <p on the fiber so that for 
every automorphism g of the fiber <p ° g — <p is bounded. 

Earlier, Königberger [53], using the simpler technique of piecing together 
plurisubharmonic functions by a partition of unity obtained the same result 
with the stronger assumption that the fiber is a bounded domain in Cn and 
<p ° g — <p has bounded first-order derivatives. However, it is difficult to 
determine whether a given domain satisfies these conditions. 

In [77] Siu obtained the following result: 

(6.12) THEOREM. A holomorphic fiber bundle ir: X-+ B with Stein base B is 
Stein if the fiber Fis a bounded Stein domain in C1 with zero first Betti number. 

This result is very close to the case of the fiber being a general bounded 
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Stein domain, because the additional condition is only topological. It is quite 
likely that this approach can be modified to get rid of the additional 
topological condition. We sketch the idea of the proof below. Without loss of 
generality we can assume that B is a domain in some C* with coordinates 
w„ . . . , wk. By using the holomorphic Banach bundle over B obtained by 
replacing each fiber of X by the Banach space of all bounded holomorphic 
functions on that fiber, we conclude that every bounded holomorphic func­
tion on a fiber of X can be extended to a holomorphic function on X. Hence 
holomorphic functions on X separate points and give local coordinates. To 
prove holomorphic convexity, we need only prove that for every relatively 
compact Stein open subset B' of B and every sequence {*„} in ir~x(B') 
without accumulation points, we can find a plurisubharmonic function on X 
which is unbounded on {JC,}. Without loss of generality we can assume that 
TT{XV) approaches a limit point b0 in B\ For some open neighborhood U of b 
in B9 we have a trivialization $: ir~\U) -> U X F. Write $ 0 0 * (tfOO,yv). 
We claim that it suffices to produce a plurisubharmonic function ƒ on X 
which is unbounded on $~x(b(i9y1). We can find a positive number r such 
that every ball B(b, r) with radius r and center b G B' is contained in B and 
X is trivial over B(b9 r) with a trivialization map $b: ir~l(B(b, r)) -» B(b, r) 
X F. For x G ?r~\B')9 let b * ir(x) and $b(x) « (b9y) and define <p(x) to 
be the supremum otf(jbï\b'9y)) for all V G B(b9 r/2). The function <p is a 
well-defined plurisubharmonic function on <n~~\B')9 because the transition 
functions of the fiber bundle X are necessarily locally constant. Clearly <p is 
unbounded on {*„}. To construct/, we first extend the n coordinate functions 
on the fiber ^~x{b^) C C to holomorphic functions gl9..., gH. Let 9: X-* 
C*+" be defined by w„ . . . , wk9 gl9..., gn and let Z be the subvariety of X 
where 9 is not locally biholomorphic. For x G X — Z let d(x) be the largest 
positive number such that 9 maps an open neighborhood of x biholomorphi-
cally onto the ball of radius d(x) centered at 9(x). Consider the projection o: 
XXgB-+X9 where B is the universal covering of B. Since X XB B is simply 
B X F9it follows that the covering X XB B - a"\Z) of X - Z is Stein and 
— log*/ is plurisubharmonic on X — Z. Clearly — logrf is unbounded on 
{*,}. The trouble is that — log*/ becomes oo on Z. But the Jacobian 
determinant J (9) of 9 vanishes at Z and locally -log</ + 3 log|/(0)| is 
plurisubharmonic even at points of Z. Unfortunately J (9) is only a holomor­
phic (/i + kyform and not a function. We will make a holomorphic function 
out of J (9) by using a holomorphic (/i + fc>vector field t> on X. Let { ^ } be 
the transition functions for X9 that is, we have a covering 9l * {^}S-o ° ' 
convex subsets of B and trivializations <pt: v~l(Ui)-*UiX F such that 
(<PWrl)(p9y) = (b9 gij(y)). We assume that b0 G î/0 and bQ £ #; for i > 0. 
We can regard gtj as a holomorphic function on ir~l(Uj) by defining it to be 
the composite of gff and w~l(UJ)-» (̂  X f'-» F. A holomorphic (n + &)-
vector field v is the same as {©,•} with t;, G IX^r""1^), 6^) and t;, » Sy'^j* 
We will obtain {©,} by taking log in i;, — 4£"*ty anc* s0^11? ^ c Cousin 
problem for some holomorphic Banach bundle we now define. Fix y0 G F 
and let log/(g) be the branch of the log of the Jacobian determinant J(g) 
defined by — IT < Im log /(gX-Vo) < 7r- Define 
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ltog/(g)O01+i 
s(y)= sup 

geAutF Iog|/O>)(>>0)| + 1 
for^ E F. It follows easily from the Theorem of Borel-Carathéodory that s is 
a finite-valued function on F. Moreover, s ° g < Cgs on F for every g G 
Aut F. Let E be the Banach space of all holomorphic functions h on F 
satisfying \h\ < C/,̂ . Then E is invariant under Aut F and log/(g) belongs 
to E. Let S be the holomorphic fiber bundle over B obtained by replacing 
each fiber of X by the Banach space of holomorphic functions on that fiber 
which are elements of E. Now {logg^} almost defines an element in 
Zx{%, &). Suppose it does. Then by applying Theorem B to S, we can find 
{/,} G C°(%, S) whose coboundary is {logg^} and the value of t0 at b0 is 
the zero function on ir~\b0). Let vt — exp /,. Then {t;,} defines a holomor­
phic (n + &)-vector field t ) o n I and — log d + 3 log|</(0), v}\ is a pluri-
subharmonic function on X which is unbounded on {^'Kb^y,)}. When 
{logg^} does not define an element in Zl(%, &)9 since its coboundary 
always defines an element of C2(9l, Z), we can modify {log gy} by adding to 
it an element of C 1 ^ , 0^) and the above argument goes through after this 
modification. 

(6.13) In the proof sketched above, the vanishing of the first Betti number 
is needed to define log/(g). One can replace the condition of the vanishing 
of the first Betti number by the condition that the structure group X is the 
identity component of Aut F. We define log/(g) simply for the purpose of 
producing the holomorphic (n + fc)-vector field v. We can avoid this if there 
is an invariant Banach space of holomorphic «-vector fields on F including 
3/3z, A • • • A9/3^« This is the case, for example, when the Jacobian 
determinants of elements of Aut F are bounded on F. Earlier, Pflug [69] 
showed that a holomorphic fiber bundle with Stein base is Stein if the fiber is 
a bounded Stein domain in Cn whose every automorphism has bounded 
Jacobian determinant and which satisfies certain boundary conditions. It is 
very difficult to determine whether every automorphism of a given bounded 
domain has bounded Jacobian determinant. 

One can modify the above argument so that the condition of the vanishing 
of the first Betti number can be relaxed to the following^ F~~ is contained in a 
bounded Stein domain F such that HX(F, R) -» HX(F> R) is injective. We 
would like to mention also that the argument still works if, instead of 
assuming that F is a bounded Stein domain, we assume that F is a relatively 
compact Stein open subset of a Stein manifold whose canonical line bundle is 
trivial. 

One iŝ  tempted to try to conclude the Steinness of X from the Steinness of 
X XB B by proving that a complex manifold whose universal covering is 
Stein is holomorphically convex. Unfortunately, this is not true. Morimoto 
[62] gave an example of a lattice T in C2 which is of rank 3 over Z such that 
C2 /r is noncompact and admits no nonconstant holomorphic functions. 

Morimoto's example has another significance. Hirschowitz [47] used it in 
the following way to give a topological covering of a compact manifold which 
satisfies the Kontinuitàtssatz but is not holomorphically convex. Take a 
lattice f of C2 © C such that r » f n C2 and X « (C2 © Q / f is compact. 
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Then (C2 /r) X C is a topological covering of X. It satisfies the Kontinuitâts-
satz and is not holomorphically convex. The important point about this 
example is that the Kontinuitâtssatz is satisfied, because it is easy to construct 
a topological covering of a compact manifold that is not holomorphically 
convex. For example, C2 — 0 is the universal covering of the Hopf manifold 
which is the quotient of C2 — 0 by the cyclic group action whose generator 
sends (z„ z2) to (2z„ 2z2). In conjunction with this, we would like to mention 
the result of Carleson-Harvey [12] that a domain spread over a Stein manifold 
is Stein if it is biholomorphic to a topological covering of a compact 
Moisezon manifold (see (7.3) for definition). It is also very easy to show that a 
domain spread over a Stein manifold is Stein if it is biholomorphic to a 
topological covering of a compact Kâhler manifold. 

(6.14) We now discuss Skoda's counterexample [79], [80] to the Serre 
problem. The key point of Skoda's counterexample is the following result of 
Lelong [55]. Let Q be a domain in C*, let w,, <o2 be compact subsets of Q with 
nonempty interiors, let F be a plurisubharmonic function on Q X C1, and 
Mv(r, co) = sup{ V(x9 z)\x E <o, \z\ < r}. Then there exist positive numbers a 
and C such that Mv(r9 <o,) < Mv{ra

9 <o2) + C. To get Lelong's result, it 
suffices to consider the special case where <oy is the ball Bd{RJ) of radius Rj 
centered at 0, with Rx> R2, because the general case follows from consider­
ing a sequence of consecutively intersecting balls. The special case follows 
from the fact that Mv(r9 Bd(R)) is a convex function of the two variables 
(logr, log/?). The construction of Skoda's example is as follows. Take 
domains ty (0 < j < N) of C such that Q0 n 0,- has two connected compo­
nents Qj, Qj' for 1 < j < N and 0, is disjoint from Qk for 1 < j < k < N. 
The base of the bundle is B = U JHofy. Take gj E Aut Cn (1 < j < N). 
Define the fiber bundle X by collating 0, X Cn together so that the transition 
function at Qj is gj and the transition function at QJ is the identity of Aut Cn. 
We will show that for suitable choice of gj9 X admits no nonconstant 
plurisubharmonic function. A plurisubharmonic function on X is the same as 
{ Vj) where Vj is a plurisubharmonic function on By X C^ such that V0(x, z) 
= Vj(x, gj(z)) for x E Qj, and V0(x, z) = Vj(x, z) for x E QJ. It follows from 
Lelong's result that for any given compact subset <o0 of Q0 with nonempty 
interior, one can find positive number a, C such that 

MVo0gj(r9ü>0)<MVo(r°9o>0) + C 

for all 1 < j < N and all r > 0. That is, 

sup{ V0(x9 z)\x Eo)9zE Ujgj(Bn (r))} < MVQ (r°9 co0) + C 

where Bn(f) is the ball in Cn with radius r and center 0. Let f be the largest 
positive number such that Bn{f) is contained in the holomorphically convex 
hull of Ujgj(Bn(r)) in Cn. Then, since MVo(r9 <o0) is a strictly increasing 
function of r when V0 is nonconstant, it follows that f < r2a for r sufficiently 
large. One obtains a contradiction when the automorphisms gj distort enough 
the shape of Bn{r). For example, when n = 2, N = 8, and gj(zl9 z2) * 
(zl9 z2 exp(a,Z!)), gj+4(zl9 z2) = (zx exp(a,z2), z2), 1 < j < 4, where the a/s 
are the four 4th roots of unity. 
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In view of Skoda's example, what remains from the Serre problem is the 
following conjecture. 

(6.15) CONJECTURE. A holomorphic fiber bundle with Stein base is Stein if 
its fiber is a relatively compact Stein open subset of a Stein manifold. 

(6.16) Before Skoda's example was discovered, there was a general conjec­
ture that unified the various forms of the Levi problem. The conjecture was 
the following: Suppose IT: X-* Y is a holomorphic map of complex spaces 
with Y Stein and every point of Y admits an open neighborhood U with 
ir~l(U) Stein. Then X is Stein. The special case where X is an open subset of 
Y and IT is the inclusion is the problem of proving that every locally Stein 
open subset of a Stein space is Stein. The special case where IT: X -* Y is a 
holomorphic fiber bundle is the Serre problem. Besides Skoda's example, the 
example of Fornaess given in (5.3) is also a counterexample to the general 
conjecture. For if we let ƒ: Q -* C be defined by f(z, w) = w and if we choose 
<p so that for some c G R and some mutually disjoint closed neighborhoods 
KH of \/n in {0 < \z\ < 2}, <p > c on dKn, then the inverse images of C — 0 
and {\w\ < ec} under (ƒ ° ir)\X are Stein. 

It is also possible to modify X in the example of (5.3) so that there is a 
holomorphic map a: X-±C2 with finite fibers and every point of C2 admits 
an open neighborhood U in C2 with o~l(U) Stein (see [25]). This exhibits the 
pathological properties of a branched Riemann domain (see [34], [35] for 
other examples of pathological branched Riemann domains). 

7. Weakly pseudoconvex boundaries. 
(7.1) After Grauert constructed a non-Stein domain in a torus whose every 

boundary point is weakly pseudoconvex, Narasimhan [65] raised the question 
whether a domain with smooth pseudoconvex boundary which is strictly 
pseudoconvex at at least one boundary point is holomorphically convex. In 
giving a negative answer to this question, Grauert [33] constructed the 
following example. 

Let R be a compact, projective algebraic manifold with Hl(R9 ®R) ¥* 0. 
Let G be a negative holomorphic line bundle over R in the sense of [32]. Let 
Y c G be the zero cross section of G. By adding an infinite point to every 
fiber of G, we obtain a holomorphic fiber bundle a: X-* R with Px as fiber. 
Let ft: X -» X' be the map which blows down Y to a point. X' is a projective 
algebraic space. Let L be a negative holomorphic Une bundle over X'. We 
can give L a Hermitian metric whose curvature form is strictly negative. Let 
P be a holomorphic line bundle over R such that P is topologically trivial but 
no tensor power of P is holomorphically trivial (for example, when R is a 
torus, P is a point in the Picard variety whose integral multiples are all 
nonzero). Then the transition functions of P can be chosen to be constant 
functions of absolute value 1. Hence we can furnish P with a Hermitian 
metric whose curvature form is identically zero. Let y: F-» X be the holo­
morphic line bundle /?*(L) ® a*(P), carrying a Hermitian metric induced by 
those of L and P. Let Q be the set of vectors of F with norm < 1. Then the 
boundary of 12 is pseudoconvex everywhere and is strictly pseudoconvex at 
points of 3S - y~l(Y). We claim that Î2 n y~l(Y) admits no nonconstant 
holomorphic function and hence cannot be holomorphically convex. For a 
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induces a biholomorphic map from 8 n y~l(Y) onto the open subset D of P 
consisting of all vectors of norm < 1 in P. If there is a nonconstant 
holomorphic function on Q n y~\Y)9 then there is a nonconstant holomor­
phic function ƒ on D. We now expand ƒ in power series along the fibers of P. 
The kth coefficient fk in this power series is a holomorphic cross section of 
P~k over R. Since the Chern class of P~k is zero and P~k is not holomor-
phically trivial for k =£ 0, it follows that fk is identically zero for k ^ 0, 
contradicting that ƒ is nonconstant. 

On the positive side, recently Michel [61] gave an affirmative answer to 
Narasimhan's question in the case of a compact homogeneous manifold. 

(7.2) THEOREM. Let Q be a locally Stein open subset of a compact homoge­
neous manifold X. If the boundary of Q at at least one point b is smooth and 
strictly pseudoconvex, then $2 is Stein. 

The main idea of the proof is as follows. Suppose Q is not Stein. Then by 
Hirschowitz's result (4.10), there is an interior integral curve T in Q. We join a 
point a G T to b by a smooth curve y: [0, 1] -> X so that y(t) G Ö for 
0 < t < 1. We can find a smooth curve a: [0, 1] -> G such that a(0) is the 
identity element of G and y(t) is the image o(i)a of a under o(t). We claim 
that a(t)T c Ö for 0 < t < 1. For this claim, it suffices to show that if / 
approaches some t+ G [0, 1) from the left such that each o(tv)T c 0, then 
a(f j r C Q. By Hirschowitz's result we can construct some distance function 
d to X — Q such that —log d is plurisubharmonic on Q. Let c be the infimum 
of all y(tp). Since a(tp)T is a relatively compact holomorphic image of C, the 
plurisubharmonic function —log d is constant on each o(tv)T and o(QT c {d 
> c). Hence o(t*)T c Ü. It follows from \Jo<t<xo(t)T c Q that a[l)T is a 
nonconstant holomorphic curve which contains b and is contained in Q~, 
contradicting the strict plurisubharmonicity of 9Î2 at b. 

Narasimhan's question is related to the following conjecture of Grauert-
Riemenschneider [36], certain special cases of which are known (see [78]). 

(7.3) CONJECTURE. Suppose L is a holomorphic line bundle over a compact 
complex manifold X of dimension n and suppose L carries a Hermitian 
metric whose curvature form is positive semidefinite everywhere and positive 
definite on a nonempty open subset G of X. Then X is Moisezon in the sense 
that the meromorphic function field of X has transcendence degree n over C 

Consider the open subset D of the dual L* of L which consists of all 
vectors of length < 1. Then 3D is weakly pseudoconvex everywhere and 
strictly psuedoconvex at every point of ir~l(G) n 3Q, where m is the projec­
tion L* -* X. If we have an affirmative answer to Narasimhan's question, 
then D is holomorphically convex and, by expanding holomorphic functions 
on D in power series along the fibers of L*, we obtain coefficients which are 
holomorphic cross sections of Lk over X whose quotients give rise to enough 
meromorphic functions on X to conclude that X is Moisezon. Actually it 
suffices to know that for every sequence xv in D approaching some point of 
w-1(G) n 30 there is a holomorphic function on D which is unbounded on 
{jcr}. The reason is as follows. Take an open neighborhood U in L* of some 
point of ir~~l(G) od2 and a holomorphic function ƒ on U such that W>* 
{\f\ < 1} n D is relatively compact in U and 30 is strictly pseudoconvex at 
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every point of {| f\ < 1} n 3Î2. Let F be the Fréchet algebra of holomorphic 
functions on W generated by 1, ƒ, and the restrictions of all the holomorphic 
functions on D. We can find g„ . . . , gN E F which define a proper map $: 
U-*CN. Since every fiber of <E> is of dimension 0, the Jacobian rank of <& is 
n + 1 almost everywhere. Hence, at almost every point x E Wvte can find n 
holomorphic functions on D whose gradients are linearly independent at JC. 
Since we have much freedom in the choice of ƒ, by expanding the 
holomorphic functions on D in power series along the fibers of L* and taking 
the quotients of the coefficients, we obtain enough meromorphic functions on 
X to conclude that X is Moisezon. 

(7.4) Question. For which complex manifolds X is it true that if D is a 
relatively compact domain in X whose boundary is everywhere pseudoconvex 
and is strictly pseudoconvex at some point JC* and if xv is a sequence in D 
approaching x+, then there is a holomorphic function on D which is un­
bounded on {*„}? 

(7.5) Recently there has been a lot of activity on weakly pseudoconvex 
boundaries. We briefly discuss here some of the results on the existence of 
peak functions and Stein neighborhood bases. A domain Q with strictly 
pseudoconvex boundary has the property that every boundary point x admits 
a local holomorphic coordinate chart on an open neighborhood U such that 
with respect to this chart fi is strictly EucUdean convex at x. So there is a 
holomorphic function ƒ on U such that ƒ (x) = 1 and | /(JC)| < 1 on Q n U -
{JC}. Such an ƒ is£alled a local peak function for x. If ƒ is defined on an open 
neighborhood of Ö, it is called a global peak function. For a long time it was 
thought that, if $2 is only weakly pseudoconvex at x, one can find a local 
coordinate chart at x such that Q is weakly EucUdean convex at x with 
respect to the local chart; and, therefore, instead of a local peak function, 
one can find a nonconstant local weak peak function ƒ for^x; that is, ƒ is 
holomorphic on U such that f(x) = 1 and | f(x)\ < 1 on Q n U. In 1973 
Kohn and Nirenberg [52] found the foUowing example. The domain Q in C2 

defined by 

p(z, w) = R e w + \zw\2+ \zf+ f |z|2Re z6 < 0 

whose boundary is strictly pseudoconvex except at 0 does not admit any 
nonconstant local weak peak function ƒ for 0, even if one requires only that ƒ 
is C00 on some neighborhood U of 0 and is holomorphic only on 12 n U. The 
reason is as follows. By applying the Hopf lemma to Re/, one concludes that 
the normal derivative of Re ƒ in the normal direction of 9 Q at 0 is nonzero. 
Hence, df/dw is nonzero at 0 and it follows from the imphcit function 
theorem that we can find a C00 function g(z) on a neighborhood of 0 such 
that ƒ (z, g(z)) = 1. Since ƒ is holomorphic on Ö, we conclude from ƒ (z, g(z)) 
= 1 that dk+lg(0)/dzkdzl = 0 for / > 0. Thus the power series expansion of g 
at z is of the form 

g{z) = azP+0(\z\p+l\ 

for some p > 1 and a ih 0. It is easy to verify directly that p(z, g(z)) is 
negative somewhere on any open neighborhood of 0, contradicting the 



PSEUDOCONVEXITY AND THE PROBLEM OF LEVI 505 

disjointness of {ƒ = 1} and Q. Actually in [52] it was proved that there is no 
holomorphic support function h on any open neighborhood U of 0 in C2 in 
the sense that h(0) = 0 and 0 n U is disjoint from {h * 0}. 

(7.6) By modifying the example of Kohn-Nirenberg [52], Fornaess [26] 
obtained the domain Q in C2 defined by 

Re w + \zwf+ |z|6+ f |z|2Re z4 < 0 

whose boundary is strictly pseudoconvex except at 0 and which does not 
admit any nonconstant local weak peak function ƒ for 0, even if one requires 
only that ƒ is C1 on some neighborhood U of 0 and holomorphic on U n Q. 
However, the answer to the following is unknown. 

(7.7) Question. Does there always exist a continuous local weak peak 
function for a nonstrictly pseudoconvex boundary point? 

Most recently Bedford and Fornaess [3] succeeded in constructing continu­
ous global weak peak functions for a domain in C2 with weakly pseudoconvex 
smooth real-analytic boundary. 

For certain type of boundary points, Hakim-Sibony [42] obtained a neces­
sary condition for the existence of a peak function. Before we state their 
result, we first introduce the concept of type for weakly pseudoconvex 
boundary points. This concept was first introduced by Kohn [51] in connec­
tion with subelliptic estimates. Let Ü be a domain in C1 defined by r < 0 with 
r C00 and dr nowhere zero on the boundary M of 0. Suppose that Ö is weakly 
pseudoconvex at every point of M. Let T be the set of all C00 tangent vector 
fields of M of the form 27.1^3/3*,. Inductively let £, - T + T (where T is 
the set of all conjugates of elements of T) and let £M be spanned by the Lie 
bracket [X, Y] with X e £, and Y e Ê^, . A point P of M is said to be of 
type m if <3r(P), X(P)) = 0 for every X E tm and for some Y G em+1, 
<3r(P), y(P)> ^ 0. According to a result of Bloom-Graham [7] this is 
equivalent to the condition that some complex submanif old of codimension 1 
in an open neighborhood of P in C1 is tangential to M at P to the mth order 
while there is none to a higher order. Another way to phrase this condition is 
that for some local coordinate system centered at P9 r = Re zn + <p, where <p 
vanishes at P to order > 2 and the lowest order of a term in the power series 
expansion of ç at P not involving zH is m + 1 , and for no other local 
coordinate system at P we can replace m by a bigger number. Suppose the 
origin 0 of Cn belongs to M and r * Re zn + 0(|z|2) near 0. 

(7.8) THEOREM (HAKIM-SIBONY [42]). If 0 is of type m for some finite m and 
there exists a nonconstant local weak peak function for 0 which is C00 onü and 
holomorphic on Ö, then there exists a holomorphic polynomial g(zl9..., zn_j) 
on C" 1 such that the first nonzero homogeneous (real-analytic) polynomial in 
the power series expansion of r(zx,..., zH„x, g) is nonnegative everywhere on 

This means that the existence of a local weak peak function for a boundary 
point of finite type imposes a certain special condition on the defining 
function of the domain. In the examples of Kohn-Nirenberg and Fornaess the 
exceptional points are of finite type, but the defining functions do not satisfy 
the special condition. So in a way this result of Hakim-Sibony explains why 
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local weak peak functions do not exist in these examples. 
The following result relating the existence of peak functions to that of 

supporting hypersurfaces was obtained by Hakim-Sibony [42]. 

(7.9) THEOREM. If there is a complex manifold of codimension 1 in an open 
neighborhood of 0 in C which intersects Q only at 0, then there exists a 
continuous (strong) peak function for 0. 

(7.10) It was known to Behnke and Thullen [5] that there are bounded Stein 
domains whose topological closures do not have a Stein neighborhood basis. 
A simple example is the domain \z\ < \w\ < 1 in C2, because any Stein 
domain containing it and the origin must contain the bidisc. It has been an 
open question until a counterexample was recently constructed by 
Diederich-Fomaess [15] whether the topological closure of a bounded Stein 
domain in C with smooth boundary admits a Stein neighborhood basis. 
Their counterexample is the domain Q in C2 defined by 

|w + exp(/ log|z|2)|2+ X(|zf2 - l) + X(|z|2 - r2) < 1, 

where r is a sufficiently large number and À is a smooth nonnegative function 
on R such that \(x) « 0 for x < 0, \'(x) > 0 for x > 0 and \ is sufficiently 
convex on {JC > 0}. Every Stein domain containing 12 contains the set 
{e* < \z\ < e2w, \w\ < 2}, which is not contained in Ö. This phenomenon 
occurs because for a E [1, ew\ the following 3 sets 

{|*|«a, |w + exp(/a2)|< l} , 

{|z|- ae2*9 \w + exp(/a2)| < l } , 

{a <\z\< ae2"9w~0} 

are contained in 30. The union of these three sets is the "skeleton" of a 
Hartogs' figure. Hence any function holomorphic on an open neighborhood 
of these three sets can be extended to a function holomorphic on a neighbor­
hood of 

A«:- {a <\z\ < ae2"9 \w + exp(/a2)| < l } . 

The set {e" < \z\ < e2", \w\ < 2} is contained in U {Ka\l < a < ew). 
Most recently Diederich and Fornaess [17] showed that the above strange 

phenomenon cannot occur when the boundary of the domain is real-analytic. 

(7.11) THEOREM. The topological closure of a bounded Stein domain in C 
with smooth real-analytic boundary admits a Stein neighborhood basis. 

8. Curvature conditons. The main point of the Levi problem is to prove 
Steinness under the assumption of local Steinness or boundary pseudoconvex-
ity or the existence of a plurisubharmonic exhaustion function. Recently there 
have been attempts at proving Steinness from differential-geometric condi­
tons, mainly curvature conditions. Up to this point all results on obtaining 
Steinness from differential-geometric conditions are proved by using known 
results of some forms of the Levi problem or the methods employed in the 
proofs of such known results. So these results on sufficient differential-geo-



PSEUDOCONVEXITY AND THE PROBLEM OF LEVI 507 

metric conditions for Stein manifolds can be regarded as applications or 
consequences of the Levi problem. The earliest result on getting Steinness 
from differential-geometric conditions is the following theorem of Grauert 
[29]. 

(8.1) THEOREM. Suppose Q is a domain of {or spread over) C1 with smooth 
real-analytic boundary. If Q admits a complete Kàhler metric, then G is Stein. 

This theorem is false if there is no smoothness condition on the boundary 
of $2. Grauert constructed the following complete Kâhler metric on C - 0. 
Let 

f{x)xx2+rdX r^ij^U, 
Jo A Jo /*(log/i)2 

and <p(z) * ƒ(|z|2). Then 2lV(32<p/3z/3^) dzt® dzj is the desired Kâhler 
metric. 

We now sketch the proof of Theorem (8.1). One proves the Steinness of Q 
by showing that —log of the Euclidean distance to the boundary of Q is 
plurisubharmonic. By using the real-analyticity of the boundary of S2, one 
reduces the proof of the theorem to the following statement. If Rx(zx)9 R2(zx) 
are C2 functions on {\zx\ < 1} with Rx(zx) < R2(zx) and if the domain D in 
C2 defined by \zx\ < 1, Rx(zx) < \z2\ < R2(zx) carries a complete Kâhler 
metric, then - log R2(zx) is subharmonic on {\zx\ < 1}. We prove this state­
ment by contradiction. Suppose the Laplacian of - log R2(zx) is negative at 
some z°. We can assume without loss of generality that z\ = 0. By averaging 
the Kâhler metric over the group action Te: (zl9 z^ -» (zx, z2e

iB) (9 E R), we 
can assume without loss of generality that the Kâhler metric is invariant 
under Te. Consider the tube domain G in C2 (with coordinates wl9 w2 * w + 
iv) defined by \wx\ < 1 and log Rx(wx) < u < log R2(w^). G is a topological 
covering of D through the map z, * wl9 z2 * eWl. Thus we have a Kâhler 
metric 'Sh^dWp ® dw¥ on G with h^ independent of v. Choose a C2 function 
R(wx) on \wx\< 1 with Rx < R < R2. We claim that there is a global 
potential function <p on G for the Kâhler metric such that dtp/du > 0 on 
{|w,| < \9 log R(wx) < u < log R2(wx)}. The Kâhler conditon implies that 
the form <o * hX2dwx + h2Xdwx + 2h22du is closed. Choose w° E G and 
define i/>(w>) * ƒ *o <o + C (where C is a constant). The Kàhler condition 
implies that d2ty/dwxdwx — *ij is independent of w2. So we can find ƒ on G 
such that d2f/dwxdwx « dty/dwxdwx — hxx. Since h22 > 0, it follows that we 
can choose C so large that <p * ^ — ƒ satisfies the conditions in the claim. 
For some r E (0, \)9 the Laplacian of - log R2(wx) *

s negative on {\wx\ < r}. 
Let P(wi) be a smooth function on {\wx\ < 1} such that p = 1 on {\wx\ < 
r/1) and p(wx) < 1 on {r/2 < \wx\ < 1}. Let a = plogR2. Then the 
Laplacian of o(wx) is positive on {\wx\ < s} for some s > r/2. Let H be the 
tube domain in C2 defined by \wx\ < s and log R(wx) - o(wx) < u < 
log R2(wx) — °(w\)- Let $(*>!, w>2) * <P(M>!, W>2 - a(wj)). One can easily verify 
that, due to the positivity of d2a/dwxdwx and 3<p/3w, ^(d^/dw^dwj) dw^ ® 
dw, is a Kâhler metric on if. Moreover, with respect to this metric the 
boundary points of H with \wx\ < s and u * log R2(wx) - o(wx) are at 
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infinite distance from any point of H. Take r/2<\< s and a positive 
number S small enough so that log /?(wi) - a(w{) < - 5 for \wx\ < A. By 
applying Stokes' theorem to the exterior derivative of the Kâhler form of H 
and to the set 

{|w,|<A, -8 < u < /,t> = 0} 

f or - 5 < / < 0, we conclude that for - 8 < t < 0 the area of 

is bounded by the sum of the areas of A_ô and 

{|w,|=A, -Ô < u <0,t> = 0} 

which is a finite number. This leads to a contradiction when we let t approach 
0 from the left, because every point of the open subset {\wx\ < r/2, w2 * 0} 
of Ao is a boundary point of H which has infinite distance from any point of 
H. 

Since for general domains in C1 the existence of a complete Kâhler metric 
is not enough to guarantee Steinness, one is led to consider additional 
conditions. The most natural conditions to consider are the curvature condi­
tions. Since holomorphic sectional (and also bisectional) curvatures of com­
plex submanifolds are < those of ambient manifolds and since Stein mani­
folds are complex submanifolds of complex Euclidean spaces, one would 
suspect that one should impose the negativity of curvatures as a condition. 
Griffiths and Shiffman showed that this is the case for domains spread over 
C 

(8.2) THEOREM (GRIFFITHS [41] AND SHIFFMAN [74]). Suppose M is a com­
plete Hermitian manifold with nonpositive holomorphic sectional curvature and 
Q is a domain spread over Cn. Then any holomorphic map from Q to M can be 
extended to a holomorphic map from the envelope of holomorphy of Q to M. As 
a consequence, a domain spread over Cn is Stein if and only if it admits a 
complete Hermitian metric of nonpositive holomorphic sectional curvature. 

Not much is known about characterizing Stein manifolds which are not 
domains by curvature conditions. One has the following conjecture. 

(8.3) CONJECTURE. A simply connected complex manifold is Stein if and 
only if it carries a complete Kahler metric of nonpositive holomorphic 
bisectional curvature. 

There is a stronger conjecture which replaces "bisectional" in the above 
conjecture by "sectional" and there is a weaker conjecture which replaces 
"nonpositive" in the above conjecture by "negative". 

On the other hand there is a conjecture for the positive curvature case. 
(8.4) CONJECTURE. A noncompact complete Kâhler manifold with positive 

holomorphic bisectional curvature is Stein. 
Siu and Yau have shown (by a very easy proof) that on such a manifold 

there are holomorphic functions and holomorphic vector fields with any 
prescribed values to any finite order at any finite number of points and that 
any complete Hermitian manifold whose holomorphic sectional curvature 
approaches zero uniformly at its boundary has the Kontinuitatssatz property 
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if one considers smooth 1-parameter families of discs instead of sequences of 
discs. One is led to raise the following question. 

(8.5) Question. Suppose on a complex manifold M there are holomorphic 
functions and holomorphic vector fields with any prescribed values to any 
finite order at any finite number of points. If M has the Kontinuitatssatz 
property (or only the weaker form of it mentioned above), is M Stein? 

There are some results obtained by Greene and Wu on curvature condi­
tions sufficient to yield Steinness [37], [38], [39], [40]. 

(8.6) THEOREM (GREENE-WU). Let M be a complete Kàhler manifold. Then 
Misa Stein manifold if any one of the following holds. 

(A) M is simply connected and the sectional curvature < 0. 
(B) M is noncompact, the sectional curvature > 0 and moreover > 0 outside 

a compact set. 
(C) M is noncompact, the sectional curvature > 0, and the holomorphic 

bisectional curvature > 0. 
(D) M is noncompact, the Ricci curvature > 0, the sectional curvature > 0 

and the canonical bundle is trivial. 

The main ideas of the proof are as follows: In (A) the square of the 
distance function to a fixed point is a strictly plurisubharmonic exhaustion 
function, because of well-known comparison theorems in differential geome­
try. In (B), (C), and (D) the result of Cheeger-Gromoll [14] gives a plurisub­
harmonic exhaustion function <p on M. Moreover, in (B) it says that M is 
diffeomorphic to C and <p is strictly plurisubharmonic outside a compact set. 
Since any positive-dimensional compact subvariety in a Kâhler manifold 
represents a nontrivial nonzero homology class, it follows that the M in (B) is 
Stein. The M in (C) is Stein, because by Ellencwajg's result [19], {jp < c) is 
Stein for any c E R. The M in (D) is Stein, because solving dd\p = Ricci 
curvature form by L2 estimates of 3 yields a strictly plurisubharmonic 
function on M. 
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