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1. Apologies. Since much of the recent work in the Banach space 
aspects of Functional Analysis, especially the geometry of Banach spaces, 
could, by a bit of chicanery, be construed as applications of Banach ideals, 
the title does not indicate a complete survey. This work is surely not 
exhaustive of the subject matter. Thus, many good papers are totally 
ignored. This is somewhat compensated for by the monograph [1.1] of 
Lindenstrauss and Tzafriri on the geometry of the classical Banach spaces 
and the "pre-book" [1.2] of A. Pietsch on the general theory of ideals of 
operators. 

Since a lecture should have a central theme, I have chosen a fundamental 
result of Grothendieck which asserts that there are Banach spaces E and F 
for which every bounded linear operator from E to F is 2-absolutely 
summing. (Definitions will be forthcoming.) This result and the local struc­
ture of Banach spaces are the unifying topics of this paper. For the 
numerous topics this unification omits, again, apologies. 

I have addressed myself to the material at hand twice before [1.3], [1.4], 
[1.5], the latter in collaboration with Y. Gordon and D. R. Lewis. I 
apologize for mentioning, again, the beautiful result of Stegall and Lewis 
[1.6] and tramping once again over ground covered in [1.3]-[1.5]. However, 
I feel, perhaps with prejudice, that these results are worthy of further 
discussion. 

An additional apology of sorts is needed. I have included many definitions 
which are old hat to experts in Banach space theory. It is hoped that the 
material will thus be accessible to a larger audience, perhaps even to some 
persons completely outside Functional Analysis. 

Finally, many of the results stated have their natural setting in Probability 
Theory. I have avoided the probabilistic language entirely. Thus "random 
variable" becomes "measurable function" etc. This is an editorial judgment 
on my part, and apologies are extended to anyone this may offend. 

This is an expanded version of an invited address given at the meeting of the Society in 
Nashville, Tennessee, November 8, 1974. 
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A remark on the Bibliography is in order. Instead of listing bibliographi­
cal references alphabetically we have listed the results as they appear in the 
text, e.g. [5.3] means reference [3] of §5. Thus, one interested in the proof of 
results stated in a given section can go to the source immediately. Due to the 
length of the paper almost all proofs are omitted; hopefully, this unorthodox 
bibliography will help compensate for that. 

2. Notation. Most of our notation is standard. All spaces considered are 
Banach spaces. The word operator means bounded linear transformation. By 
an isomorphism we mean a one-to-one, open operator. The Banach-Mazur 
distance, d(E,F), between Banach spaces E and F, is given by 

d{E,F) = inf||T||||T-1|| 

where the infimum is taken over all isomorphisms between E and F If E 
and F are not isomorphic set d(E, F)=+°°. 

A projection P is an operator from £ to E with P2=P. If A is a subspace 
(=closed linear manifold) then A is complemented in E if there is a 
projection P with P(E)=A. We will denote the identity operator on a 
Banach space E by idE. 

A sequence (xn) in a Banach space E is a Schauder basis for E (uncon­
ditional Schauder basis for E) if for each xeE there is a unique sequence of 
scalars (a„) such that £n=i anxn converges to x in norm (such that £n=i e„a„x„ 
converges for all choices of signs en = ±l). The functionals fh defined by 
fi(x)=ai, are called the coefficient functionals of the basis (x4). 

For l^p^oo we denote by Ip the Banach space of scalar sequences (a») 
with 

l |a | |=(ï |a i |
p)1" ' if l ëp<oo, 

= sup|ai| if p = o°. 
i 

Similarly, for lp(F) where T is any discrete set. In particular, we denote by lp 
the space of n-tuples with the above norm. We denote by c0 the closed 
subspace of L consisting of those sequences which tend to 0. Given p in 
[l,o°) we will always denote by p' the number satisfying l /p+l/p '=l . 

If E' denotes the conjugate of a Banach space E then (lp)'=IP'. 
We will use tensor notation in §§11, 12, and 14. By Jp®i<, we mean the 

closure of the finite rank operators T : lp>-> lq in the norm 
inf{£r=i ||/i|| ||xi|| : Tx = £"=i /t(x)Xi}. By Ip® lq we mean the closure of the same 
finite rank operators in the usual operator norm. A similar statement holds 
for ÇÔi; and JJjôi;. 

If (S, X, jut) is a measure space then as usual Lp(S, 2, /x) or Lp(jLi) denotes 
the Banach space of equivalence classes of almost everywhere equal func­
tions under the norm 

\\fl = (\s\m\"n(ds)yP for lëp<°o, 

= ess sup |/(s)| for p = «. 
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By a probability measure space (il, JLL) we mean a positive measure with 
ix(il) = 1. For jut Lebesgue measure on [0, 1] we will suppress jLt(or dt) and 
write Lp[0, 1]. 

By C(K) we mean the Banach space of continuous scalar valued functions 
under the sup norm. 

If (En) is a sequence of Banach spaces then 

(© En)lp = {(xn), xneEn\\\(xn)\\
p = £ IW|P < +*>}• 

For a Banach space E let 

SE(0 = inf{l-e||x+y||: | |x| | = | | y | | = l , | | x - y | | ^ t > 0 } . 
The function 8E is called the modulus of convexity of E. If 8E(t)>0 for 
0 < 8 ^ 2 then E is said to be uniformly convex. The spaces Lp(jLt), l<p<&, are 
uniformly convex. 

Let A ^ l and l^p^oo. A Banach space E is an S£PtX-space if for each finite 
dimensional subspace F^E there is a finite dimensional subspace B with 
F c i B c E such that d(B, ln

P)=\ where n=dim B. A space E is an i£p-space if 
it is an ££p,x-space for some A ^ l . These spaces, introduced in [2.1], 
generalize and include the LP(S,X, JU) and C(X)-spaces above. 

An operator T from E to F is compact if the image of the unit ball of E is 
relatively compact in F. 

A space E has the approximation property if every compact operator 
from F to E is the limit of finite rank operators. The space E has the 
bounded approximation property if there is a constant O O such that if B 
is a finite dimensional subspace of E there is an operator on E with finite 
dimensional range such that | |T||^C and T restricted to B is the identity. If 
C can be taken to be 1 then E is said to have the metric approximation 
property. A remarkable result of Enflo [2.2] (see also [2.3]) asserts that not 
every Banach space has the approximation property. 

A sequence of subspaces (E„) in a Banach space E is uniformly com­
plemented if there is an M > 0 and a sequence of projections (Pn) with 
Pn(E) = En and ||Pn | |^M for all positive integers n. 

Following [2.4] we will say that a Banach space E is an £fpA -space if for 
each n E contains subspaces E„ which are uniformly complemented and 
d(En, ip)=A; and E is a 2>p,x-space if for each n E contains En with 
d(En, lp)^\. Finally, E is an Sfp- or a 2>p-space if it is a 3)p,\- or 9^-space 
for some A ^ l . For the relationships between ifp1-, Sfp- and 2>p-spaces 
we refer the reader to [2.4]. 

3. History. An ideal in the ring 5£(H) of all bounded linear operators on 
a separable infinite dimensional Hilbert space is a subset A(H) with the 
properties: if S, Si, S2eA(H) and R, TeS£(H) then Si + S 2 eA(H) and 
RSTeA(H). 

The oldest ideal known to the author is the ideal cr2(H) of "Hilbert-
Schmidt" operators. This ideal originated with the work of D. Hilbert [3.1] 
and E. Schmidt [3.2]. 

In considering the question "What operators on Hilbert space have a 
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trace?", F. J. Murray and J. von Neumann [3.3] found the ideal cri(H) of 
"trace class" operators. Later J. von Neumann and R. Schatten [3.4] 
generalized the Hilbert-Schmidt and trace class operators to the ideals 
o-p(H) (0<p«x>). We will have more to say about these important ideals 
later. 

The final work in the ideal theory in i£(H), in the sense that a "complete" 
characterization of all two-sided ideals was given, was done by J. W. Calkin 
[3.5]. In particular, Calkin showed that there is a one-to-one correspon­
dence between the ideals A(H) and the permutation invariant ideals in the 
ring L of bounded sequences. (Further results along these lines were 
obtained by Schatten [3.6] and Gohberg and Krein [3.7]. More recently, the 
situation on nonseparable Hilbert spaces has been considered by Ooster­
brink [3.8] and his colleagues.) 

On the other hand, as we will see, to obtain an ideal theory on Banach 
spaces that is suitable for applications, it is not sufficient to consider only the 
ring 5£(E) of bounded linear operators on a Banach space E. We must 
consider the space «SP(E, F) of bounded linear operators between arbitrary 
Banach spaces E and F. 

Roughly speaking, a subset si of the class £ of all bounded linear 
operators between all Banach spaces is an ideal if whenever S, Si, S2esi 
and R,Te<£, then S i+S 2 e^ and RSTesi (whenever Si+S2 and RST are 
defined). We will give precise definitions later. 

The ideal of compact operators was introduced by F. Riesz [3.9] in 1918. 
This is the first example of a "Banach" ideal known to the author. (Recall 
that Banach spaces were not introduced until circa 1932!) Still other 
examples are the ideals of weakly compact operators (S. Kakutani [3.10]), 
nuclear operators (A. F. Ruston [3.11], A. Grothendieck [3.12]), and the 
strictly singular operators (T. Kato [3.13]). 

Other special classes of operators were considered by numerous authors. 
However, the general theory of Banach ideals of operators began, I believe, 
with the fundamental work on tensor products of Schatten [3.14] and 
Grothendieck [3.12]. However, the nontrivial translation from the language 
of tensor products to operators on Banach spaces was accomplished in a 
series of papers by A. Pietsch [3.15]-[3.21] and, in particular, [3.22] which 
influenced much of the subsequent work in the area. 

4. Diversity of applications. The applications of the theory of Banach 
ideals have been numerous but mainly in three directions: 

I—Classifying types of locally convex spaces (e.g. Schwartz spaces, nuclear 
spaces); papers related to applications of type I include [4.1]-[4.4] and the 
numerous references given in [4.3] and [4.4]. II—Measure theory on Banach 
spaces (linear stochastic processes); here the work is mainly by L. Schwartz 
and the French school. Principal works are [4.5]-[4.7]. See also [4.8] and the 
Séminaire Maurey-Schwartz 1972-1973, 1973-1974. We will have some­
thing to say about the important Schwartz duality theorem later. Ill—The 
structure theory of Banach spaces; applications of type III will be our 
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concern in this paper. Appropriate references will be given in the subse­
quent sections. 

5. Banach ideals. Throughout the remainder of the paper SB denotes the 
class of all bounded linear operators between arbitrary Banach spaces and 
i£(E, F) the set of all such operators between specific Banach spaces E and F. 
We now define an ideal in the sense of A. Pietsch [5.1]. We say that a class 
A of bounded linear operators is an ideal if for each set A(E, F)= 
AH^(£,F) one has 

(a) if x ' e£ ' , y e F then x'®yeA(E,F) (x'®y denotes the rank one 
operator given by x'®y(x)=(x, x')y. Clearly, every rank one operator has 
this form.); 

(b) A(E,F) is a linear subset of S£(E,F) for each E and F; and 
(c) if Ue^(X,E) , TeA(E,F\ Ve^(F, Y), then VTUeA(X, Y). 
The finite rank operators ^obviously form the smallest ideal. 
A function a on the operators T in an ideal A to the nonnegative real 

numbers is an ideal norm if 
(d) x 'eE ' , y e F then a(x'®yH|x'||||y||; 
(e) S, TeA(E,F) then a(S+T)^a(S)+a(T); and 
(f) if Ue£(X,E);TeA(E,F) and Ve<£(F, Y), then 

a(VTU)^\\V\\a(T)\\U\\. 

An ideal A with norm a, [A, a], is a Banach ideal if each component 
A(E,F) is a Banach space under a. 

To any linear normed ideal [A, a] one can associate three normed ideals 
in a more or less natural fashion: 

(I) The dual ideal [A', a']: An operator T is in A'(E,F) if and only if 
TeA(F\E'). Here a'(T)=a(T'); 

(II) The conjugate ideal [AA, aA]: AA(E,F) is the class of all operators 
Te£(E, F) for which there is a p>0 such that for any L e &(F, E) 

|traceLT|^pa(L). 

The norm aA(T) is defined by infp, p satisfying the above inequality. 
[AA, aA] is always a Banach ideal. 

(III) The adjoint ideal [A*, a*]: A*(E,F) is the class of all Te£{E,F) 
for which there is a p > 0 such that for all finite dimensional Banach spaces 
X, Y and for all Ve#(X,E), UeA(Y,X), WeX(F, Y), 

|trace VUWT| ̂ p\\W\\ \\V\\ a(U). 

Here the norm a* is also given by inf p, p satisfying the above inequality. 
The ideal [A*, a*] is also always a Banach ideal. 

The ideals AA and A* are intimately related. Indeed, for any Te!£(E, F), 
a*(T)^aA(T) and equality holds if both E and F have the metric approxi­
mation property. 

We now give a few examples of Banach ideals. These ideals are due to 
several different authors. Bibliographical information and a table showing 
the relationships between various ideals is given in [5.2]. 
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(1) Let C(E, F) denote the closure of &(E, F) in 2 (E , F), and K(E, F) the 
compact operators from E to F. Then [££, ||-||], [K, ||-||] and [C, ||-||] are Banach 
ideals. 

For a finite or denumerably infinite set {xi, • • •, xN} in a Banach space E, 
let 

eP({xJ = sup{( | i | (x i , / ) | p ) 1 / P : | | / | |= l} , if l ^ p 

e-({x.}) = supjsup |<x,, />| : ||/|| = 1 j ; 

/ £, \ 1/p 

M{*}) = (XJWIP) if I ^ P < + ^ , 

aoc({Xi}) = sup ||xi||; 

< +oo? 

and 

({x,}) = sup{ | f <xi9 ƒ,) | : sP ({ƒ,}) ^ l } , 
P P 

(2) [up, 7TP] denotes the ideal of p-absolutely summing operators: T e 
n p (E, F) if there is a p > 0 such that ap({TXi})^pep({Xi}), for all finite sets 
{xi,- • •, xN} in E. The norm TTP is given by 7rp(T)=inf p, p as above. 

The ideal [np, 7rp] will be extensively used throughout the remainder of 
the paper. 

(3) [Dp, dp] denotes the ideal of strongly p-summing operators: Te 
DP(E, F) if there is a p > 0 such that a-p[{TXi})^pap({Xi}) for all finite sets 
{xi, • • •, xN} in E ; dp(T) = inf p. 

(4) [Ip, ip] denotes the ideal of p-integral operators: T e IP(E, F) if there is a 
probability measure /m and operators Ve&(E, LOO(JUL)) and We«S?(Loo(jui), F"), 
F" the bidual of F, such that WjV=iT, where j is the canonical in­
jection of LOO(JUL) into Lp(jui) and i the canonical injection of F into F", i.e., 

£_J_> j <— -̂>F" 

M/ui )—< •Lpüo 

The norm ip is given by ip(T) = inf||V|| ||W||, the infimum taken over all 
probability measures p, and operators V, W. 

(5) [Np, vp] denotes the ideal of p-nuclear operators: TeNp(E, F) if T has 
a representation T=£rU/i®yi , freE', y t e F and aP({/i})<+°°, and 
£p'({yi})<+00 ( l / p+ l / p ' = 1). If p=°° there is the additional requirement that 
fi-*0 as i-»oo. The p-nuclear norm is given by i>p(T) = inf aP({/i})eP({yi}), 
where the infimum is taken over all such representations of T. 

An operator T in the class Ni will be called a nuclear operator. This class 
of course generalizes the "trace class operators" on Hubert space. 

(6) [Q , cp] denotes the ideal of operators factoring compactly through 
tp : T € Q ( E , F) if there are A e C(E, lp), B e C(lp, F) with T = BA. The norm 
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cp is given by cp(T) = inf||A||||B||, where the infimum is over all such 
factorizations of T. 

(7) [Jp,q> ipq]> l = q = p = ° ° , denotes the ideal of operators factoring through a 
diagonal Be££(Lp(|w), Lq(ii)): TeIp,q(E, F) if for some positive measure /x 
there are operators A eS£(E, Lp(n)), B €^(Lp(ft), Lq(jLt)), where B is of the 
form Bf=f-g for some fixed geLr(|m), l/r = l / q - l / p , and Ce££(Lq(fx), ƒ"), 
such that iT=CBA, where i is the canonical injection of F into F". The 
norm ^ is given by ipc(T) = inf||̂ V|| ||J3|| ||C||. 

Observe that Iq(E, F)=Lo,q(E, F) with equality of norms. 
(8) [JP,q, jVq], l = q = p = ° ° , denotes the ideal of operators factoring through 

D q °n p : T e Jpq(E, F) if iT admits a factorization as follows: 

where UeUp(E,G) and VeDq(G,F"). Here jM(T)=inf 7rp(U)dq(V), the 
infimum taken over all U, V, G. 

The last ideal we will discuss is a generalization of an ideal introduced by 
Kwapien. 

(9) [rp,q,7pq] is defined as in [Ip,q, ipq], the difference being that B ranges 
over all members of i£(Lp(jn), Lq(\x)). 

The adjoints, conjugates and duals of these ideals (and several others) are 
computed in [5.2]. 

We remark that in the ideals (8) and (9) whenever p = q we will index the 
ideal and its norm by p alone. 

6. Ideal characterizations of ^p-spaces. We first present some charac­
terizations of $£p-spaces via Banach ideals. We begin with a characterization 
of ^«-spaces. 

THEOREM 1 [6.1]. The following assertions are equivalent: 
(a) n 1 (E ,F)=I 1 (E ,F) for all F; and 
(b) E is an ^Eœ-space. 

Using this result Lewis and Stegall [6.2] proved 

THEOREM 2. Let E be a Banach space. Then IIi(E, F)=Ni(E, F) for all F if 
and only if E' is isomorphic to Ji(0 for suitable T. 

There are some beautiful applications of Theorem 2. 
APPLICATIONS. (1) If E is a complemented subspace of Li[0, 1], isomorphic 

to a subspace of a separable conjugate space, it is isomorphic to V. In 
particular. (2) Li[0,1] is not isomorphic to a subspace of a separable 
conjugate space (Gel'fand [6.3], Pelczynski [6.4]. (3) Any separable i£i-space 
which is isomorphic to a conjugate space is isomorphic to U. (We remark 
that there are many separable ^i-spaces. Indeed let <ï>0:Zi—»Li[0,1] be a 
surjection and let Xi=<&o1(0). Let $ i be a surjection from h onto Xi and 



1975] APPLICATIONS OF BANACH IDEALS OF OPERATORS 985 

X2=®ï1(0). In general let Xn = 4>n-i(0). Then all of the Xn are separable, 
nonisomorphic ££i-spaces [6.5].) 

We now give an omnibus result which includes results of Cohen [6.6], 
Holub [6.7], Johnson [6.8], Kwapien [6.9], Lewis [6.10] and Persson [6.11], 
as well as some new results. This result was first proved in [6.12]. 

THEOREM 3. The following are equivalent ( l ^p^o°) : 
(a) IE, the identity on E, factors through Lp; 
(b) rp(F,E)=>C(F,E) for all F; 
(c) rp<E',F')=>C(E' ,F ') for all F; 
(d) r p ( E , E ) 2 C ( E , E ) and E has the metric approximation property; 
(e) T*(E, F) = ME, F) for all F; 
(f) T*(F, E) = h(F, E) for all F; 
(g) r*(E, E) = Ii(E, E) and E has the metric approximation property; 
(h) for every Banach space G, and every adjoint operator, if We 

n P (E ' ,G ' ) then WeIp(G,E); 
(i) if VenP(E,G) then V'eIp>(G\E'); and 
(j) Tp(E,F)=>C(E,F)forallK 

We mention that some other characterizations of c0, Ji, i£«,-spaces and 
^i-spaces are given in [6.13]. 

It would be of considerable interest to know the situation whenever the 
range space in Theorem 2 is fixed. We conjecture that if IL(F, E) = Ni(F, E) 
for all Banach space F then E must be finite dimensional. 

7. More on ^p-spaces. In [7.1] Grothendieck outlined the theory of 
tensor products of Banach spaces. This was, in fact, the "beginning" of the 
theory of ideals of operators on Banach spaces. Indeed, Grothendieck 
showed the importance of factoring techniques which will be emphasized 
over and over in this paper. 

The crowning achievement of this work of Grothendieck was called by 
him "the fundamental theorem of tensor products." In terms of matrices this 
theorem can be stated as follows: 

Let (%)?,,=! be a finite matrix of real numbers such that EM=I o ^ l ^ l 
whenever |fc|^il, | S J | = 1 . Then, for every set of unit vectors (xO?=i and (y,-)?=i 
in a Hubert space 

X Oi,-(Xi, y , ) p K G , 

where KG is an absolute constant. Here (•, •) denotes the inner product in 
the Hubert space. We remark that the exact value of KG is not known. 

Surprisingly this fundamental paper of Grothendieck lay dormant for 
many years but was finally taken up again by Lindenstrauss and Pelczynski 
in 1968 [7.2]. Lindenstrauss and Pekzynski were persuaded to write their 
paper avoiding the notion of tensor products because "the paper of 
Grothendieck was quite hard to read and its results were not generally 
known even to experts in Banach space theory." This remarkable paper of 
Lindenstrauss and Pefczyiiski contains the seeds of the application of 
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Banach ideals of operators. (Earlier [7.3] Grothendieck essentially used the 
theory to obtain the Dvoretzky-Rogers theorem.) Before stating a few of 
their results let us mention that a new proof of the Grothendieck inequality 
has recently been given by Maurey [7.4]. One of the achievements of the 
Lindenstrauss-Pefczynski paper was the introduction of the classes of spaces 
called the i£p -spaces defined in the introduction. The proofs of the theorems 
below depend heavily on the Grothendieck inequality. 

THEOREM 1. Let X be an ^Ei-space and H an S£2-space (=isomorph of a 
Hubert space). Then 2(X, H)=IIi(X, H). 

As remarked by Lindenstrauss and' Pefczynski it is conceivable that 
Theorem 1 actually characterizes i£i and i£2-spaces. Indeed they obtained 
the following partial converse to Theorem 1. 

THEOREM 2. Let X and Y be Banach spaces such that X has an uncon­
ditional basis and such that i£(X, Y)=IIi(X, Y). Then X is isomorphic to h 
and Y is isomorphic to a Hubert space. 

THEOREM 3. Let X be an !£œ-space and Y an %v-space, l ^ p ^ 2 . Then 
S(X, Y) = n2(X, Y). 

Of the numerous applications of these results the following are striking 
examples. 

APPLICATION 1. Let X be a complemented subspace of an i£i(i£oo)-space 
Y and let (xi) be a normalized unconditional basis in X. Then the basis (xt) is 
equivalent to the unit vector basis (e*) in li(c0), i.e. the operator T defined 
by TXi — d is an isomorphism. 

For the next application we consider the complex Banach space Li(fx), 
where JUL is Haar measure on {z: |z | = l}. Let Hi be the closure of the 
polynomials Y*=oakz

k in LI(JUL). 

PROPOSITION. £(HU l2) * IIi(Hi, I2). 

We thus obtain the classic result of D. J. Newman (see [7.5, p. 154]). 
APPLICATION 2. Every isomorphic image of Hi in an arbitrary i£i-space X 

is uncomplemented. 
Another application is Grothendieck's characterization of Hubert spaces. 
APPLICATION 3. A Banach space X is isomorphic to a Hubert space if 

and only if it is isomorphic to a subspace of an ££i -space and to a quotient 
of an ^oc-space. 

Of course, if the roles of the i£i- and i£œ-spaces are interchanged, every 
Banach space meets the requirement. 

Finally if ££(X, Y) = Ili(X, Y) there is a bit one can say about X. More 
precisely, 

PROPOSITION. If S£(X, Y) = IL(X, Y) then 
l 0 2(X, I 2 )=n , (X , I 2 ) ; 
2° if Xn=i *n is unconditionally convergent in X then £n=i ||xn||2<+00; and, 
3° if Z is any espace, 2 (Z , X) = n2(Z, X). 

For a detailed study of this proposition, see [7.6]. 
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8. Schwartz duality theorem. Following Kwapien [8.1] we present the 
Schwartz duality theorem without the theory of cylindrical measures and 
radonifying operators. 

We first need to extend the notion of p-absolutely summing operator to 
include the interval [0,1). For 0<p<+o° define a p-absolutely summing 
operator in the obvious way, i.e., T is p-absolutely summing if there is a C 
such that for Xi • • • Xn e E 

î | | T x i | r ë C s u p É | < x i ) / > | ' \ 
i = l 1|/||=1 i = l 

For p = 0 we say that T is 0-absolutely summing (and write Tello(E, F), if 
for each e > 0 there is a ô > 0 such that for Xi • • • Xn e E and 

n ï 

sup £ - min[l, |<xi? /)|] < Ô, 
II/II=I i - i .n 

it follows that £"=i n 1 min[l, ||TXi||]<e. This last definition is a reformulation 
of Schwartz's definition of a radonifying operator. 

Now let /UL be a probability measure on a Hausdorff space Ci and 0^p^o°. 
A linear operator v:E^>Lp(tl, n) is p-decomposable if there is a <p :il-+E' 
such that 

(a) for each x e E , (x, <p(-)) is JUL-measurable and equal to v(x) n—a.e.; 
and 

(b) there is ƒ eLp(fl, /x) such that ||<p(o>)||̂ /(û>) JUL—a.e. 

THEOREM (THE SCHWARTZ DUALITY THEOREM). Let E be a Banach space 
and 0^p<+o°. If v:E-*Lp(ïî, /x) is p-decomposable then v is p-absolutely 
summing. 

For 0 ^ q < p < 2 there is an isomorphic embedding of Lp[0,1] into 
Lq(H, fi). If p = 2 the same is true for all 0^q<+oo. We denote such an 
isomorphism by vp. 

THEOREM 2. Let K p ^ o o and T:Lp[0,1]->L2[0,1]. The following are 
equivalent: 

(a) v2T is q-decomposable for all q«x>; 
(b) v2T is 0-decomposable; 
(c) T is 0-absolutely summing; and, 
(d) T is p'-absolutely summing. 

THEOREM 3. Let either l ^ p < 2 and 0^q<p or p = 2 and 0^q<+o°. Let F 
be an £p-space. If Te£(E,F) and T'eIIq(F',E') then TeU0(E,F). 

APPLICATION 1. Let F be an i£r-space where l < r ^ 2 . 
(a) If 0 ^ p ^ 2 then IIP(F, E)=U0(F, E) ; 
(b) If 2^p<oo then n p (E,F)=II 2 (E,F) . 

In particular for an isomorph of a Hilbert space (i.e., an £62-space), H, an 
operator is p-absolutely summing for some p, 0^=p<o° if and only if 
it is 2-absolutely summing (=Hilbert-Schmidt). 
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APPLICATION 2. Let F be an i£r-space, l < r « » . Then l l ^F , E)=1I0(F, E) 
for any Banach space E. 

APPLICATION 3. Let 2<p <oo. Let E be an i&o-space and F an ££p-space. 
Then 

(a) ^ ( E , F ) = IIq(E,F) for q>p; but, 
(b) 2 ( E , F ) ^ n p ( E , F ) . 

(We mention that Saphar [8.2], [8.3] has obtained (a) of Application 3 
replacing n q with Iq.) 

APPLICATION 4. Let F be a subspace of an £\-space. Then 
(a) IL(F,E) = n 2 (F ,E) ; and, 
(b) if p ^ 2 , n p (E, F )=n 2 (E , F) for any Banach space E. 
Many authors have considered the question: "When is the adjoint of an 

operator p-absolutely summing?" The most satisfying answer, we feel, was 
given by Cohen [8.4] since it retains the series interpretations of these 
operators. Stated in the language of ideals Cohen's result is UP=DP and 
Dp=np . 

Aside from the work of Kwapien here and the fundamental result of 
Schwartz we mention the papers of Garling [8.5] and Nielsen [8.6]. 

9. Banach spaces X for which n2(^=o, X)=£{£„, X). The Grothendieck-
Lindenstrauss-Pefczynski theorem and the previous results of Kwapien 
indicate that perhaps a space X for which i£(E, X)=n 2 (E , X) for an !£œ-
space E is necessarily a subspace of some Lf\ (JLL). This problem was consi­
dered by Dubinsky, Pefczynski and Rosenthal [9.1]. They show that the 
above conjecture is false. Moreover they give a complete characterization of 
such spaces whenever X has an unconditional basis. First we remark that if 
i£(E, X) = n2(E, X) for some i£œ-space E then the equality holds for all 
^ - spaces ; thus, the notation # (#„ , X) = II2(££=o,X). 

EXAMPLE 1. Let X=(©En)i2 where each En = h. 
(a) n 2 ( £ . f X ) = # ( # - , X ) , a n d 
(b) X is not isomorphic to any subspace of an i£i-space. 
Actually one can obtain a reflexive space with properties (a) and (b) of 

Example 1. Indeed let X=(0E n ) i 2 where En = lï. 
Although there are no known necessary and sufficient conditions on a 

general space X guaranteeing ILC^-, X)=££(i£oo, X), there are rather simple 
conditions guaranteeing this property for X in the class of spaces having 
unconditional bases. 

THEOREM 1. Let X have an unconditional basis (un). Then 
i£(5£=o, X) = n2(^=c, X) if and only if every operator from c0 into X, which takes 
the nth unit vector of c0 into a multiple of Un for each n (i.e., a diagonal 
mapping), is 2-absolutely summing. 

It is obvious that if ££(&., X)=n2(i£o=, X) the same is true for any subspace 
of X. However, it is easily seen that the property is not preserved by 
quotients. 

The following result gives a property which preserves the above equality 
for quotients. 
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THEOREM 2. Let X be a Banach space. Suppose that there exists a 
probability space (H, 2 , fx) and a sequence of functions (fn) in Li(fl, 2 , JUL), 
and a constant C > 0 such that 

( m \ 1/2 f I m | 

IN' sH I4W^(») 
i = i / Jn |i = i | 

for any scalars au a2, • • • , am (m = l , 2, • • •), and 

f II m II / m \ 1 / 2 

(b) I x t / , ( a ) ) L d ( û ) ) s C ( I | | x î r ) 
Jn ||i = i || \ i = i / 

for any x*, • • • , x* in X*. 
Then II2(i£oo, X)=i£(i£oc, x). Moreover, every quotient space Y of X has the 

same property (indeed the same (ƒ„) and C suffice). Consequently n2(i£», Y) 
= # ( # - , Y) for a» such Y 

Recall that a Banach space X is a 2>i-space if there is some K>\ and a 
sequence of subspaces Xn<=Xsuch that d(Xn, lï)^K for n = l, 2, • • • . 

THEOREM 3. If X is a Banach space such that n2(£°°, Y) = S£(5£oo, Y) for 
every quotient space Y of X, then X is npt a Si-space. 

Say that a Banach space X has the Orlicz property if for each uncondition­
ally convergent series £m=i xm in X, £m=i ||xm||2<+o°. (Orlicz [9.2] discovered 
that for l ^ p ^ 2 , the Lp(/ui)-spaces have this property.) 

APPLICATION. If IÏ2(i£oo, X)=!£(£œ, X) then X has the Orlicz property. 
It is not known if the converse is true. 

10. Subspaces of Lp. In this section we consider a fundamental paper of 
H. Rosenthal [10.1], which in turn was motivated by a paper of J. Bretag-
nelle and D. Dachunha-Castelle [10.2]. Rosenthal's work is a beautiful 
application of the theory bf p-absolutely summing operators. 

We begin with a characterization of the 7rp-norm of operators on i". In 
what follows, {ci • • • e„} will denote the natural basis of IZ. 

LEMMA 1. Let X be a Banach space, n a positive integer; K > 0 , Kq<<» 
and l/q + l/p = l . Let Te£{ll, X) with Tei = Xi. The following are equivalent: 

(1) 7rq(T)^K; 
(2) for all integers m and matrices (ŷ -) ( l ^ j ^ n , l ^ i ^ m ) of scalars we 

have 

( ™ WJX lh\1 A* / js. \1/c» 

I I * J ) âKsup(l|y„|«) . 
i = l ||j = l || / lS jSn\ i = l / 

Using Lemma 1 it is easy to prove the next result. 
LEMMA 2. Let K q « » , l /p+ l /q = l , X a Banach space and K>0. The 

following are equivalent: 
(1) for any compact Hausdorff space S 

2(C(S) ,X) = n q (C(S) ,X) 
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and 
7rq(T)^K\\T\\ foranyTe$(C(S),X); 

(2) for each n, xx • • • xn eX and matrices (yy) ( l ^ i ^ n , l ^ j ^ n ) of scalars, 

( l | l y«x|)1,q âKsuP(ç |yMl2)l/,sup I |<%, ƒ>!; 

(3) if B is any Banach space and TeNp(X,B) with vp(T)^l then Te 
IIi(X,B) and TTI(T)^1. 

Our first theorem is the principal tool for the main results. 

THEOREM 1. Let R be a subspace of Li(fx), K p < + o ° , l /p+l /q = l , 
K<+<». The following are equivalent: 

(1) for any positive integer n and elements ri • • • rn of R, 

jŒ|r.|p(t))"pdn(t)sicŒlk.||p)1*; 

(2) if J:L°°(IJL) onto R* is the natural map (i.e., the adjoint of the inclusion 
map jRc^Li(ft)), then Trq(J)^K; and 

(3) there is a nonnegative measurable function <f> with J </> djut^l, so that for 
all reR, r(t)=0 for almost all fe{t:<f>(t)=0} and such that 

( jVlp(0<rp(0 d|x(r))1/P ^icj|r(0| dfiW. 

Moreover if l < p ^ 2 and any of (1), (2), or (3) hold, then 

#(C(S),R*)==IIq(C(S),R*) 

and i/ T e # ( C ( S ) , R*), IIq(T)^K||T||. 

Using Theorem 1 we can now define a characteristic IP(R) for R a 
subspace of Li(ji) and Kp<oo. Indeed let 

Ip(R) = ttq(J) if 3 is q-absolutely summing, 

= +°° if J is not q-absolutely summing. 
Here, again, J is the natural mapping from L°°(JUL) onto R*. 

APPLICATIONS AND FACTS. Let R be a subspace of LI(JUL) and suppose 
K p ^ p ' < ° ° . Then: 

(a) Ip(R)^iIp<R). 
(b) If R is an i£2-space then I2(R)<+°°; moreover, if IP(R )<+<*> for some 

p ^ 2 , then R is an i£2-space. 
(c) If R and R are isomorphic subspaces of Li(fi) then 

Ip(R)^d(R,R)lp(R). 
(d) Ip(P)=+cc for all K p < 2 . (This last result was observed by S. Kwa-

pien.) 
(e) Given any subinterval A of [2,oo) containing 2, there is an infinite-

dimensional subspace R of Li[0,1] such that A ={p^2:Ip(R)<+<*>}. 
(f) Given any subinterval B of [1,2] containing 1, there is a subspace R 

of L^O, 1] such that B = { p ^ 2 : R imbeds in Lp}. 
In particular, (e) shows that for i£2-subspaces of Li[0,1], whether or not 
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Ip(R)<+°° for p > 2 depends on the manner in which R is imbedded in 
U O , 1]. 

THEOREM 2. Let l < p ^ 2 , l /p+ l /q = l , and R a subspace of U(v). Then 
either 

(i) there is a p'>p such that R imbeds in Lp(v); or 
(ii) for any e > 0 there is a subspace Y of R, an invertible operator T from Y 

onto lp, and a projection P from LF(v) onto Y such that | |T|| | |T_1 | |^ 
1+e and | |P | | ^ l+e ; 

(iii) reflexive quotients of C(S)-spaces are isomorphic to quotients of LpCfx)-
spaces for some p<+<*>. In particular (Grothendieck) complemented reflexive 
subspaces of C(S)-spaces are finite dimensional; and 

(iv) every subspace of Li[0,1] contains a subspace with an unconditional 
basis. 

Our next result is analogous to Theorem 2. 

THEOREM 3. Let Kp<2, and X a subspace of Lp(/x). The following are 
equivalent: 

(1) IP(X)<oo; 
(2) X contains no subspace isomorphic to lp ; 
(3) X imbeds in Lp'(|m) for some p'>p; 
(4) £(X,lp) = K(X,lp); and 
(5) 2(C(S),X*)=IIq(C(S),X*) where l /p+ l /q = l . 
Maurey [10.3] has generalized some of the above results as follows: for a 

Banach space E let IE={q>0| for any F, I I q (E ,F)=n p (E ,F) for some 
p e ( 0 , l ) } . 

THEOREM 4. For a Banach space E and q e [ l , 2 ) the following are 
equivalent: 

(a) q£lE; 
(b) for all 8>0 and for all n there are operators U, V with U e 2 ( I J , E), 

Ve£(E, IZ) such that | |U | |^ l+e, ||V||=1 and V°U is the inclusion map. 

As a special case we obtain 

COROLLARY 1. For a Banach space E the following are equivalent: 
(a) l £ l E ; and, 
(b) for each e>0 E is an 5^oo,i+e-space. 

APPLICATION. If E is a Banach space and if there is a q^l such that for 
any summable sequence (xn) in E, Z||xi||q<+00 then (0,q)<^IE. 

The converse of this statement is false, e.g. if q=2 then for l ^ p < 2 , LP(JUL) 

provides a counterexample. 

COROLLARY 2. For any Banach space E, IE is an open segment or is (0, 2]. 

The case (0,2) can occur, e.g. the Orlicz space L*([0,1], dt) where 
</>(0 = t2log(f+l). (See [10.4] for the appropriate definitions.) 
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THEOREM 5. If E is a Banach space and p, q satisfy 0<p<q and if for any 
F, IIq(E,F) = n p (E ,F ) then qeIE. 

We will continue with results on IE in the next section. 
Recently Nicole Tomczak has communicated still another application of 

the Rosenthal-Maurey work. 

THEOREM 6. If Kp<2 and E and F are Banach spaces such that 
2 ( E , F ) = n p ( E , F ) , i.e., (E,F) is p-trivial, then <£(E,F)=n0(E,F). 

This answers a problem raised in [10.5], 

11. The weakly nuclear norm and LUST. In studying the equality 
<£(^oo,X) = n2(^=o,X) Dubinsky, Pefczynski and Rosenthal introduced the 
important notion of local unconditional structure (LUST). This concept is a 
generalization of the notion of an unconditional basis and has proved quite 
useful recently in gaining insight into the structure of certain Banach spaces. 

First, suppose X is a Banach space with an unconditional basis. The 
unconditional basis constant of X is defined by 

x(X) = inf sup 
{ei} e ^ i L x j 

EiXiCi XidW 

where the supremum is taken over all choices of signs Si = ±l with 8i = l for 
all but finitely many i, and over all vectors £i Xid in E, and the infimum is 
over all possible unconditional bases {d} of E. 

A Banach space E has LUST if there is a family {E{} of finite dimensional 
spaces, each with unconditional basis constant 1, and a C ^ l such that for 
each finite dimensional subspace F<^E there is an i and an operator 
T:Ei-*E such that T(Ei)^F and ||e||^||Te||^C||e|| for eeEh and moreover, 
for each i there is an operator Si.Ei-^E with ||e||^||Sie||^C||e|| for eeEt. 

Following Gordon and Lewis [11.1] we give a definition closely related to 
LUST, in terms of a certain Banach ideal. 

An operator U:E-^F is weakly nuclear if U=£n=i /n®yn and the series is 
unconditionally convergent in the operator norm. The weakly nuclear norm 
T) is defined by _ 

rKU^in fe iOn^yn) 

where the infimum is over all possible representations of U. 

LEMMA. For any operator U, T](U)=inf ||a||x(X)||j8|| where the infimum is 
over all factorizations 

X 

where a eK(E, X), |8 e££(X, F) and X has an unconditional basis. 

From the lemma, it is clear that if dim E = n then T)(idE)^xCE)-
DEFINITION. Let E be a Banach space. If sup{ir)(jF):Fc:E, 

dimF<+o°}<+oo? we denote this constant by xu(E). Here /F denotes the 
inclusion mapping Fc-> E. 
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FACTS, (a) x t t (E)^x(E); 
(b) if dimE<+oo, Xu(E) = T1(idE); 
(c) if Xu(E)=+°o then E is not complemented in a space with an uncondi­

tional basis; 
(d) if F is a finite dimensional subspace of E and P:E-*F a projection, 

then xu(E)||P||i=xu(F). Clearly if E has LUST then Xu(E)<+oo. 
That LUST is a true generalization of the notion of an unconditional basis 

is immediate from the fact that any C(K)-space has LUST but, e.g., C[0, 1] 
does not have an unconditional basis. 

Before considering properties of spaces with LUST, we first give a 
fundamental result of Gordon and Lewis [11.1] which shows that not every 
Banach space has LUST. 

THEOREM 1. r\(2(lî, 12))^(2/3<7T)V". In particular X(& (11 tt^Kn112, and 
since i£(f£, '2) is complemented in K(l2,U), K(l2, h) does not have LUST. 

We should remark that the sequence {££(i2, f2)} was the first sequence of 
finite dimensional Banach spaces {En} shown to have the property that 
x(En)-*oc. 

There are numerous applications of the theorem. Indeed, this result 
settled many outstanding problems. We mention only two applications here. 
Others are given in §12. 

APPLICATIONS. (1) crp(H) does not have LUST if p ^ 2 ; (2) there is a 
compact, nonweakly nuclear operator on K(l2, h) (problem of Pietsch). 

The next result motivates the remainder of this section. 

THEOREM 2. If T G I I I ( E , F ) then V1(T)^TT1(T)XU(E). Thus, if E has 
LUST, IL(E, ')dTx(E9 •). 

We now define the class GL. Roughly speaking, a Banach space X is in 
the class GL if absolutely summing operators from X factor locally through 
/1. More precisely we make the following definition. 

DEFINITION. A Banach space X is in the class GL if and only if for any 
UeII i (X, Y) and for any finite dimensional subspace Xi, of X there are 
operators aiX^lï, /3:JÏ-H>Y, | |a | |=l , ||j3||^iri(U) such that j3a = U|Xl. 

THEOREM 3. If Y is a conjugate space and X e GL then 
IL(X, Y)<=ri(x, Y). 

Let us first list some spaces belonging to the class GL: 
(a) quotients of C(K)-spaces and subspaces of Li-spaces, 
(b) all Banach lattices, 
(c) any space with LUST. 
Aside from the spaces mentioned earlier which are not in the class GL, 

we remark that recently Pefczynski [11.2] has shown that there are "classi­
cal" Banach spaces which are not in the class GL. 

THEOREM 4. The disk algebra A(D), its dual space A*, and H°° are not in 
the class GL. 
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Here is an interesting application of this result: 
APPLICATION. Let n ^ 2 and let ft be a domain in Cn . Then A(D) is 

not isomorphic to A (ft). 
Recently, D. Lewis [11.3] has obtained the following result which shows 

the complete picture: 

THEOREM 5. Let [A, a ] be a Banach ideal such that A(l2, h) is not 
equivalent to the Hilbert-Schmidt operators. Then [A(l2, h), OL] does not have 
LUST Indeed, such an ideal is not in the class GL. 

We now discuss two papers, one by W. B. Johnson [11.4] and the other by 
Johnson, T. Figiel and L. Tzafriri [11.5]. 

We say that Y is finitely representable in X provided that for each e > 0 
and each finite dimensional subspace E of Y, there is a subspace F of X for 
which d(E, F ) ^ l + e ; and X is superreflexive [11.6], [11.7] if any Banach 
space which is finitely representable in X is reflexive. It is now known that X 
is superreflexive if and only if X admits an equivalent uniformly convex 
norm [11.8]. 

Our next result is a structural theorem for spaces with LUST. 

THEOREM 6. Suppose X has LUST. Then either 
(1) X is superreflexive, or 
(2) X=>E« with d(En, ll)^>\, or 
(3) X=>En with d(En, Jï)->1 and En is (1 + 1 In)-complemented in X 

To again emphasize the relationships between LUST and unconditional 
bases we mention a result of Tzafriri [11.9]: If X has an unconditional basis 
then X is an 5^p-space for some p = l , 2, or oo. 

There is an application of Theorem 6 to ideals. 
APPLICATION. Let X and Y be Banach spaces and suppose that X is a 

subspace of a space with LUST which contains no sequence (E„) with 
d(En, ll)-+l. Then 

X(X, Y ) ^ N ( X , Y) and K ( Y , X ) * N i ( Y , X ) . 

It is possible to characterize LUST using Banach lattices. 

THEOREM 7. A Banach space X has LUST if and only if there is a 
Banach lattice L, a \<+&>, and a subspace YofL, d(Y, X)<+oo such that for 
each finite dimensional subspace E of L there is an operator T= TE : E->Y for 
which T|Env = idEny and ||T|| ||T_1||^A. 

Thus, 

COROLLARY 1. A Banach space X has Xu(X)<+oo if and only if X** is 
complemented in a Banach lattice. Also X has LUST if and only if X** has 
LUST. 

COROLLARY 2. If X is complemented in a Banach lattice L and X is a 
Sen-space (=Sfoo-space) then X has LUST. 

We next recall that every subspace of Li[0,1] contains a subspace with an 
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unconditional basis. The next result shows that this remains true for certain 
Banach lattices. (See [11.10] for appropriate definitions.) 

THEOREM 8. Let L be a a -complete and a-order continuous Banach 
lattice. Then every subspace of L contains a subspace with an unconditional 
basis. 

COROLLARY 3. If X has LUST and X is not a espace, then every 
subspace of X contains a subspace with an unconditional basis. 

Finally, from [11.11] we obtain the following striking result: 

THEOREM 9. If X is a subspace of a Banach lattice which is not a 
espace, then X contains uniformly complemented En with sup d(En, iï)<+°° 
or sup d(En, i;)<+o°. 

Thus if X has LUST, X is either an S î-, S 2̂- or £foo-space. 

It is conjectured that any Banach space is an S î-, i?2- or ^ - space ! 

12. Parameters. In studying the geometry of Banach spaces, numerous 
parameters have been introduced. Perhaps the "projection constant" is the 
best known and most often studied among these parameters. Ideal norms 
provide a unified approach for attaching parameters to a Banach space. 
Indeed, if [A, a ] is a Banach ideal and E a Banach space, define 
a (E)=a( id E ) . 

Some of the most beautiful work done in recent years, utilizing ideal 
parameters to the fullest, has been done by Y. Gordon [12.1], [12.2], 
Gordon and Garling [12.3] and the superb papers of Gordon and Lewis 
[12.4], [12.5]. See also the related papers [12.6] of A. Pietsch. 

In this section we give a few of the numerous results. 
We first recall some definitions of asymmetry. For a study of the following 

concepts see, in addition to the papers above, [12.7]. 
Let E be a Banach space and G a multiplicative group of operators in 

£(E,E) and let G'={te£(E,E):tg = gt, geG}, GE={Je£(E,E):J an 
isometry}. We say E has enough symmetries if GÉ consists only of the scalar 
multiples of idE. 

The asymmetry constant S(E) is defined to be the infimum of A>0 for 
which there is a group G c ^ ( E , E ) of invertible, onto operators such that 

sup{||g|| : g e G}^\ and G' = {aidE}. 

It can be shown that, in fact, 

S(E) = inf{d(E, F); F has enough symmetries}. 

THEOREM 1. If dim E = n and [A, a ] is any Banach ideal then 

n^a(E)a\E)^n(S(E))2. 

In particular if E has enough symmetries a(E)aA(E)=n. 
Theorem 1 was generalized in [12.8]. Without going into technical details 

we state a special case of this generalization. 



996 J. R. RETHERFORD [November 

APPLICATION. For each injection map I:lp —> ln
q, aA(I)a(I_ 1)=n. Here p, 

q are arbitrary and a is any ideal norm. 
If E has a basis B={ei}, and cr is a finite permutation of the integers, 

define ae5E(E, E) by cr(ei) = etr(i). The diagonal asymmetry constant 8(B) is 
defined as sup^ ||o-|| and the diagonal asymmetry constant of E, 8(E), is 
defined as inf{ô(B):B a basis for E}. 

If e=(si) is a sequence of ± 1 , with Si = l except for a finite number of i 
then gee!£(E, E) is defined by ge(ei) = £iei and the coordinate asymmetry 
constant x(B) is given by supe ||ge||. Thus x(E)=inf{x(B) :B a basis for E} is 
the unconditional basis constant of E defined in §11. 

THEOREM 2. If dim E = n, [A, a ] a Banach ideal, then 

n^a (E)a A (E )^3n(8 (E) ) 3 . 

A similar result for the parameter x is a bit more difficult to state. 

THEOREM 3. Let dim E = n, B={ei}r=i a basis for E and [A, a] a Banach 
ideal. For Jc={l, • • • , n} let Ej = [eiiieJ] and a ^ m i n j m a x ^ ^ E i ) : I ^ J ) , 
card J=j}, j = l , • • • , n. Then 

a(E)^X(Byia;\ 
i = l 

APPLICATION. Let EcJ p ( l ^ p ^ 2 ) , d i m E = n . Let |ui(E)=min{S(E)2, 
3(Ô(E))3, 2(x(E))3}. Then Kojüt(E)Vn^7ri(E)^>/n where KG is the Grothen-
dieck constant. If 2<q<s<o° and E<^lq, dim E = n, then there is a constant 
Cq,s such that 

Vn^n1(E)^Cq,sjLL(E)n1-1/s. 

From these facts we obtain the result that for 

En = ln
p®ln

q, l^p*q=Soo, S(E„Hoo. 

We now give some slightly deeper results alluded to in our section on 
LUST. 

THEOREM 4. J^et Jn (respectively, I„) be the natural inclusion of li®li 
(respectively, ln

2êln
2) to ll&tt (^lf). Then (1) v,(Jn)-n and 7n(Jn)~n1/2; 

and, (2) vi(I„)~n3/2 and 7Ti(I„)~n (for two sequences (an) and (bn) with both 
(On/bn) and (bjan) bounded, we write (an)~(bn)). 

THEOREM 5. Let l / p + l / p ' = l and l/q + l/q' = l. Then X0^P') = 

X(lnp®ln
q)~nm if oo^q, p ^ 2 ; nl~llq if p ^ 2 i = q ^ l ; n1'1'» if qi=2i?pi=l; 

n3/2~1/p-1/q if 2^p, q^l. 

APPLICATIONS. (1) x(K®K)->œ', 
(2) lp<Ê>iq and lq>®lp> are not isomorphic to a complemented subspace of a 

space with unconditional basis (problem of Kwapien-Pelczynski); 
(3) the ideal IIi is not contained in the ideal I \ (problem of Grothen-

dieck); 
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(4) there is an operator T between certain Banach spaces E and F such 
that T ' e I I i ( F , E ' ) and TéLo(E,F) (problem of Grothendieck); and 

(5) there is an operator of the form UV with U', V e l l i yet UVgli 
(problem of Grothendieck). 

Concerning the weakly nuclear norm, D. R. Lewis [12.12] has recently 
obtained the following result. 

THEOREM 5. Every finite dimensional space E satisfies t )(E)^3ô(E). 

From this result it follows that there is a sequence of finite dimensional 
spaces whose asymmetry constants are one but whose diagonal symmetry 
constants tend to oo. 

APPLICATION. For each n, n1/2/18^8(2(lS, ln
2))rân1/2. 

We now discuss projection constants. The projection constant A(E) is 
defined to be the infimum of the numbers À such that for every Banach 
space Y=>E there is a linear projection P:Y^E, ||P||^A. In the language of 
ideals A(E)=L(E). Let cn=max{A(E):dim E = n}. It is known that 
cn^y/r\ [12.10]. 

Using ideal theory (which we suppress) it is possible to construct spaces 
with the largest known projection constant: Let E(a) , l < a < n , be the 
n-dimensional space of points x=(xi • • • xn) with 

||x|| = max] max \xi\, a~l £ \xi\ \. 

THEOREM 6. A(E(Vn)) = (n-A(IÏ) ) / (2>/n-X(IÎ) - l ) . In particular 
lim^oo A(E(V7i))/V^=(2-V2/^)-1. 

It turns out that c2e[t , V2). Actually Gordon [12.2] shows that 
c2<1.414211. 

We now turn to the ideals Ip,q and Jp,q. First we observe that when p = q, 
Jp.q=rp and ipp = vp. 

THEOREM 7. (a) If l ^ q ^ p ^ o o then iPq(/ï)=7rp(i2)7rq<^); 
(b) if l ^ q ^ p ^ o o then ipq(lï)'np(lï)Trq>(l'ï)=n; 
(c) if K q ^ p < + ° ° and H is an infinite dimensional Hubert space then 

U H ) = 2 . — - ' r ( P ± l ) , / P r ( ^ ) , / P ' . 

It turns out that i>p(H) = ipp(H) is the relative projection constant of 
Hubert space embedded isometrically in the Lp-spaces. 

Lacunary sequences in the Lp-spaces have been studied extensively. 
Indeed for any probability measure space (ft, 2 , JUL) if E is a closed subspace 
of Lp(fx,) (2^p<oo) isomorphic to a Hubert space, then there is a constant CE 

such that ||/||P^CE||/||2 for feE. Thus the following result is of some impor­
tance: 

THEOREM 8. (a) Let 2^p^o° ; then 

minmax||/||p/||/||2 = ip2(/2) 
H,H feH 
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where the minimum is taken over all subspaces HC=LP(JUL) isometric to ln
2 and 

probability measures JUL. 
(b) Let l ^ p ^ 2 ; then 

mmmax\\f\\2/\\f\\p = 7rP(ln2)/n1/2 

where the minimum ranges over all subspaces H<=LP(JUI) isometric to 12 
complemented with T>P(!S) norm projections, and probability measures JUL. 

In particular if o°>p^2, one obtains 

UW-2-[r(4i)/-»] ,*- ï î ï î | |, 
and for l ^ p ^ 2 , 

See [12.11] for proofs of the above. 
Theorem 5 admits a further application to projection constants: 
Let E be an n-dimensional Banach space. There is a constant À such that 

d(E,! ï )^AL(E' )ô(E) 3 . 
For a proof of this fact, see [12.12]. 
Finally we mention yet another result of Lewis [12.12]. 

THEOREM 9. For each odd integer n^5, there is an n-dimensional space 
En with x(En)>l and 8(En)=r](En)=l. 

We end this section with some further remarks on ideal parameters on 
Hilbert space. For proofs of these results, see [12.13]. Above we gave the 
values of ipq(Z3) and ipq(i2). To present further results of this nature we 
introduce the following ideas. For a an ideal norm and T:E^>F, let 
/a(T) = a(T<f>) where <f> :LI(JUI)—»E is a surjection. The norm /a is called the 
left injective envelop of a. Similarly the right injective envelop of a, a\, is 
defined by a\(T) = a(JT), where J:F—»Loo(|m) is any isometric embedding. 
The injective envelop of a is /a\=/(a\)=(/a)\. Analogously, the left projec­
tive envelop of a, \a, is defined by \a(T) = a(U) where jF:F—>F" is the 
canonical map, UT=jFT and J:E—»Loo(jm) is any isometric imbedding. 
Similarly, the right projective envelop of a, a/, is defined by a/(T) = a(W) 
where jFT=c/>"W and <f> :Li(fi)—»F is any surjection. The projective envelop 
of a is W = (\a)/ = \(a/). 

Forl^q^p^oo, T:E-+F, S:F^G, 

7TA(STY)^/UT)7Tq{S) and ^ ( ( S T ^ / M T ^ S ) . 

Using this result one can prove 

THEOREM 10. Let l^Éq^p^oo and H be a real Hilbert space. 
(a) If dim(H) = n, 

/urn=MisK-asr1, /t.(is)=iriOSK-osr1, 
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and 
/MtëJisn-ViOîKOS). 

(b) If dimH=oo and q > l , then 

M H W .- ,^r(E^I)-»r(<L±i)" 

and 

/i„(H) = 7r1/2qr m'v--
(c) If dimH=+oo, 

/7Tp(H)^2-177 (P+1) /2pr(£yi)"1 /P . 

We remark that geometrically /iqyih) is a lower bound for the ratio of the 
Lp-norm and Lq-norm on infinite dimensional subspaces of Lq (q^p<°°). 

Moreover, the constant /711(H), dimH=+oo, is just the Grothendieck 
constant KG. While the exact value of this constant is still not known, /TTP(H) 
can be calculated for values of p > l . 

FACTS. (1) For any n i^ l , /^(IJ^iriOî)»»-1 '2 and /7r2(J2)=VW2. 
(2) (Grothendieck). For any n ^ l , 

Also, 
/7?\a2n) = (7T1(/2

n))2n-1 and /yî\(l2) = ir/2. 

\72/(I5)=n(/7Î\(I5)r1. 

(3) Let Hi and H2 be two infinite dimensional Hubert spaces, l ^ q ^ p < o o 
and T G ^ ( H I , H 2 ) . Then 7rq(T)^/vP'(f2)7rp(T) and the constant lU'Ah) is the 
best possible. In particular ([12.14] and [12.15]), TTI(HU H 2 ) = 7 T P ( H I , H2) for 
all p ^ l . (See Application 1, §8.) 

13. Rademacher averages, type, cotype and stability. Let (r,) denote the 
Rademacher functions on [0, 1], i.e., r;(0=sign sin 2 , _1 27rf. One form of the 
classical Khinchine inequality asserts that for pe[l ,oo) there are constants 
Ap, Bp such that 

B, 
i/p a l l n | 2 \ 1/2 / fll n \p \ 

( | l<Vi(0| dt) s ( j j l a , i j ( t ) | dt) a l I n I 2 v 1/2 

for scalars ai • • • a„. 
By a result of Kahane [13.1] the above inequalities remain true for suitable 

constants Ap, Bp if the scalars are replaced by elements in an arbitrary 
Banach space E (and absolute values, of course, replaced by norms). 

DEFINITION. If (xi, • • • , x„) is a finite set of elements in a Banach space E 
then the expression (J|ExirJ(t)||pd01/p is called the pth Rademacher average 
of the sequence (xi, • • • , x„). 

We now present some fundamental work of Maurey [13.1]-[13.5] and 



1000 J. R. RETHERFORD [November 

Pisier [13.6]-[13.9]. (Let us mention that in this section we have been 
influenced by the lecture [13.10] of Pelczynski and the paper of Krivine 
[13.11].) 

For p G (0,2] let 

p^ = p if p < 2 , 

= oo if p = 2. 

An operator Te!£(E,F) is said to be type p-Rademacher if there is an 
rG(0, oo) and O 0 such that 

r rii k iir i l / r / k \l/] 

£ T(xn)rn(t)\\ dt\ ê C Z||xn||
p 

LJ ||n = l H J \n = l / 
An operator is said to be of type p-stable if there is a C > 0 and TG(0 , p*) 
such that 

[ ƒ III M0T(x„f dtj" ë C(l ||x„||TP. 

Here (fn) is a stable sequence of order p on [0,1] i.e., there are Gx>0 and 
p G (0, 2] such that J exp(i/n(t)) dt=exp(-cn |A|1/p). A space E is said to be of 
type p-Rademacher (type p-stable) if the identity mapping on E is of type 
p-Rademacher (resp. type p-stable). It is clear what this says about 
Rademacher averages and the Khinchine inequality. If pG[2,o°) then E is 
said to be of cofype p-Rademacher if (£r=i ||xi||p)1/p is dominated by some 
constant multiple of the 2-Rademacher average of the Xi • • • xn. We remark 
that Petezynski [13.10] calls spaces of type 2 (cotype 2) spaces with sub-
quadratic (superquadratic) Rademacher averages. We could use functions 
other than the Rademacher functions (e.g. the Gaussian averages) but we 
choose not to do this. Thus we will say type p for type p-Rademacher; 
similarly for cotype p. 

Finally a Banach space E is of infratype p, pe (0, 2], if there is a constant 
C such that for all xneE 

inf I I I e n x J ë C d l M T " . 
en=±l 

Some remarks relating these concepts are in order. 
(i) If T is of type p then T is of type q for any q^p. 
(ii) Subspaces and quotients of spaces of type p (resp. type p-stable) are 

of type p (type p-stable). 
(iii) Subspaces of spaces of cotype p are of cotype p, but cotype, in 

general, is not preserved by quotients. 
(iv) Lp(jn) is of cotype 2 for l ^ p ^ 2 and any measure JUL. 
(v) If p e [ l , 2 ] , Lp(jLt) is q-stable for qG(0, p). If pG[2,o°), Lp(jui) is 

q -stable for qG[0, 2]. 
(vi) If pG(0, 2] and E is p-stable then E is q-stable for qG(0, p]. 
(vii) If p G ( l , 2 ] and E is p-stable then E is of type p; the converse is 

false. Indeed lp is of type p but not p-stable. 
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(viii) If E is of type p, pe (0, 2], then E is q-stable for q<p. In particular, 
for p e ( 0 , 2], LP(JLL) is q-stable for qe(0, p) and if pe[2,o°), Lp(n) is 
q-stable for qe[0, 2]. 

(ix) If p e ( 0 , 2] and E is p-stable then E is q-stable for qe (0 , p]. 
(x) If E is of type p then E is of infratype p. 
(xi) If E is of type p then E' is of cotype p'. However, U is of cotype 2 

and r is not of type p for any p > l . 
(xii) If E is 1-stable then there is a p G [2, o°) such that both E and E' are 

of cotype p. 
We should mention that there are nontrivial examples of the various types 

of spaces discussed above. Part 2 below is due to N. Tomczak-Jaegermann 
[13-12]. For part 1, see [13.13]. 

THEOREM 1. (1) If p e [ l , 2] every subspace of an £p-space is of cotype 
2; i/ pe [2, o°) every subspace and quotient space of an !£p-space is of type 2. 

(2) If l ^ p ^ 2 , then crp(H) is of cotype 2; and, if 2^p<o°, <xp(H) is of type 
2. 

Of course, as we have seen, the spaces crp(H), p # 2 , lack LUST. 
We now consider the relationships of these concepts to ideal theory. 

THEOREM 2. (a) If E is of cotype 2 then 2eIE. In particular if E is an 
£\,\-space there is a constant Cp such that 7rp(T)^ÉÀQ7r2(T) for any Te 
£ ( E , F ) . If E is an 2 . . x-space and l ^ p ^ 2 , 2(E, Mjx) )c r 2 (E , MJUI)). 

(b) If F is of cotype 2 and Te IIq(E, F) for some q«x> then Te II2(E, F). 

A Banach space E has the Grothendieck property [13.10] if 
i£(c0, E) = 7T2(co, E). Pelczynski has conjectured that a Banach space E is of 
cotype 2 if and only if E has the Grothendieck property. The following 
results are known concerning this conjecture. 

THEOREM 3. If E is of cotype 2 then E has the Grothendieck property. 

The proof of this result rests on a profound result due to Maurey [13.14] 
concerning certain ideals. 

LEMMA. If X is of type 2 and Y of cotype 2 then £C(X, Y)c=r2(X, Y). 

For a wide class of spaces the conjecture is proved. 

THEOREM 4. If X has LUST then X is of cotype 2 if and only if X has the 
Grothendieck property. 

THEOREM 5. If X has LUST then X is of type 2 if and only if X' has the 
Grothendieck property and X' is not a Çbi-space. 

Another result related to ideals is the following 

PROPOSITION. Let p e ( 0 , 1). Then E is l-stable if and only if there is a 
C > 0 such that for any quotient G of E' and any Te£(G, F), F arbitrary, one 
has 7rp(T)^C7Ti(T). 

In this connection we remark that if p e [ l , 2 ) and E is of type p-stable, 
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then E is of type p+e-stable for some e in (0, 2 -p ) . Since a subspace E of 
Lp is of type p-stable if and only if lp<£E the above result generalizes the 
theorem of Rosenthal given in §9. 

B-CONVEXITY. In this subsection we consider the work of Pisier [13.8]. A 
Banach space E is B-(k, e)-convex (for e in [0,1]) provided for all Xi • • • xn 

in E 

inf Z eÀ = k( l~e ) sup ||xi||. 

Then E is B-convex if there is a k and e €[0 ,1] such that E is B-(k, e)-
convex. Let 

Àk(E) = infjÀ: inf | |£ eiXjl^Àk sup ||xi|||. 

If E is such that AN(E)=1/N1/P ' for some N>1 and p'e[l,oo), then E is of 
infratype q for all q<p ( l / p+ l /p ' = l) . 

THEOREM 6. A Banach space E is B-convex if and only if there is a 
p e ( l , 2 ] such that E is of infratype P. Moveover, 

AE = sup{p : E is of infratype p} = lim ° — 
n-*°° Log nkn(E) ' 

For a Banach space E let 

{ / f II n II2 \1/2 1 

M' : ( Z ri(t)Xi\\ dt) ^ /uu sup ||xi|| | 
\ J H 1 || / l ^ i^n J and 

v„(E) = i n f { v : ( | | Ç r i ( t ) x | 2 d t ) 1 / 2 S v ^ ( i | | x 1 | r ) 1 / 2 } . 

Here (rt(0) denotes the Rademacher functions. Clearly 

A n (E)^ j Li n (E)^v n (E)^ l 
and 

juu(E)^l/>/n, vn(E)^l/y/r\. 

Also, if E is such that vN(E)=l/N1 / p ' for some N > 1 and p ' e [2 , »), then E is 
of type q for any q<p. 

PROPOSITION. Let RE=sup{p:E is of type p}. Then 

n ,. Logn 
K E = l im 7 — r

 g
 / r , x - , . 

n^°oLog[nv„(E)J 

THEOREM 7. The /oJJowing statements about the Banach space E are 
equivalent: 

(1) E is not a Si-space; 
(2) E is of infratype p for some pe(l,<») (equivalently AE>1); 
(3) E is of type p for some p e (1,2] (equivalently R E <1) ; 
(4) E is of type \+e-stable for some e in (0,1]; and 
(5) E is o/ type 1-stable. 
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Finally, let us observe that if p e (0, 2) and there is a constant C such that 
for all n there are elements xï • • • Xn in E such that 

(ÊNP),/P^IIZ ^ïll^cÇloil 
for all scalars (aO, then E is not p-stable. Thus from results of R. C. James 
[13.15] we have 

THEOREM 8. Any uniformly convex space is of type p (type p-stable) for 
some p > l . 

Also, 

COROLLARY. A Banach space E is of type 1-stable if and only if E' is of 
type 1-stable. 

LATTICES. When a lattice structure is present, more information can be 
obtained. Thus let L be a Banach lattice, Veï£(L, F), q real. Then V is said 
to be of type ^q if there is a C such that 

(IllvMlT^clKlWTIk. 
Let l ^ p ^ q < o ° . Then V is said to be of type ^(p , q) if there is a C such that 
for Xi • • • x„ 6 L 

( I I | v * | | T « ë C | | d | * | T p l | i . . 

Let Kp,q(v) be the smallest C satisfying the above. 

THEOREM 9. For a Banach lattice L and Ve££(L, F) the following 
statements are equivalent: 

(1) for any positive operator Te2(C(K),L)9 VTellp,q(C(K),X) and 
T T M ( V T ) ^ C | | T | | ; and 

(2) Kp,q(V)^C. 

(Let us recall that an operator TeUp,q(E,F) if there is a constant C such 
that 

HIT*!!") S C ( s u p I | / ( x , ) | ' ) 

for arbitrary x 1 * * * X n G E. In this case inf C, C satisfying the above, is 
denoted by 7rp>q(T). We have suppressed a growing and interesting series of 
papers on p,q-summing operators!) 

COROLLARY, (a) Let l^p 0 <q. If Ve££(L, F) is of type ^(p0 , q) then V is 
also of type ^(p, q) for all p € [ l , q). 

(b) If V is of type ^(p, q) it is also of type ^ r for any r>q. 

We can now describe the lattices of cotype q, q>2. 

THEOREM 10. Let L be a Banach lattice, q>2 and Ve2E(L,F). The 
following are equivalent: 

(1) V e n M ( L , F ) ; 
(2) V is of type ^ (p , q) for any p e [1, q); 
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(3) V is of cotype q; and 
(4) there is a constant C such that if Xi • • • x„ are pairwise disjoint elements 

of L then Œ I | V x t ) 1 / q ^ C | | L x i 

Letting V be the identity on L yields the following result. 

THEOREM 11. For a Banach lattice L the following are equivalent: 
(1) L is of cotype 2; 
(2) L is of type ^ 2 ; and 
(3) ^ (C(K) ,L )=n 2 (C(K) ,L ) . 

We now give some dual results. An operator Ve£(E, L), L a Banach 
lattice, is of type ^(q, p), l^ ip^q<o°, if there is a constant C such that for 

IKZ|Vxl|")1"'||LSC(I||xi||'')
1"'. 

Clearly V is of type ^(q, p) if and only if V' is of type ^(q ' ,p ' ) . 

PROPOSITION. If an operator Ue!£(E,L) is of type ^ (2 ,p) and Ve 
££(L, F) is of some finite type, then VU is of type p. 

THEOREM 12. Let E be a Banach space such that E' is of cotype 2 and F a 
Banach space of cotype 2. If Ue!£(E,F) factors through a lattice, then U 
factors through a Hubert space. 

PROPOSITION. If L is a Banach lattice then either L is a if^-space, or there 
is a q<o° such that the identity on L is (1, q)-summing. 

Thus, 

THEOREM 13. Let X be a Banach space. The following are equivalent: 
(a) Co is not finitely representable in X; 
(b) the identity on X is (1, q)-summing; 
(c) there is an r<oo such that %(C(K), X) = nr(C(K), X); and 
(d) there is a q<°° such that X is of cotype q. 

THEOREM 14. Let E be a space with LUST and q>2. The following are 
equivalent: 

(a) E is of cotype q; (b) the identity on E is (1, q)-summing 
and (c) E has the Grothendieck property. 

COROLLARY. If E has LUST and c0 is not finitely representable in E then E 
is of type p if and only if E' is of cotype p'. 

14. Basis theory and ideals of operators on Hilbert space. Holub in a 
series of three papers [14.1]-[14.3] reexamined the fundamental work of 
Calkin, Schatten and Gohberg and Kreïn and showed that many problems 
concerning ideals of operators on Hilbert space could be restated (and 
solved) in the standard language of Schauder bases and Köthe sequence 
spaces. 

Of particular interest are the minimal ideals introduced by Schatten and 
the duals of such ideals. An ideal is minimal if it is the completion of l2®l2 
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with respect to some unitarily invariant cross norm. (See [14.2] and the 
references there for appropriate definitions.) If a denotes such a cross norm 
on 12®U it generates a symmetric gauge function i// on the finitely nonzero 
sequences by defining 

| | n | | 

i//(at, • • • , an) = E Oi<pi®iy 
Il » Hot 

for any orthonormal sets (<pt) and (&). If (JLL, if/) denotes the completion of 
the finitely nonzero sequences under if/ then the unit vectors (et) form a basis 
for (JUL, i//) which is similar to (<pi®ifc) in i2®«l2. 

While this correspondence was well known, Holub utilized properties of 
bases to settle several problems. We give a few of those results. A unitarily 
invariant cross norm is significant if every operator in (/2®« I2)* is compact. 

THEOREM 1. Let a be a unitarily invariant cross norm. The following are 
equivalent. 

(a) a is significant; 
(b) a is not equivalent to v (the greatest cross norm = nuclear norm); and 
(c) the basis (d) for (JUL, $) is weakly convergent to 0. 

THEOREM 2. If a and (JUL, I//) are as above then the basis (d) for (JLL, ty) is 
boundedly complete if and only if /2®« /2=(?2®«' U*. The basis is shrinking if 
and only if (J2®« U)* = l2®*' h. (Recall that a basis (xt) with coefficient 
functionals (ft) is boundedly complete if supn |E"=i aiXi||<+oo implies YA=I 0iXi 
converges, and is shrinking if (ƒ0 forms a basis for E'. 

Thus, if a is a unitarily invariant cross norm, (l2®« i2)* =/2<8>«'i2 if and only 
if (i2®a h)* is separable. 

Let us return to minimal ideals. Clearly an ideal is minimal if it contains 
no proper closed subspace which is a norm ideal in ££(H). An ideal is 
maximal if it is not itself a closed proper subspace of another norm ideal. If 
J is a maximal ideal then J, the closure of the finite rank operators under the 
ideal norm, is the unique minimal ideal contained in J. An ideal I such that 
Jczlczj is called intermediate. 

Consider the simplest pair of minimal-maximal ideals, i.e., ££(H) and 
K(H). The results of Calkin show that for this pair there is no intermediate 
norm ideal (indeed, no two-sided ideal). On the other hand Mitiagin [14.4] 
exhibited an intermediate ideal between a certain pair of minimal-maximal 
ideals. Holub showed the true picture with the following remarkable result. 

THEOREM 3. Let J—J be a minimal-maximal pair of norm ideals with 
J^i^(H) . Then there exists an intermediate ideal between J and J. 

The idea of the construction, as above, is to reduce the problem to 
problems concerning bases in Köthe sequence spaces. 

In our final section we will continue with applications of Banach space 
theory to ideal theory. 

15. Loose ends. In this final section we mention some work on the 
geometry of certain ideals. 
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The geometry of <rp(H)H a Hubert space has been studied by C. A. 
McCarthy [15.1] who proved, among other things, that the modulus of 
convexity of o-p(H) was the same as that of lp for Kp<oo. We have 
previously mentioned the work of N. Tomczak-Jaegermann [15.2] concerning 
Rademacher averages in crp(H). Holub [15.3], [15.4] has discussed the 
subspaces and metric geometry (e.g. extreme points and smooth points) of 
the trace class operators ai(H). 

More recently J. Arazy and J. Lindenstrauss [15.5] have discussed several 
linear topological properties of crp(H). They make some striking compari­
sons with known results concerning the structure of the Lp-spaces. 

Many years ago Schatten observed that K(H, H) is not a conjugate space. 
Of course, there are spaces (e.g. E = lp and F=lq, p>q>l) for which K(E, F) 
is reflexive. The following result of Saphar and Feder [15.6] gives a 
complete answer to the question raised by the above results. 

THEOREM 1. Let E and F be reflexive Banach spaces. Then K(E9F) is 
either reflexive or not conjugate. 

It would be of considerable interest to ascertain if the isomorphic version 
of the theorem is also valid. 

It is only fitting that we close with applications of Banach space theory to 
Banach ideals. We will mention only a profound result of Rosenthal [15.7] 
and two equally remarkable results of Johnson and Figiel [15.8] and 
Johnson [15.9]. 

THEOREM 2 (ROSENTHAL). A Banach space E contains h if and only if in 
E there is a uniformly bounded sequence (x„) such that no subsequence of (xn) 
is weakly Cauchy. 

A sequence (xn) in E is weakly Cauchy if (/(Xn)) is a convergent sequence 
for each FeE'. A weakly Cauchy sequence need not be weakly convergent, 
e.g. the unit vectors in c0. 

We now give a result of Pelczynski and Ovsepian [15.10] which connects 
this result with Banach ideals. First we make a definition: Let /UL be a 
probability measure on a compact Hausdorff space S. A subspace Z of C(S) 
is fat with respect to JUL if the natural injection 1̂  :Loo(jm)—»L2(fx) when 
restricted to Z is not a compact operator. 

THEOREM 3. For any Banach space E the following are equivalent: 
(a) E contains h; 
(b) there is a 2-absolutely summing operator from X onto l2; 
(c) n2(E, l2)\K(E, l2) * 0 ; and 
(d) for every isometric embedding j of E into C(S) there is a probability 

measure JLL on S such that j(E) is fat with respect to [x. 

The difficult step in the proof, (d)=>(a), follows from the Rosenthal 
theorem. 

The same reasoning used to prove Theorem 3 yields the following 
observation of Y. Gordon (private communication). 
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THEOREM 4. Let E be a Banach space. Then either 
(a) U^E, h)^K(E, l2); or 
(b) E contains a complemented copy of h; or 
(c) E lacks LUST. 

We now show how a construction of Figiel and Johnson [15.8] solves a 
problem of A. Pietsch [15.11]. We begin with an interesting example of 
Johnson [15.9]. Let (En) be a sequence of finite dimensional Banach spaces 
such that, for e > 0 and any finite dimensional Banach space F, there is an m 
such that d(Em, F ) < l + e . (A simple compactness argument yields the exis­
tence of such En.) Let E=((BEn)h. Then the conjugate of any separable 
Banach space is isomorphic to a complemented subspace of E'. Since there 
are separable conjugate spaces which fail the approximation property, E' 
fails the approximation property. However, it is not difficult to see that E 
has the approximation property. 

THEOREM 5 (FIGIEL AND JOHNSON). For each positive integer n there is an 
equivalent renorming of E, ||*||„, such that if Fn=(JE, ||-||„) then F„ does not 
have the bounded approximation property with constant less than n. 

APPLICATION. An operator T.E-+F is dualizable if T factors through a 
conjugate space: 

E I >F 

\ / 
X' 

The dualizable norm Ô(T) is defined by S(T)=inf ||A||||B||, the infimum 
taken over all such factorizations. If A denotes the class of all dualizable 
operators then [A, 8] is a Banach ideal. Clearly ||T||^Ô(T) for each T e A. A. 
Pietsch [15.11] has asked for examples of T e A with ||T||<S(T). 

THEOREM 6. For each integer n there is an operator T n eA such that 
||TB||=1 andô(Tn)^n. 

Indeed let T„ denote the identity on F„ of the Figiel-Johnson theorem. 
This operator meets the requirements. 

There are at least two other interesting applications of the Johnson-Figiel 
construction. It is clear from the definition that the adjoint of a nuclear 
operator is also nuclear. The results of [15.8] show that the converse is false! 

Also Pietsch [15.12] has defined p-integral operator via the following 
diagram: 

v 
i 

L=o(jLi)—!—•Lp(jx) 

with meanings as in §5. Again the Figiel-Johnson construction shows that 
the Pietsch definition and the Grothendieck definition given in §5 are not 
the same. 
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