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The purpose of this note is to exhibit a set of complex analytic moduli 
for the space of closed Riemann surfaces of genus g§^2, marked by a basis 
for the fundamental group. That one could find such moduli (i.e., biholo-
morphically embed the Teichmüller space of genus g in C*9~z) was proven 
by Bers [2]. His moduli are variational—they depend on a choice of base 
surface. Our moduli are in some sense intrinsic, similar to the (real) 
moduli of Fenchel-Nielsen [4] and Keen [5]. In fact our moduli should be 
regarded as the complex analogue of the Fenchel-Nielsen and Keen moduli. 
(The geometric relationship between these different moduli is clear, and 
they are real-analytically equivalent.) 

The actual expressions for the moduli given below involve multipli­
cative constants and square roots. These normalizations serve two pur­
poses. First, the moduli space is contained in a product of half-planes. 
Second, with these normalizations, the group of translations 

(1) z-+z + n9 n = (/*!,- • • , H3a_3) e Z3^~3, 

is a subgroup of the modular group; i.e., two points of the space of moduli 
which are identified under (1) correspond to the same Riemann surface 
with different markings. 

The moduli occur as moduli of a set of generators of a Kleinian group; 
these are defined by traces of loxodromic elements and cross-ratios of 
fixed points of parabolic elements. Each of the 3g—3 coordinates is 
determined by a subgroup of the Kleinian group; using this one sees that 
each of the coordinates can be identified, in a natural way, with the 
modulus of a torus. 

In this note we present proofs only in very broad outline—details will 
appear elsewhere. 

1. Let S be a closed Riemann surface of genus g^2 , and let Al9 Bl9 

• • • , Ag9 Bg be a canonical homotopy basis on S (we regard Al9 • • • , 
Bg as being both a set of loops on S and as a set of generators for ^(S)). 
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We pick out the following set of 3g—3 elements of ^ ( 5 ) : 
Bi9 i = l, • • • ,g; 
C~[Bi9 A^BiA^Aj1, i = l, • • • 9g; 
Di=Ttiil[Bi9 A^Bi+1 • • • AT1, i = l, • • • , g -3 . 
For g=2, C1=C2

1 and our set consists of ^ l 5 i?2 and Cx. 
If we do not require our loops to pass through a common base point, 

then the above elements are a maximal set of 3g—3 homotopically distinct 
simple disjoint loops on 5. These loops are shown in Figure 1 for the case 
S=5. 

FIGURE 1 

We remark that our particular moduli depend on this particular choice 
of 3g—3 homotopically distinct simple disjoint loops. We could have 
chosen a different set of 3g—3 loops and obtained a different set of moduli 
with the same properties. 

We want to describe an isomorphism from TT^S) onto a Kleinian group 
without reference to variations from a given group. For fixed g^2 , we 
set Kg=(PSL(2; C)fa factored by the relations 

(*i> • • •, *29) ~ (yxijr1, • • •, yx^y1), y e PSL(2; C). 

THEOREM 1. Let S be a Riemann surface of genus g^29 with a canonical 
homotopy basis Al9 • • • , Bg. There is a unique point r e Kg9 represented as 
(al9 bl9 - • • , ag9 bg) satisfying the following properties. 

(i) The group G generated by al9 • • • , bg is Kleinian and has a simply 
connected invariant component A of its region of discontinuity. 

(ii) G acts freely on A, and A/G=S. 
(iii) There are base points o G S and~o e A, lying over o, so that the 

natural isomorphism 771(S', Ó)-+G maps Aç-*ai9 Bç+bi9 / = 1 , • • * , g. 
(iv) The following elements of G are parabolic: 

bi9 i = 1, • • •, g, 
(*) ^ = [bi9 at] = bfijb^aj1, i = 1, • • •, g, 
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The proof of Theorem 1 involves a geometric construction [7], Bers' 
technique of variation of parameters using quasiconformal mappings [3], 
and Marden's isomorphism theorem [6]. 

We remark that the elements bi9 c{ and dt correspond to the loops Bi9 

Ci and D{ shown in Figure 1. 
Theorem 1 can be regarded as giving a bijective mapping O from the 

Teichmüller space of genus g9 starting with some base surface, onto Kr 

This map O is actually defined in terms of quasiconformal mappings, and 
so O is holomorphic (see Ahlfors-Bers [1]). 

2. We next describe parameters for Kg. Using Theorem 1, each point 
r e Kg defines a Kleinian group GT9 up to conjugation. If g is an element of 
GT9 then tr(g), the trace of g is a well-defined function on Kg, up to multi­
plication by —1. Similarly if gl9 g29 g3, g4 are parabolic elements of GT9 

with distinct fixed points xl9 • • • , x4, respectively, then 

/ Xi X4 X3 X2 

cr(gi. ga; g„ g4) = 
X-^ X2 X3 X^ 

is a well-defined function on Kg. 

THEOREM 2 (GENERAL CASE). Let g ^ 5 . The functions 

ft = (i/2)tr ai9 i = 1, • • • , g, 

Yx = icr1/2(b1? a^cç1; dl9 c2), 

y2 = fcr1/2(b2, ûiabgûi"1; clf dx), 

y . = |cr1/2(^., afij1; d<_2, d w ) , i = 3, • • • , g - 2, 

) V i = WXbg-i, ag_xbg_xa-\\ dg_Z9 cg)9 

79 = \™X,\bg9 agbga~u
9 cg_l9 dg_z)9 

"I = = ÏÏC1* (C2> Cll d29 C3), 

Ô. = |cr1/2(c i+1, i M ; d m , c<+2), i = 2, • • •, g - 4, 

" f l r -3 = = 2 C r (Cfir-2? "e r -4? C0> Cg-l) 

can all be chosen to have positive imaginary part in Kg. With this choice, 
these (3g—3) functions yield a biholomorphic embedding of Kg as an open 
set in CZ9-Z. 

There are versions of Theorem 2 for genera 2, 3 and 4. The statement of 
the theorem is the same, only the parameters are different. We simply 
list below the correct parameters for these lower genera. 

In all cases we have ft, / = 1 , • • • , g9 as above. 
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In genus 2, there is just 

Yi = icrl/20i> fliMr\ b29 ajb^ai1). 

In genus 3, we have 

Yi = W'XK « IMF 1 ; c3, c2), 

y2 = |cr1/2(fc2, flaMîT1; Ci> c3)? 

y3 = icr1/2(fe3, aa&afla1; c2, Cx). 

In genus 4, the ŷ  are as in the general case and 

ai = |cr1/2(c2, Ci;c4, c3). 

3. Each of the parameters ft corresponds naturally to Bi9 y{ to Ci9 and 
^ to A-

The cross-ratios used to obtain the yi and d{ are obtained geometrically 
as follows. In Figure 1, C, is "adjacent" to Bi9 Dt-_2 and D ^ . If we cut the 
surface along these curves we get a sphere with four holes—these holes 
correspond to the four elements that appear in the cross-ratio defining yi# 

The cross-ratios appearing in ot are obtained in the same manner. 
The four elements bi9 ajb^1, dt_2 and di_x appearing in the definition of 

y€ generate a subgroup H of G>. This subgroup has a simply-connected 
invariant component A(//) of its set of discontinuity. One easily sees that 
H is uniquely determined, up to conjugation, by yi9 and that &(H)/H is a 
4-times punctured sphere. Of course //comes with a set of generators, so 
yi locates a point in the Teichmüller space of 4-times punctured spheres. 
There is, of course, a canonical bijection between this Teichmüller space 
and the Teichmüller space of tori. We can holomorphically identify yi with 
the modulus of a torus {yi has positive imaginary part, but this identi­
fication is almost undoubtedly not the identity). 

Exactly as above, each d{ can be identified with the modulus of a torus. 
The parameters ft are more direct. The subgroup H of G generated by 

di and bi has a simply connected invariant component A(77); here k{H)jH 
is a punctured torus. Since every torus is homogeneous, we can holo­
morphically identify ft with the modulus of a torus (again this identi­
fication is almost undoubtedly not the identity). 

4. For each of the loops Bi9 Ci and Di9 there is a cyclic subgroup of the 
modular group generated by the Dehn twist or screw map about that loop. 
These maps can be realized in a very simple form in our parameter space. 
The twist about Bt corresponds to the translation ft->ft+l; the twist 
about Ci corresponds to the translation yl->yi+\\ and the twist about Z>, 
corresponds to the translation e^—H^+1. 
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To sum up, we have a biholomorphic embedding of the Teichmüller 
space of genus g in C3flr~~3; the image is contained in a product of half-
planes—it also contains a product of half-planes ; the image is invariant 
under the translation group (1) and this group of translations is a subgroup 
of the modular group. 

REFERENCES 

1. L. Ahlfors and L. Bers, Riemann9 s mapping theorem for variable metrics, Ann. of 
Math. (2) 72 (1960), 385-404. MR 22 #5813. 

2. L. Bers, On moduli of Riemann surfaces (mimeographed lecture notes), Eidgenos-
sische Technische Hochschule, Zurich, 1964. 

3. , Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 
215-228. MR 24 #A2022. 

4. W. Fenchel and J. Nielsen, Discontinuous groups of non-Euclidean motions (un­
published manuscript). 

5. L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math. (2) 84 (1966), 404-
420. MR 34 #2859. 

6. A. Marden, The geometry of finitely generated Kleinian groups, Ann. of Math, (to 
appear). 

7. B. Maskit, On boundaries of Teichmüller spaces and on Kleinian groups. II, Ann. of 
Math. (2) 91 (1970), 607-639. MR 45 #7045. 

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT STONY BROOK, 

STONY BROOK, NEW YORK 11790 


