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DEFINITIONS AND NOTATION. (1) m and n denote positive integers. 
(2) Hk denotes Hausdorff k dimensional measure in Rm+n for 

k = tn, m — \. 
(3) 6^ + n denotes the Grassmann manifold of unoriented m plane 

directions in Rm+n (which can be regarded as the space of all unori­
ented m planes through the origin in Rm+n). 

(4) A C(Jc) integrand [real analytic integrand] is a function [real 
analytic function] F: G^rn-^RC\{t: / > 0 } whose partial derivatives 
up to order k exist and are continuous. Here k denotes either a positive 
integer or a>} 

(5) A surface S is a compact m-rectifiable subset of Rm+n. If S is a 
surface, then, for Hm almost all x £ 5 , S has an approximate tangent 
m plane direction at x, denoted S(x). 

(6) The integral of an integrand F over a surface S is defined to be 

F(S) = f F(S(x))dHmx. 
J xes 

(7) A boundary B is a compact (m — l)~rectifiable subset of Rm+n 

with Hm~l(B)<«>. 
(8) G denotes the category of all finitely generated abelian groups. 

If B is a boundary, 5 is a surface, and GÇEG, we denote by Hm~i(B; G) 
and Hm-i(BKJS\ G) the m —1 dimensional Vietoris homology groups 
of B and BKJS, respectively, with coefficients in G. If crÇ:Hm-~i(B; G) 
we say that S spans a if and only if i*(a) = 0 where 

u: Hm^(B; G) -> Hm^(B U 5 ; G) 

is induced by the inclusion i: B—^B^S. 

1 This research was supported in part by grant NSF-GP 2425 from the National 
Science Foundation. 

2 The existence and regularity results of this paper have recently been extended to 
apply to integrands F: Rm+nXGm

m+n~-*R which are elliptic on each tangent space. 
For such integrands one sets F(S) ~JF(x, S(x))d(HmS)x. 
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Elliptic integrands. Suppose G E G and D is a closed m disk in 
Rm+n. Let dD denote the boundary m — \ sphere of D and let a 
£ifm__i(<5J9 ; G) — {0}. As an hypothesis on our integrand F we need to 
require that the unique surface which spans a and minimizes F be D 
itself, and that this be true in a uniform way. More precisely, we call 
the integrand F elliptic with respect to G if and only if there exists a 
positive number c such that if D is any closed m disk in Rm+n, 
crÇzHm-i(dD; G) — {O}, and 5 is a surface which spans <r, then 

(*) F(5) - F(D) è c[Hm(S) - Hm(D)]. 

The ellipticity of F with respect to any G (EG is equivalent to the 
uniform convexity of F if w = l, and (*) is implied by the uniform 
convexity of F for arbitrary n when S is orientable and has dD as its 
oriented boundary. The class of integrands F which are elliptic with 
respect to all G G G forms a convex set in the space of all functions 
G%+n—*R which set, in particular, contains a neighborhood of the m 
area integrand (i.e. f s l ) in the C(2) topology. Also if L: R™+*-*R™+n 

is a nonsingular linear mapping, then L§F is elliptic with respect to 
G E G if and only if F is. 

Regularity of surfaces. Let 5 be a surface and k be either a positive 
integer or oo. We say that S is C(k) regular almost everywhere [real an­
alytic almost everywhere] if and only if there is a compact subset T 
of 5 with Hm(T)=0 such that S^T is a k times continuously dif­
ferent ia te [real analytic] m dimensional submanifold of Rm+n. 

Examples show that, except possibly for n = 1 and G having the 
integers modulo two as a direct summand, a surface S minimizing 
an elliptic integrand may have singularities of dimension m — \. 
Present techniques are not adequate to show that the singular set 
T~B (for a suitable boundary B) is regular or, even locally, of 
finite Hm~1 measure. 

THEOREM 1. Let k^4 be either a positive integer or oo and GÇiG. 
Suppose F is a C{k) integrand [real analytic integrand] which is elliptic 
with respect to G, B is a boundary, and <rÇzHm-i(B; G). Then there exists 
a surface S with the following properties: 

(1) 5 spans a. 
(2) F(S) ^F(T) whenever T is a surface which spans a. 
(3) S is C(A~1} regular almost everywhere [real analytic almost every­

where]. 

REMARK. For some applications one wishes to know that, for a pre­
scribed boundary By there exists among all surfaces having B as 
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boundary in a topologically non trivial way (either locally or globally) 
a surface minimizing the integral of an integrand. Figure 1.6 in 
[A2] shows an example due to J. F. Adams of a soap film which, al­
though locally minimizing area, nevertheless retracts onto its bound­
ary. In the following sections we indicate some compactness and regu­
larity properties of surfaces which minimize the integral of an elliptic 
integrand in a topological sense weaker than that required in The­
orem 1. 

DEFINITIONS. (1) Suppose S is a surface and B is a boundary. We 
call T a comparison surface for S with respect to B if and only if T is the 
image of S under a Lipschitzian deformation which keeps B fixed. 
Clearly if S spans (r6J7m_i(5; G) for some G £ G and T is a compari­
son surface for S with respect to By then T also spans o\ 

(2) Suppose 5 is a surface, B is a boundary, F is an integrand, and 
U= {Ui, C/2, Uz, • • • } is an open covering of Rm+n. We say that S is 
F minimal with respect to B and U if and only if F(S) ^ F(T) whenever 
T is a comparison surface for 5 and there is a positive integer j such 
that S ~ Uj = T~ Uj. We say that 5 is F minimal with respect to B if 
and only if S is F minimal with respect to B and {Rm+n}. 

(3) We call an integrand F elliptic (without reference to a coeffi­
cient group) if and only if there exists a positive number c such that 

F(S) - F(D) ^ c[H™(S) - Hm(D)] 

whenever D is an m disk in Rm+n and S is a surface which cannot be 
deformed into dD by a Lipschitzian map leaving 3D fixed. As before, 
the ellipticity of F is equivalent to the uniform convexity of F if 
n = l, and the class of elliptic integrands forms a convex set in the 
space of all functions G^+n—>R which set, in particular, contains a 
neighborhood of the m area integrand in the C(2) topology. Also if 
j r . Rm+n__+]zm+n j s a nonsingular linear mapping, then L$F is elliptic 
if and only if F is. 

(4) Each surface 5 is naturally a measure | s | on Rm+nXGZ+n 

(called the integral varifold associated with S) given by \S\ 
=<l>#(Hmr\S) where <j>: S-+Rm+nXG%+n sends Hm almost all x£S to 
(x, S(x)). The weak topology on the space of all Radon measures on 
Rm+nXGn+n induces the weak topology on the space of all surfaces. 

THEOREM 2. Let &^4 be either a positive integer or oo. Suppose F is 
a C(k) integrand [real analytic integrand] which is elliptic, B is a bound­
ary, U is an open covering of jRm+n, and 0 <JJL < M < oo. 

(1) If S is a surface which is F minimal with respect to B and U, 
then S is C^k~l) regular almost everywhere [real analytic almost every­
where}. 
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(2) The space of all surfaces S which are F minimal with respect to B 
and U and for which F(S) ^M is compact in the weak topology and F 
is a continuous function on this space. 

(3) As a consequence of (1) and (2) we see that if F(T) ^fi whenever 
T is an F minimal surface with respect to B and U and F(T)>0, then 
there exists a surface S which is F minimal with respect to B and U and 
hence C(k~l) regular almost everywhere [real analytic almost everywhere] 
such that F(S) g F(T) whenever F(T)>0 and T is an F minimal surface 
with respect to B and U. 

REMARK. Conditions sufficient to imply a positive lower bound to 
the positive numbers F(T) for surfaces T which are F minimal with 
respect to B and U often arise in individual problems. One sufficient 
condition is that B be a Lipschitz neighborhood retract (which would 
be true if B were a compact differentiate m — 1 dimensional submani-
fold of Rm+n) and U= {R™+n}. See [Al, 11.1(4, 5), 11.3, 11.4, 11.5] 
[A2, Figures 1-6, 1-9, 4-7] . 

REMARK. In case G is the group of integers, n = l, and F^=l, the 
regularity almost everywhere of S minimizing F can be inferred from 
the work of E. De Giorgi [D] (see also M. Miranda [M]). In case G 
is a finite abelian group and F^ 1, the existence and regularity almost 
everywhere of 5 spanning a and minimizing F as in Theorem 1 was 
proved by the late E. R. Reifenberg [Rl, R2, R3] and extended to 
manifolds by C. B. Morrey [MO]. I t does not seem possible to gen­
eralize the arguments of De Giorgi or of Reifenberg to general elliptic 
integrands. In particular, the orthogonal invariance of the m area 
integrand F^l is essential for the applicability of Reifenberg's 
methods. 

The present results are geometrically and measure theoretically 
based on the integral currents of H. Fédérer and W. H. Fleming [FF], 
the flat chains of Fleming [F], and integral var if olds [Al]. Basic an­
alytic estimates for first derivatives of F minimal surfaces come from 
bounds on the first and second derivatives of distribution solutions 
to systems of second order linear elliptic partial differential equations 
with constant coefficients, for help with which I am indebted to 
L. Hörmander. Higher differentiability of the surfaces follows from 
the work of C. B. Morrey [MO]. 
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For N= 1, 2, 3, • • the polydisc UN consists of all z — (z\, • • • , ZN) 
in the space CN of N complex variables whose coordinates satisfy 
\ZJ\ < 1 for 7 = 1, • • • , N. We write U for U1. The distinguished 
boundary of UN is the torus TN denned by |*y| = 1 (l^j^N). The 
zero-set of a complex function ƒ defined in UN is the set Z(f) of all 
zEUN a t which ƒ(*)=(). We call a set EQUN a zero-set in UN if 
E = Z(f) for some ƒ which is holomorphic in UN. The main result of 
this note gives a sufficient condition for zero-sets of bounded functions. 

THEOREM 1. If Eis a zero-set in UN and if no point of TN is a limit 
point of E, then there is a bounded holomorphic function F in UN such 
that Z(F)=E. 

[The term "limit point" refers of course to the topology induced 
on CN by the euclidean metr ic] 

For N=l this is utterly trivial since the hypothesis then forces 
1 Research sponsored by the Air Force Office of Scientific Research, Office of 

Aerospace Research, United States Air Force, under AFOSR Grant No. 1160-66, and 
by the Wisconsin Alumni Research Foundation. 


