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of congruent or symmetric divisions begin with 1, 1, 2, 3, 6, 9, 
24, • • • . The divisions themselves may be classified, for a fixed point, 
according to the next point in the same subset. We obtain once more 
the recursion formula leading to Cn^Gn.n/fa+l). 
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In this note it is proved that the resultants of m forms, of a suffi­
ciently high degree, in n variables are independent functions of the 
coefficients of the forms. The proof demands some lemmas on ir­
reducible manifolds, and on monomial manifolds. A monomial mani­
fold is defined by equalities between monomials, that is, products of 
powers of the coordinates. 

In the evaluation of the number of independent hypersurface cross 
ratios and generalized intersections given in two other notes1 I have 
assumed the above theorem to be true for 2n — \ ^m^2n+l and, in 
the case of intersections, where one of the forms is supposed to be 
linear for In — l^m^ln. 

The resultant r—r{a\, • • • , an) of n forms au of positive degree dk 
in n variables Xh within an (algebraically) closed field is uniquely 
defined as an irreducible polynomial in the coefficients of the forms 
such that r = 1 if ah is a power of Xh and r = 0 if and only if values Xk, 
not all of them 0, exist for which all afc = 0. The resultant is almost 
symmetric, that is, it becomes r or —r if the forms are permuted. The 
resultant is multiplicative in the sense that if a form au is a product 
of forms, then r is the product of the resultants obtained by replacing 
ah by each of its factors.2 

THEOREM 1. The Cm,n resultants that can be formed of m forms 
a\, • • • , am in n variables are independent functions of the coefficients 
of the forms, provided that the degree dk of ah exceeds a bound depending 
only on k and n. 

Received by the editors September 16, 1946. 
1 The hypersurface cross ratio, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 976-984, 

§3.6, and Relations between hypersurface cross ratios, and a combinatorial formula for 
partitions of a polygon, for permanent preponderance, and for non-associative products, 
Bull. Amer. Math. Soc. vol. 54 (1948) pp. 352-360. 

2 All these properties of the resultant are well known. Cf. also §1.1 of the before 
mentioned note The hypersurface cross ratio. 
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We shall prove the theorem for dk*z C*-i,»-i. Thus di, • • • , dn are 
arbitrary. 

We have to show that there is no algebraic relation fulfilled by 
every system of Cm,n values attained by the resultants of m forms 
of the given degrees. We say more shortly that almost every system 
is attained: generally, a subset P of a set Q will be said to include 
almost every element of Q if every algebraic relation fulfilled by all 
elements of P is also fulfilled by all elements of Q.3 

As forms, we choose products of linear forms, the first n of which 
shall be powers. That for such products almost every system of values 
of the resultants is attained is trivial if m = n or if n = l and will be 
supposed true for m — 1 if m>n>\. 

Choose, accordingly, ai, • • • , am-i so that the 6 = Cm-i,n resultants 
formed by these products of linear forms have the desired values; 
these values gi, • • • , g& are restricted by the possibility of the choice 
and are, furthermore, required to be different from 0. Still qu • • • , g& 
can be almost every system. There remain c = Cm-i,n-i>l resultants 
ru • • • , re involving am; they are the coordinates of a point r in the 
affine space S of c dimensions. We show that: 

(1) The points r corresponding to all am of degree one, and to the 
chosen au • • • , am-u form a set (r) "defining" (see below) an ir­
reducible algebraic manifold R that contains, for every fe = l, • • • , c, 
a point with r* = 0 and no other zero coordinate. 

(2) For every such set (r), almost every point of 5 is a product of 
c points (or any given number greater than c of points) of (r). 

Here the product of two points ru • • • , rc and si, • • • > sc is the 
point riSu • • • , rcsc. From (1) and (2) follows by the multiplicative 
property of the resultant the existence, for any given dm^cf and for 
almost every system of numbers fi, • • • , rc, of a product am of dm 

linear forms for which the values of the resultants are ri, • • • , rc. 
Now if there should hold a relation between the values gi, • • • , g&, 
ru • • • , re attained, then for every gi, • • • , qb there would be a rela­
tion between ri, • « • , rc, except for those gi, • • • , g* for which the 
latter relation becomes 0 = 0; but that would give one or more rela­
tions between gx, • • • , g6. 

8 Not, as usual in algebraic geometry, if the complementary set Q—P has less 
dimensions than Q, which, for an irreducible manifold Q, is a stronger condition 
(presumably also fulfilled in our case). By the present definition P may even, for 
irreducible Q and if points with coordinates outside the given field are admitted, be 
a single point (a "general point" of Q). Compare the three further definitions of 
"almost every" : except a set of zero measure, or density, or except a finite set. 

Not every system of values need be attained by a system of independent poly­
nomials, for example (x, xy) is never (0, 1). 
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To prove {1) we remark that since no resultant of n forms from 
among #i, • • • , aw_i vanishes, no point Xi, • • • , xn of the projective 
(» — l)-space annihilates more than n — 1 of these forms. Hence n — 1 
forms cannot vanish for all the points of a straight line; therefore, 
being products of linear forms, they vanish for the points of a finite 
set Sk» Clearly no two sets Sj and Sk have a point in common. Hence 
there exists, for any Sk, a hyperplane am = 0 through one of its points 
that does not pass through any point of the other sets, which is 
equivalent to saying that r& = 0 for the given k and only for that k. 

The irreducibility of the algebraic manifold R defined by the set 
(r) follows from (3), taking Q as the affine w-space itself.4 

The smallest algebraic manifold R containing all points of a given 
set (r) is called the manifold defined by (r) ; obviously, almost every 
point of R belongs to (r).6 In particular, if (r) consists of all the points 
whose coordinates are the values of c given polynomials/i, • • • , fc in 
the coordinates 6i, • • • , bn of a point of a given manifold Q of the 
affine w-space, and if a set (q) contains almost every point of Q then, 
to the points of (q), there still corresponds a set containing almost 
every point of R. For any additional relation for the points of R can 
be read as a relation restricting the points of Q. 

(3) If Q is irreducible, then R is irreducible too.6 

For assume a polynomial F(ri, • • • , rc) to vanish for every point 
of R. Then G = F(fh • • • , fc) = 0 for every point of Q. If F is a prod­
uct F1F2, then also G = GiG2, and either Gi or G2, say Gi, vanishes for 
every point of Q. Hence Fi — 0 for every point of (r) and therefore 
also for every point of R. 

4 It can even be shown that (r) and R are identical. Indeed, every resultant 
fk is a form ƒ*, of positive degree gk in the coefficients bi, • • • , bn of the linear form 
a™. Instead of fk—fk we write homogeneously rQfk=rkKk. This is an algebraic cor­
respondence between the whole projective w-space and an algebraic manifold of the 
projective c-space, the equations of which are obtained by eliminating b0, • • • , bn 

from the equations of the correspondence. This manifold consists of the (c — l)-dimen-
sional part fo^O, corresponding to all systems with 60=0, and of a manifold R. Now 
all ƒk=0 only if &i» • • • =&w=0; otherwise there would exist a hyperplane through 
one point at least of each set Sk, whereas the n sets Sk denned by any n — 1 from among 
the forms « ! , • • • , a„, which are powers of linear forms, are single points not on a 
common hyperplane. Hence to every point of R with ro^O there corresponds a system 
bo, • • • , bn with ôo^O; that is, the nonhomogeneous coordinates of the point are 
values attained by the resultants belonging to a linear form am. 

6 By two theorems of Hubert, every algebraic manifold in a space over a closed 
field may be given either by a finite system of equations or by all its points with co­
ordinates within the field. 

6 The example/i=5i, f%~bibi shows again that not every point of R is necessarily 
a point of (r). Other examples are given in footnote 7. 
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We shall use the symbol (Q, R) for the set of all points (gi, • • • , g&, 
fi, • • • f rc) with (gi, • • • , g&) in a given set Q of &-space and 
(fu • • • , rc) in a given set i? of c-space. Evidently, if Q and i? are 
algebraic manifolds, then ((?, i?) is also an algebraic manifold. 

If Q is defined by (g) and R by (r), then ((g), (r)) defines (Ç, R). 
For if F(g, r) =0 for every point of (g) and every point of (r), and if g 
is a point of (g) (here we admit only points with coordinates in the 
given field), then F (g, r) =0 may be considered as an equation for r; 
since it holds for every point of (r), it holds also for every point of R. 
Now if r is a point of R, then F(q, r) = 0 for every point of (g), hence 
also for every point of Q, 

(4) If Q and R are irreducible, then (Q, R) is also irreducible. 
For let F(q, r) = 0 for all points of ((?, R). For every g in Q this is 

an equation for r; all these equations together are fulfilled by the 
points of an algebraic manifold E of c-space, which contains i?. If 
F=FiF2, then every point of E must, because of the irreducibility of 
Q, belong to at least one of Ei and E2 (defined similarly). Since R is 
irreducible and contained in E, R is contained in at least one of E\ 
and E2, Q.E.D. 

The product QR of two algebraic manifolds Q and R of the same 
affine space is the manifold "defined" by the points qr with q in Q 
and r in R.7 Now QR is obtained from (Q, R) by the formation of 
products, that is, of special polynomials: hence by (4) and (3) we see 
that: 

If Q and R are irreducible, then QR is irreducible,* 
and that QR can be defined already by almost every point of Q and of 
R. In particular, if Q is a product, QR can be defined by those points of 
Q which are products of points of the factors of Q. Hence the multi­
plication of manifolds is associative. 

The assertion (2) can now be written i?c = S. To see that this im­
plies i?c+1= • • • = 5 note that already Rcr~Sr=*S provided that R 
contains a point r with no vanishing coordinate. But if it did not R 

7 The product QR may contain exceptional points not of the form qr. The point 
jc=y = l is> for example, exceptional for the line y—x-\-\ as Q and the hyperbola 
x+y*xy as R, or for xy+2 s*&x+2y as Q=*R; in both cases QR is the whole plane. 
If, for two points of Q and R with homogeneous coordinates go, • • • , fie and r<>, • • •, re, 
there is never fioro5» • • • = 2 ^ = 0 , then there are no exceptional points, and the 
points p of QR are given by pol • • • ^««fiofV • • • :ficrc; otherwise, however, the 
latter equations are fulfilled by every point of the space^An example for this case, 
but without exceptional points, is xy •» 1 as Q » R = QR ( ̂ R, as defined in the sequel). 

8 If the field of the coefficients of the equations is not closed and if points with 
coordinates outside the field are admitted, then (Q, R) and QR may be reducible. An 
example is the field of rational numbers with x2—2 as Q**R and a •• ±2 as QR. 
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would be decomposable into its (nonvoid) intersections with Y\ 
= 0, • • - , rd = 0.« 

I t therefore remains to be proved that J?c«=5. Neither this con­
clusion nor the suppositions of (2) specified in (1) are affected if R 
is replaced by R/r, where r is a point of R with no zero coordinate. 
Hence we may suppose that R contains the point 1 all of whose co­
ordinates are 1. 

A monomial relation is a relation rj1 rh
c
c = l with integral ex­

ponents. I t may be written as an equation with non-negative expo­
nents. If the coordinates of the points q and r satisfy the equation, 
the same is true for gr. 

If rk is a factor of one of its sides, then the equation is fulfilled by 
no point with rk — 0 and all other coordinates different from 0. Hence 
the only monomial relation satisfied by all points of the manifold R 
of (7) is the identical relation 1 = 1 (hi= • • • = hc = 0). We may express 
this by saying that the monomial closure R of R is 5, where the mo-
nomial closure of a set is the manifold defined by the monomial relations 
fulfilled by all points of the set. 

The assertion (2) is therefore, in virtue of (5), a consequence of: 

THEOREM 2. If an irreducible manifold R of espace contains 1, then 

The theorem follows by remarking that S contains every power Rd 

and that Rd+1 contains Rd and has more dimensions than Rd as long 
as Rd5*R. To see this it will be enough to show that R2^R if R^R, 
whence it follows that {Rd)2^Rd if Rd9*R. For if the irreducible 
manifold Rd+1, which contains Rd, had the same number of dimen­
sions, it would follow that R* = R*+i = R*+2 = . . . = R2d. 

But if R2 = R and R is irreducible and contains 1, then obviously 
R = R°, where R° is the multiplier manifold defined by the points r 
with Rr = R. Since we shall presently see that R° = R°, we have 
R = R.n 

9 For a manifold R with no such point r, no power equals S, since every power is 
contained in fi r0=0. __ 

10 S>ince_every product of points of R fulfils the monomial relations defining]?, we 
havejR2=i£, R9+i~R*+* = . . . -JR. _ 

For a manifold Rr "proportional" to R, the gowers (Rr)d-Rr*, d^c, are disjoint 
and either periodic (if a power of r is a point of i£) or all different. In the latter case 
they do not exhaust Tîr, which must also contain Kr* (possibly multiplied by roots of 
unity) for fractional d. 

11 More generally, the product QR of two irreducible manifolds has more dimen­
sions than R, except if Q is either proportional to a submanifold of R° or contained in 
go flc^O. For if q and g' are points of Q without zero coordinates, then QR has 
certainly more dimensions than R unless g2?=»g'i?, or R(q/q') «i?. 
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Finally, why, for every algebraic manifold R, is there always 
R° = RP? Let R be given by a system of equations of the form YlcrP* 
= 0, where the p„ are monomials in ri, • • • , rc with non-negative 
exponents. The product Rs of R and a point Si, • • • , sc with no zero 
coordinate is then given by the corresponding equations ^cvpv(Tv = 0, 
where <r„ is formed from si, • • • , sc in the same way as p„ from 
ri, • • • , rc. The equations may be written X / ^ M ^ O » where all <rM, 
for the given s, have different values. If Rs = R, then the points of R 
fulfil the equations ^dp — O, XX*°M = 0 , X X ^ ^ O , • • • . Since the 
Vandermonde determinant of the cry is different from 0, this implies 
that every d^ separately equals 0. If R was given from the outset 
by shortest equations, then the a», belonging to the same equation 
must be equal; and the equalities between them form a system of 
monomial relations whose solutions without a vanishing coordinate 
are the points 5 with Rs = R. If Rs = R for an 5 with some zero coordi­
nates, then the corresponding coordinates of every point of R vanish 
and R° is given by monomial relations between the other coordinates. 
Being given by monomial relations, the multiplier manifold R° is a 
monomial manifold and equals its own monomial closure. 
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