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Introduction

The Euler numbers E, are defined by

2 & t"
et+1 —nZ=OE“—';LT )

They are classical and important in number theory. Frobenius ([4]) ex-
tended E, to the Euler numbers H"(u) belonging to an algebraic number
% (see also §1), and many authors (e.g. [2], [4] and [8]) investigated their
properties. Recently Shiratani-Yamamoto ([10]) constructed a p-adic
interpolation G,(s, u) of the Euler numbers H"(u), and as its application,
they obtained an explicit formula for L,(0, X) with any Dirichlet character
X, including Ferrero-Greenberg’s formula ([5]), and gave an explanation
of Diamond’s formula ([3]).

In the present paper, we shall define the generalized Euler numbers
Hp(u) for any Dirichlet character X, which are analogous to the generalized
Bernoulli numbers (see §1), and we shall construct their p-adic interpola-
tion (see §2), which is an extension of Shiratani-Yamamoto’s p-adic inter-
polation G,(s, u) of H™(u). The function G,(s, ) interpolates the n-th
Euler number for =0 with (p—1)|n, but our function interpolates the
n-th generalized Euler number for any n. As applications, we shall
obtain some congruences for the generalized Euler numbers (see § 3), which
improve the congruences for the Euler numbers in [2], [4] and [8]. In the
last section, we shall define an element of a group ring. By using it, we shall
reconstruct a p-adic interpolation of the Euler numbers in the Iwasawa
method which makes use of the formal power series (cf. [12], §7.2).
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Miki who suggested him to study the application of p-adic I'-transforms
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and gave him many valuable suggestions and comments. The author also
wishes to express his sincere gratitude to Professor M. Ishida and Professor
K. Shiratani for their valuable comments.

NOTATIONS. @Q: the field of rational numbers. @Q: the algebraic
closure of Q. Z: the ring of rational integers. N: the set of positive
integers. R: the field of real numbers. C: the field of complex numbers.
Let » be an odd prime number. @Q,: the field of p-adic numbers.
Z,: the ring of p-adic integers. ZJ: the group of p-adic units in Z,.
C,: the p-adic completion of the algebraic closure Q, of Q,. |-|: the p-adic
absolute value on C, normalized by |p|=1/p. V: the group {x€@,: xz*~'=1}.
Then Zy=Vx(1+pZ,); a=w(a){a) where w(a) (resp. {a)) denotes the
projection of @ onto V (resp. onto 1+pZ,).

§1. Definition of the generalized Euler numbers.

Let u#0 be an algebraic number. We fix an embedding @ —C,

Q—C,, so that we take u as an element of C, and C,. The number
H*(u) defined by

(1) 1— ‘—Z H"(u)___

et n=0

is called the n-th Euler number belonging to . The polynomial E (u, x) €
Q(u)[x] defined by

(2) L’EQG_-EE (u, x)——
et —u n=0

is called the n-th Euler polynomial belonging to . As is well known,

(3) E,(u, 1—2)=(—1)"E, (27}, %) ,
and
(4) E.(u, )= Z( )H‘(u)x""

Let X be a primitive Dirichlet character with conductor f. We define
the n-th generalized Euler number* H?»(u) belonging to u by

(5) S e

=3 Hyw) L.
n=0 n !

*) This definition is slightly different from the original one due to the author. This modi-
fication by H. Miki enables us to simplify the following argument.
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Note that when X=1, we have
H(u)= H"(u) for n=0.

By using (1), (2) and (4), we can easily see that

7 — nf_l —a—1 a
(6) Hyw)=f" 3, May'~E(w, 7)

» f;l n n\.
= E;ZOX(a)uf‘“"‘ Z& <% )H‘(uf)a"“f* .

§2. p-adic interpolation of the genéralized Euler numbers.

From now on, we fix a primitive Dirichlet character X with conductor
f, and we assume the following:

(7) 1—w*"|=1 for N=0.

This assumption is an analogue of that in [8]. Then we have the follow-
ing formula which is an extension of that in [8].

LEMMA 1. For integer n=0,

u

. fpf ufp”—-b
Hyw)=lim S, X(b)b"

1—u’ N B0 1—u/" "’

where the limit in the right hand side i3 the p-adic one.

Proor. It is proved in the same way as in [8]. By (5), we have

(g 1—u' )X(a)eatu,f—a)ekt—l = (ni H;(u)%) (& —u)e

=0

Il

53 (7 ) mwws+rr- vy )&

nl
for k=0. Hence we have
f—-1
Z(,) A—uHX(@)uw " a+ k)
n

=3 (7 )t + =i

for k, n=0. Put k=0, f, ---, ("—1)f, and multiply the both sides by
w’®" 9% for each case, then we obtain by summing up
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2 A—-uw)X(a)u’ Z (a +f_7)"u’("N""f!

a=0

fl( )H‘(u)(p”f)"“‘ Hy(wyu’*" .

$=0

Hence we obtain
(1 uf"N)H"(u)+p Z ( ) Ht(u)pmn—x—o fn—l

=(1—u’) é B0 R e

Let N tend to the infinity, then by (7) we have the assertion.

Now we define some notations. Let xnyy: Z/fp"Z— Z[fp*Z with
a mod fp*Z+>a mod fp*Z for ac Z and N=M, then {Z/fp"Z, wyx} is an
inverse system. Let X be the inverse limit of this system: X= lir_n Z[fp"Z,
and for a e Z, let Xy(a) denote the set of # € X which maps to a mod fp"Z
under the canonical map X— Z/fp"Z for N=0. Put X*= U X,(a) where
the union is taken over all a¢ with 0<a<fp, (a, fp)=1. Let m: X—2Z,
be the continuous homomorphism induced by the map Z/fp"Z—Z/p"Z
with a mod fp¥Z+a mod p*Z, for all N=0. Flnally let a,=a, x be the
measure on X defined by

ufPN_“

(8) a.(Xx(a)) =T
U

with 0<a<fp” and N=0, which is an analogue of the Koblitz measure
([7D.

REMARK. In the case where X=1, a, is the Shiratani-Yamamoto
measure ¢, which was defined in [10].

Now we fix a natural embedding Z— X induced by ar (a mod fp”).
For a C,-valued continuous function g on X, we define the p-adic integra-
tion by

N_

| s@da@=lim 5" g@e(Xu@)
and

[ s@Ma@)=lim ‘5" s@aXua) .

(G»f’) =1
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It follows from Lemma 1 that
(9) | 7@ t@dane) =% Hy)
X 1—u

for any n=0.

Let k=1 be an integer with f|%, and assume that [1—u*"|>1 for all
Nz=0. Then we can easily see that

[, 7@ @)= @ Ueda, <@

where Y=l§_111 Z|kp"Z is the inverse limit of the inverse system {Z|kp™Z,

Tyu} With Ty y:a+kp*Z—a+kp*Z for ac Z and NzM, and 7#: X— Z,
be the continuous homomorphism induced by the map Z/kp"Z—Z/p"Z
with a mod kp”Z to a mod p*Z for all N=0.

Finally, for any se Z,, we define the p-adic interpolation I,(u, s, X)
of the generalized Euler numbers by

(10) L, s, )=| @) 1@)da@ .

By the definition of X*, we can see that X*=(Z/dpZ)* x (1+pZ,) where
S=dp* with (d, p)=1 and £=0. Hence it follows from [12] (Theorem 12.4)
that [,(u, s, X) is an Iwasawa function, especially analytic in s.

REMARK. Our function [,(u,s, X) is one of the extension of the
Shiratani-Yamamoto function G,(s, w) in [10]. Indeed l,(u, s, 1)=G,(s, u).
If (p, f)=1, then some calculations show that

L 5, 1) =220 53 7G)Gys, uh)

where z(X)=>.]_, X(a){% is the normalized Gauss sum attached to X, and
£ r=exp(2ry —1/f).
By using the fact that
(X (P0)) = aup(Xy_,(a))
and (10), we have the following

THEOREM 1. For any integer n=0,

Wym % prncay KD)D™UP prac, s
l,,(u, —n, 40} )—mﬂx(u) T:—u;er(u ) .
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Especially when p|f,

lL(u, —n, Xo™) =

REMARK. Since

2 _ 1 1
et—1 e—1 e'+1"°

we have

lE — (1 2'n+1) n+1

n+1

for n=0, where E,=H"(—1) is the classical Euler number (see Introduc-
tion). More generally, for ¢>0 with (¢, fp)=1, we have

<o C nly3 n+1 n+1,X
(11) gil C’fH(C) (" X(e)—1)—=ttL _:1

with {,=exp(2myv ' —1/¢). Hence it follows from Theorem 1 that

3L 8, D)=~ (@ X0(@)Ly(s, 10)

where L,(s, X) is the Kubota-Leopoldt p-adic L-function (see [12],
Theorem 5.11).
§3. Some congruences for the generalized Euler numbers.

In this section, by considering the expansion of l,(u, s, X) defined in
§2 at s=1, we have some congruences for the generalized Euler numbers

in a method similar to [12], §5.3.
Let 6 be the ring of integers in a finite extension of @, in C,, and
let &« be an 6-valued measure on X =l(iln Z|fp*Z. For an 6-valued con-

tinuous function g on X, we put
Fo)=|_a@)g@daw) .

Then we have the following

THEOREM 2.

F(s)= 5; a,(s—1)
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with |a,|=1 and with p|a, for n=1.
PrROOF. By using the formula

yy'*=exp((1—s)log,{y)) for s,yeZ,,

where exp (resp. log,) is the p-adic exponential (resp. logarithm) function,
we have

F(s)= nz; (1—sg)® SX. (log.pjz(w»)" <zg;> de(z) .

Hence for n=0,

=(—1)  dog{m(x)>)" g(x)
a,=(—1) SX. o <n_(w)>da(w) .

Suppose n=1. Since for any be Z with (p, b)=1,
|10gp <b> l ép—l <p—1/(p—1)

and [n!|>p Y it follows that |

(log, )" _ g

(mod p) .
n!
Thus we obtain pla, for n=1. |a,/=<1 is obvious. Q.E.D.

By Theorem 2, we have the Kummer congruences for the generalized
Euler numbers, which were proved for the ordinary Euler numbers H*(u)
in [4] and [8].

COROLLARY 1. For integers m, n with 0=m=<n and m=n
(mod (p—1)p*),

T Hr =" Hiu)  (modp¥)

with M=min (m, a+1) or a+1 according as (p, F)=1 or not.
PrROOF. Put g=X and a=a, in Theorem 2, then it follows that
L, —m, Xo™=1,(u, —n, Lo™) (mod p**')
- when m=n (mod (p—1)p®). By using Theorem 1, we have the assertion.

The next result is an analogue of that in [11] which was for the
Bernoulli numbers.
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COROLLARY 2. Let 7 be an integer with 1<i<p. If there exists a
minimal integer k=k,=0 such that

T HY T WwE0 (modpth)

then
ki=v,(l,(u, 1, Xo*™))

where v, is the p-adic valuation on C, normalized by v,(p)=1.

PrROOF. In the case where k=0, it is obvious. Suppose k=1. Put
F(s)=1,(u, 8, X) in Theorem 2, then we have

L(u, 1, X ) =1,(u, 1—ip*, Xa)""‘“) (mod p**Y)

= _’_‘uf Hy* " (u)#0 (mod p**?)

by the assumption on k.. On the other hand, it follows from the
minimality of k& that

L(u, 1, Xo* ) =1,(u, 1—ip*, Xe****—1) (mod p*)

= _“uf H* (u)=0 (mod p*) .

Thus we have the assertion.

By using Theorem 2 for FY(s)=I,(u, s, X), we have the following
“generalized Frobenius’ congruences” which were proved when X=1, and
n=0 (mod p—1) in [2], [4] and [8]. Now we can remove the assumption
n=0 (mod p—1) by using Dirichlet characters.

COROLLARY 3. For an integer m=1 with mn=1i (mod (p—1)p*) and
0=i<p—1,

u - =9—1 ‘ ug—k _ xw{(p)up(g—k) x
=Sl w(—2EE—)  (medph

where f (resp. g) is the conductor of X (resp. Xw*), and M=a+1 or 1
according as 1=0 or not.

PROOF. By Theorem 2, we have
L(u, —1i, Xo)=l,(u, —n, Xw™)  (mod p***)

= I_Lu,-Hi‘(u) (mod p*+) .
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On the other hand,
l,(wy, —1, X*)=1,(u, 0, X0 (mod p%)

with L arbitrary or 1 according as {=0 or not, and

(2, 0, X'y =—Y_ HY,i(u) — XL DU pro (09
1—wu’ 1—us?

g—1 1 9—k g—1 (3 plg—k)
=S X' By ¥ ip) S Kell)u .
k=0 1—wu* k=0" 1—ur?

Thus we have the assertion.

REMARK. In the special case where X=1 and #=0 (mod (p—1)p%,
we have the following ordinary Frobenius’ congruences:

u ‘ u 1—ur? |
Hn = d a-+1 .
1—u (w) l—u 1—u? (mod p***)

Similarly when X=1 and n=1% (mod p—1) with 1<i<p—1, we have

Y _Hu)=—2_3 oy (modp).
1—u 1—wu? i=1

By the definition of H?(u), we have

Hiw)= 5 1w ~+(k——L) .

1—u'
By Theorem 2, we have
L(u, —1, Xw)=1l(u, —1, X®*)  (mod p*)

with L arbitrary or 1 according as i=1 or not, hence we have the
following which can be proved in the same way as Corollary 8.

COROLLARY 4. For an integer n=1 with n=1 (mod (p— Dp*) and

1—w T 1—u
uﬂ—k xwi—l p pup(a—k)
—_ g< T—wy (1(__1‘“)2 )} (mod p¥)

where f (resp. g) is the conductor of X (resp. Xw*™?), and M=a+1 or 1
according as 1=1 or not.
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§4. The Iwasawa construction of l,(u, s, X).

We fix an integer ¢ with 0<i<p—2. By (11), we have

(12) 3 TS H)=(c0™ (@~ DB, o

for ¢>1 with (¢, p)=1. On the other hand, by (5), we have

: C}’: 0_‘. T\ — = -1 §(p—a)
(13) T B = S 0@
By (12) and (13), we can describe B, ,-: using the character w, which is
stated in [6] without using the Euler numbers. Furthermore let G=
GQE,) Q) ={0.1C,—C3, (a, p)=1}, and we define

sC)=5 (& s )or

a=1 C:P
for ¢>1 with ¢/|p—1. By (12) and (13), we have
(14) g(Ce,=(cw™*(c)—1)B, .~

for 1<i<p—2, where &, =(1/(p—1)) 32-! w*(a)o;* is the orthogonal idem-
potent of Z,[G] for 0<k<p—2. Let A be the p-Sylow subgroup of the
ideal class group of Q(¢,). Since ¢, is the norm, ¢, A=0. Since the right
hand side of (14) annihilates ¢, A (see [12], §6.3), &({,) annihilates A.

Now we reconstruct 1,(u, s, X) in the Iwasawa method (ef. [12], §7.2).
The following lemma can be proved in the same way as (6).

LEMMA 1. Let F be any mult'iple of f. Then

H;"(u)=F”‘i z A(yuF—*E, ( F)

Jor any m=0.

We define some notations following [12], §7.2. Put f=dp* where
(d, p)=1 and £=0. Put K,=Q({;n+1) and G,=G(K,|Q)= {Galcdpn+1|‘—’cdpn+1,
(a, dp)=1} for any n=0. Then we have

G,=4xTI,

where 4=(Z/dpZ)* and I",=Z/p"Z. Corresponding to this decomposition,
we write

o.=0(a)7.(a)
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with d(a) e 4 and v,(a)eI",. Regarding X as a character of G,, we may
uniquely write

X=0v

with 6 € 4 where 4 1s a character group of 4, and with v e/°,. Finally
we define

dpn+1 udpn-{-l_a,

(15) HOLEDY T 0@ 7.@)™ € 6[G,]

a=
(a,dp)=1

where © is an 1nteger ring of Q,(u, X). ¢&,(w) is an analogue of the
Stickelberger eléement. Let

p=—'— 0!
a7 ZP( )

be the idempotent for péd. By using the fact e¢.0(a)=p(a)s,, we have

&5 (u) =&, 0(u)es

where
dpn+1 udp'n+1_a
(16) Sn,ﬂ(u) = agi T:W:re(a)'h(a)_l ’
(a,dp)=1

and §=6"'. We can see that &, ,(u)<6[,].

LEmMA 2. Let o, ., be the natural map O[I',]—0O[,] with v,(a)—
T.(@) for mzn. Then 0O, .(Ems(w)=¢,(u) for m=n.

PROOF. Put &, o(u)=0m,q(En,e(u)), then

, dpm+1 udpm'l'l—-a

Gnolw)= 3, ——pzb(a)vi'(a) .
a=1 l—udp
(a,dp)=1

Put a=j+kdp* with 0<7<dp and (4, dp)=1, and with 0<k<p™ ™.

By using the fact that 6(j+kdp"t")=6(5) and v, (5 +kdp ) ="7,(5), we can

see that

dpn+1 dpm+l_j; pm—n_

o= "3, {75 5 w0y )
(5,dp)=1

=En,0(u) .

Thus we have the assertion.

1 . udpm+1
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Put 6[[1’]]=l§r_n 6[[I",]] where the limit is the projective limit with
the homomorphism p,, , in Lemma 2. By Lemma 2, we put

gw)=lim ¢, ,(u) € O[[I']] .
It follows from [12]}(Theorem 7.1) that
e[[I']]=6ll T]]=1£!1 e[ T1)/(A+ T)*"—1)

with 7, (a)— 1+ T)** mod (14 T)*"—1) for a € Z, where
“i(a)=log,<ay/log,(1+dp) .

Let e,(T, 6) be the image of £°(u) with the above isomorphism. Then by
(16), we have

dpn+1 udpn+1-¢

17 el(T, )= 3

a=1

(a,dp)=1

- 0(a)(1+ T)—C(G)

ET
(mod (1+ T)r»—1))

for any n=0. Put {y=+v(1+dp)™?, and put T=Cy(1+dp)™—1 for m=0
(mod p—1) in (17). Then we have

(18) e.(Cy(1+dp)™—1, 6)
dpn+1 udp'n+1_¢ - ot
= ;_‘.1 Wﬂ(a)w(axa) (mod p™*'6)
(a,dp)=1
dpn+1 udpn+1_a L
= 2 Togee e (mod p*+6)
(a,dp)=1

for n>0. Put F=dp*"' in Lemma 1, we have

— dpnt+i_
H ,}"(u)=(dp»+1)m_l_L;l’ﬂl_’l»:‘:_'._1 sz:o 1 X()ude™ -+ E’(udp'n+1, '('i_pk—,.ﬁ
for m=0 (mod p—1). By (3), we can see that
(dpn+1)mEm(udpn+1, d;‘i_’_l Ekm (mOd p‘n+19) .
Hence we have
u dpntl—g - udpn+1_k -
(19) 1—"uf H;‘(u)E % X(k)k W (mod P 6)

for m=0 (mod p—1). It follows from (18), (19) and Theorem 1 that
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L, —m, D=e,ly(1+dp)™~1,6)  (mod p"*+'6)
for n>0. Let » tend to the infinity, then for m=0 (mod p—1),
L(u, —m, X)=e,(ly(1+dp)™—1, 0) .
Since (p—1)Z is dense in Z,, we obtain the following

PROPOSITION. Let X=0+ be the Dirichlet character where 6 is a
character of the first kind and + is a character of the second kind, and
let f=dp* be the conductor of X with (d, p)=1 and £=0. Put Cyp=
Y(1+dp)™ and let © be an integer ring of Q,(u, X). Then there exists
a formal power series e,(T, ) e O[[T]] such that

L(u, 8, X)=e,(Ly(1+dp)'—1, 6)

Jor any se Z,.

References

[1] L. CarLITZ, A note on Euler numbers and congruences, Nagoya Math. J., 7 (1956),
441-445.

[2] L. CarLITZ, Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew.
Math., 202 (1959), 174-182.

[8] J. Diamonps, On the values of p-adic L-functions at positive integers, Acta Arith., 35
(1979), 223-237.

[4] G. FroBeNnius, Uber die Bernoullischen Zahlen und die Eulerschen Polynome, Sitzungs-
berichte der PreuBischen Akademie der Wissenschaften, (1910), 809-847.

[5] B. FERrERO and R. GREENBERG, On the behavior of p-adic L-functions at s=0, Invent.
Math., 50 (1978), 91-102. '

[6] H. Hassg, On a question of Chowla, Acta Arith., 18 (1971), 275-280.

[7] N. KoBLiTz, A new proof for the certain formulas for p-adic L-functions, Duke Math.
J., 46 (1979), 455-468.

[8] K. SHIRATANI, On Euler numbers, Mem. Fac. Sci. Kyushu Univ., 27 (1973), 1-5.

[9] K. SHIRATANI, On some operators for p-adic uniformly differentiable functions, Japan.
J. Math., 2 (1976), 343-353.

[10] K. SHirATANI and S. YaMaMOTO, On a p-adic interpolation function for the Euler num-
bers and its derivatives, Mem. Fac. Sci. Kyushu Univ., 39 (1985), 113-125.

[11] L. WasHINGTON, Units of irregular cyclotomic fields, Ill. J. Math., 23 (1979), 635-647.

[12] L. WaSHINGTON, Introduction to Cyclotomic Fields, Springer, Berlin-Heidelberg-New York,

1982.

Present Address:

DEPARTMENT OF MATHEMATICS
TOKYO0 METROPOLITAN UNIVERSITY
FUKAZAWA, SETAGAYA-KU, Toxyo 158



