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1. Introduction

Let C (resp. R) denote the complex (resp. real) number field. We consider a connected
simply connected complex simple Lie group G¢ and a connected noncompact inner type
simple real form G of G¢. Let K be a maximal compact subgroup of G. We denote the Lie
algebras of G and K respectively by g and £. Let 6 be the Cartan involution of g corresponding
to £. Let’s denote the eigensubspace of 6 of g with the eigenvalue —1 by p. Then we have a
Cartan decomposition: g = €@ p. Consequently the Lie algebra gc of G¢ is also decomposed
by gc = tc ®pc, where Ec (resp. pc) is the complexification of € (resp. p) in gc. Canonically
K acts on the space pc. Let B be a maximal abelian subgroup of K. Since K is connected and
G is an inner type simple Lie group, B is also a maximal abelian subgruop of G. Therefore
B is a Cartan subgroup of G and K. Let bc be the complexification of the Lie algebra b of
B. Let X be the root system of the pair (gc, bc). Then we have ¥ = X U X, where X
(resp. Xp) is the set of all compact (resp. noncompact) roots of X~ . We shall fix a positive
root system Pk of Xk. Let (r,, V) be a simple K-module with the highest weight 1. Then
the tensor space pc ® V), is a unitary K-module. Let v be a Pg-dominant integral form on
bc and V, a simple K-module corresponding to v. We define a projection operator P, on
pc ® V, by

Py,(Z) = deg 71,,/ kZtrace r,(k)dk for Z in pc ® V.,
K
where dk is the Haar measure on K normalized as f x @k = 1. Let I'k be the set of all
Pk -dominant integral form on bc. Then we have the following decomposition:
(1-1) pPc® Vu = @wex,,,u-‘rweﬂg Pp.+w(pC ® Vp.) s

where Py, (pc ® V) = {0} oris a simple K-module. The purpose of this paper is to
characterize nontrivial K-module P, 4, (pc ® V,) by using a rational function. Let us state
our results more precisely. We can prove that P, 1, (pc ® V) is nontrivial if and only if
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[Puiow(Xe ® v(;L))|2 # 0, where | * | is the norm on pc ® V), X, is the root vector corre-
sponding to a noncompact root w and v(u) is the highest weight vector of V,, normalized as
[lv(n)| = 1. Assume that 2(u, o:)|oz|_2 > 3 for all @ in Pg. Then we can prove (see Lemma
4.7) that | Py (Xe ® v(w))|? is given by a rational function f(A + w; w) in A = u + pxk,
where pg is one half the sum of all roots in Pg. Let (+/—1b)* be the dual space of the
real vector space ~/—1b. Let f(n; w) be the rational function in n € (v/—1b)* satisfying
fO+w;0) =|Puio(Xo®v(w)) |2. We can calculate f(n; w) explicitely (see Theorem 6.5)
by using the functional equations in Theorem 5.4. Finally in §7 we shall prove the following
main theorem.

MAIN THEOREM. Let u be a Pg-dominant integral form on bc and 'V, the simple
K-module with the highest weight j1. Suppose that ;@ + w is Px-dominant for a noncompact
root w in X. Then the K -submodule P, ,(pc ® V) of pc ® Vy in (1, 1) is nontrivial if and
only if f(A 4+ w; w) > 0.

The tensor K-modules pc® V), and pc®pc® V), are closely related with the classification
of irreducible infinitesimal unitary representations of G. For example, by using the Clebsch-
Gordan coefficients of these tensor K-modules, the complete classifications are obtained for
the groups : SL(2,R) in [1], De Sitter group in [2] and [10], SO(2n, 1) in [5], [6] and
SU (n, 1) in [8] and etc. In the subsequent paper we shall apply the main theorem to determine
the multiplicity of V,, in pc ® pc ® V.

Most parts of this article is reported in “Clebsch-Gordan coefficients for a tensor product
representation Ad ® m of a maximal compact subgroup of real semisimple Lie group”, Lect.
in Math., Kyoto Univ. No. 14 pp. 149-175.

2. Preliminalies

Let G be the connected inner type noncompact real simple Lie group. We shall always
fix a maximal compact subgroup K and the Cartan decomposition g = € & p. Let B be the
maximal abelian subgroup of K. Since G is inner, B is a Cartan subgroup of K and G. A
linear form « on b is said to be a root if there exists a nontrivial element X in g¢ such that
[H,X]=ad(H)X = a(H)X forall H in bc. Let X be the set of all roots on bc. Then X' is
a finite set. Furthermore, we have the following decomposition.

gcsz@Zga,

aeX

where g, is a one dimensional eigenspace corresponding to «. The real subalgebra g, = ¢ ®
+/—1p of gc is said to be a compact real form of gc. We choose a Weyl basis Xy € g4, @ € X,
satisfying the followings (cf. the proof of Theorem 6.3 in [4]).

(2.1) Xo = Xg, V-1(Xa+X-¢)€gy and ¢(Xy, X)) =1,
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where ¢ is the Killing form on g¢. For the element Hy, = ad(Xy)X_4 in /—1b, we have
¢(Hy, H) = a(H) for all H in bc. Let u be a linear form on /—1b. Then there exists
a unique H, in /—1b such that ¢(H,, H) = uw(H) for all H in /—1b. Let (+/—1b)* be
the dual space of v/—1b. We define a positive definite bilinear form (A, ) by (A, u) =
¢(Hy, Hy) for A, u € (+/—1b)*. We put, for each pair of « and 8 in X, a complex number
(o, ) by

¢ad(X)Xp, X _o-p) fa+peX
0 otherwise .

2.2) (o, B) = {

Then («, B) is a pure imaginary number. Let p and g be two nonnegative integers such that
B+ ja e XYifandonlyif —g < j < p. B+ jo,—q < j < p, is said to be the «-series
containing 8. We have (cf. the proof of Lemma 4.3.8 in [11])

23) 28, el 2=g—p and B—2(B, )| 2xe T,
Furthermore, we have

) ||
(2.4) | {a, B) | =q(19+1)7,

and p 4+ g < 3 (cf. Corollary 4.3.12 in [11]). Suppose that |«| > |B]|. Then
(2.5) 2(a, B)IBI77 € {0, +1, 42, £3).

We remark that if || > |B], then |a|?> = 2|8|? or |«|?> = 3|B|?. Especially if 2(a, 8)|8]*> =
+2 (resp. £3), then |«|?> = 2|8|? (resp. ||*> = 3|8]).

A root in X' is compact (resp. noncompact) if X, € ¢ (resp. Xy € pc). Since £c and
pc are invariant under ad(b), X' is a disjoint union of the set of all compact roots X'k and the
set of all noncompact roots X,. X'k is also the root system of the pair (€c, bc). Let P be a
positive root system of X. Then Px = Xk N P is a positive root system of Xg. A linear
form 1 on b is integral if 2(u, or)|or| =2 is an integer for all « € P, and p is P-dominant
(resp. Px-dominant) if 2(u, @)|r|~2 > 0 for all & € P (resp. Pg). We shall denote the set of
all P-dominant (resp. Px-dominant) integral forms on b¢ by I" (resp. I'k).

Let o (resp. T) be the conjugation of g¢ with respect to the real form g (resp. g,). By our
choice for the Weyl basis of gc we have

(2.6) 0(Xg)=—X_o foraeXg, oXy)=X_, forael,
and
2.7 T(Xg)=—X_y foraelX.

The inner types noncompact real simple Lie groups (i.e. rank G = rank K) are classified into
three (cf. Table I, p. 354 in [4]):
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(1) all noncompact roots have the same length,
(2.8) (2) Sp(n,R) and SO(2m, 2n + 1),
(3) the type G2 .

We shall use in §6 and §7 the following Dynkin diagrams of the simple root systems ¥ for
the groups in (2) and (3), where a white circle indicates a compact root and a black circle does
a noncompact root.

G=S,nR:6—F—...% =T,
(29) o] o) Qp—2 Qp—1
K=Umn):o— o0 —+-- o — o
(2.10)
G=S002m2n+1):9— ... Mg g Wyt ot e
K=S02m)®S0Qn+1):9— G...0%> gt ot gt Mg
0 o

where ag = o;—1 + 20 + - -+ + 20m4n-
@2.11) G=Gr:e=C, K=SUQ)@SUQ2):9 5,

where g = 201 + 3ap.

3. Decomposition of a tensor K-module

For the simplicity of our notations, the adjoint action Ad(k) (k € K) on pc will be
denoted by kX for X in pc. We define a hermitian structure (X, Y) on pc by

3.1 (X,Y) = —¢(X,7(Y)) for X,Y € pc.

Then pc is a unitary K-module with respect to this hermitian structure. For u € Ik, there
exists a unitary simple K-module (7, V,,) with the highest weight ;.. We also denote the
action 7, (k) (k € K) of K on V, by kv for v € V. Let dk be the Haar measure on K
normalized as f x @k = 1. We define a character y,, of the K-module (7, V,) by

3.2) X (k) = deg(m )trace m, (k), ke K,

where deg ), = dim V),. Then we have

(3.3) / xﬂ(kflk’)xﬂ(k)dk = xuk), kK ekK.
K

For a finite dimensional K -module V', we define a projection operator P, on V by

(3.4 P, (v) =/ kvx,(k)ydk, veV,
K
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where y, (k) is the complex conjugate of x, (k).
LEMMA 3.1. The projection operator P, on 'V satisfies the followings.
(P)*=P, and kP, =P,k forall ke K.

PROOF. Changing the variables and the order of integrals, we have forv € V,

(Pﬂ)z(v):/[;'/Kk’kvxﬂ(k’)xﬂ(k)dkdk’

:/ / kv (K)~1k) x, (K dkdk'
K JK

= / kv/ X,L((k/)—lk)xu(k’)dk/dk.
K K
Hence by the formula (3.3), we have (P,L)2 =P,.Fork € K and v € V we have

kP, (v) = / kk'vx, (k" )dk'
K

= / (kk'k =) (kv) x 0 (kk'k—V)d kK
K
= P, (kv).
Thus we can prove that kP, v = Py kv.

We now define an action of £c on V), by

d
Xv = Eexp(tX)vb:o for X €fc and veV,.

By the choice of X,, in (2.1) we have
3.5) (Xev,w) = (v, X_qw) forall « € Yg andv,w € V.

We define a unitary K-module structure on pc ® V,, by

k(X®v)=kX®kv for ke K,
G0 X®v,Y®w)=(X,Y)(v,w) for X,Y epc and v,weV,.
Thereby pc ® V), is a finite dimensional unitary K-module. Let @ be a noncompact root in
X', Assume that u + w is Px-dominant. By the second property in Lemma 3.1 we have
YPuto(X ®v) = Puto(@d )X @) + Puyo(X ® Yv)

(3.7
forallY e tc, X e pcandv e V.

DEFINITION 3.2. Let p be a nonnegative integer. We define a set 1T, by

o
Mo={¢}. M,={(e.ar - .ap) e €Px} for p>1, andput T=|J1T,.
p=0
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Let I = (o, 02, - ,ap) and J = (B1, B2, -+, By) be two elements in /1. We define a
multiplicative operation x in /1 by

I*J: (a11a21”' 1ap1ﬁ11ﬁ21”' 1ﬁq)'
Then IT is a semigroup with the identity ¢.

DEFINITION 3.3. Let U(¥c) be the universal enveloping algebra of £c. For each [ in
IT we define an element Q(/) in U (£c) by

O =1 for I=¢ and QU)=X_o X, " X—g, for I=(ar, 00, ., 0p).

Then Q is a semigroup homomorphism of IT to U(£c). Furthermore, Q(/) acts on pc by
Q)X = ad(Q())X for X in pc. We also define the adjoint operator Q(I)* of Q(I) by
(Q(DX,Y) = (X, 0U)*Y) for X, Y € pc.

LEMMA 3.4. Let u € I'k and V,, a simple K -module with the highest weight p. Then

we have

pc® Vu = @ Pu+w(pC by Vu) ,
weX, , n+welk

where Py, (pc ® V) = {0} or is a simple K -module.
PROOF. By Peter-Weyl’s theorem, we have (cf. Theorem 1.12 (¢c)in [ 7 ])
pc® V= Plrc® V).
relk

Let V), be a simple K-submodule of Py (pc ® V). We shall prove that V), = P, 1) (pc ® V,.)
for a suitable noncompact root y. We note that the simple K-module V,, is generated by
the set {Q(J)v(u) : I € IT}, where v(u) is the highest weight vector of V,, normalized as
lv(i)| = 1. Moreover, it follows from (3.7) that

(3.8) XoPr(X Qv) = Pr(ad(Xe)X @ v) + PL(X ® Xqv)

forall X € pc,v € Vy,anda € Y. Let v(A) be the highest weight vector of Vj. It follows
from (3.8) that v(A) is written by

(3.9) v = D Y w1 QU P(Xy ® v(w)

weX, Iell
where ¢, 1 is a complex constant. Since v(A) is the highest weight vector, (3.5) implies that
@R, v(D) = Z Cog V), Pr(Xo ® V(1)) .
weX,

Consequently, we have A = u + y for a noncompact root . Again by (3.9) we have

V) = DY w1 QU Pty (X0 @ V(W)

weX, Iell
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Let w be a noncompact root. When w > y, we have P4, (X, ® v(i)) = 0 because p + y is
the highest weight in Py,4,, (bc ® V). When w < y, the weight of Q(I) P,y (X ® v())
is distinct to u + y. Hence we have v(A) = ¢ ;P,1, (X, ® v(u)). This implies that

V¢
Vi = Pty (pc ® Vy).
In view of the proof of the above lemma we have the following.

COROLLARY 3.5. Let w be a noncompact root in X. If uw + w € I'x and
Pll.+w(pC by V,u) # {0}, then we have P/J.+w(Xw ®v(w)) #0.

LEMMA 3.6. Let w be a noncompact root in X, and suppose that u + w € [k,
Puiowc ® V) # {0} If Pyyo(Xy ® v(w)) # 0 for a noncompact root y, then we have

I+ o = A+ 7 Puto(Xy, @ v)* = Y 21{e, ¥) P1Puto(Xyta @ ()17,

a€Pk

where v(jL) is the highest weight vector in V,, A = u + px and pg is one half the sum of all
roots in Pg.
PROOF. Let 2k be the Casimir operator on K given by

12
2k =Y (H) + Hypy + Y 2X o Xe

i=1 a€Pk

where {H}, Hy, - - - , H¢} is an orthonormal basis of 4/ —1b with respect to the Killing form ¢.
Since P10 (Pc ® Vy,) is a simple K-module, £2k is a scalar operator on this space. We can

verify 2xv(n + w) = (|2 + ol? — |pk|»)v(n + o), where v(u + w) is the highest weight
vector of Py, (pc ® V,). Then we have for y € X,

2k Puto(Xy @ v(w) = (1A + o> — |0 1) Puto(Xy @ v(w).
On the other hand, since

2k Puto(Xy ® v(0) = (12 + ¥ 1> = 10k 13 Puto (Xy @ v(1))

+ ) 20 7Y X Puto(Xyta @ (1)),

ae Pk

we have

A+ ol = A+ 7 Puro(Xy @ v(0) = D 2(, ¥) X—a Puto(Xyta @ V(1) .

(XEPK
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Consequently, by (3.5) we have

(A + 0 = |2 + Y1) PutoXo @ v(0)|

=Y 2(¥) X—aPuroXyra ® v(W), Pusro(Xy @ v(1)))

o€ Pk

=Y 21, ) PlPuto(Xyra @ v()I.

ae Pk

DEFINITION 3.7. Let y and w be two noncompact roots. We put
(y;w)={I €Il: Q()*Xy € gu\{0}} .

LEMMA 3.8. Suppose that u + w € I'k and Py, (pc ® V) # {0} for w € X, and
let y be arootin Xy. Then Py y,(X, ® v(n)) # 0 ifand only if I[1(y; w) # ¢. Moreover if

Puio(Xy @ v(W) #0, then | + o|*> — |A + y|* > 0.

PrROOF. By Corollary 3.5 P4, (X, ® v(1)) is the highest weight vector of the simple
K-module P, (pc ® v(n)). Assume that P,y (X, ® v(n)) # 0. When w = y we have

¢ € IT(w; w). Suppose w # y. Since P, 1, (X, ® v(n)) is not the highest weight vector,

(3.10) there is B € Pk such that Xg P, 1, (X, @ v(n)) #0.

Similarly, since the dimension of the space of the highest vectors is one, we can choose
I € IT satisfying Q(I)* P10 (Xy ® v(1)) € CPuiow(Xo ® v()\{0}. Since Xqv(n) =0
for o € Pk, we have

O(D)* Pyt (Xy ® (1)) = Put(Q(N* Xy ® v(1)),

and hence, I € I1(y; w). Conversely assume that / € JT(y; w). Since Q(1)*X, € gu\{0},
we have Q(I)* P »(X, ® v(n)) # 0. This implies that P, 4,(X, ® v(u)) # 0. The
inequality |X + o> — A+ y|* > 0 for Piiw(Xy ® v(u)) # 0O follows from Lemma 3.6 and
(3.10).

4. Rational function associated with the coefficient | P, |, (X, ® v(n)) |2

The purpose of this section is to prove Lemma 4.7. In order to prove this lemma we shall
prepare three lemmas after the following two definitions.

DEFINITION 4.1. For a generic point  in (/—1b)*, ® € X, and I € I1, we define
R(m; 1), S(n; 1), T(n; 1), a(I) (I € IT) and f(n; w) as follows:

Rj;0) = S; ¢) = T(; ¢) = aw(@) = 1
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and for I = (a1, 00, ,ap) € 11

R D)= (n+ (D)=,

S 1) = I1 R(n: J),
J,LeM,JxL=I,J]#¢
(4.1) T =[] Ro+():L),
J,Lell,JxL=I

aw(l) =2 |p(Q(D* X0y, X——)1?,

fo: o) = (=D an(Sk; D),

lell

where I = p and (I) = Zle o
Fory € ¥,,a € Px and J, L € Il, we have

“4.2) ay(@)ay1q(J) =ay(axJ),

4.3) R; )+ R+ (J); L) = R(p + (J); L)R(y; )R(n; T« L)™',
(4.4) Sm; L*a) =S8m; L)R(; L xa),

4.5) TaxJ)=Tm+o; )R axJ).

DEFINITION 4.2. Let w and y be two noncompact roots. When I1(y; w) # ¢ (see
Definition 3.7), we define n(y; w) as the maximal integer of the set {§1 : I € I[1(y; w)}.

LEMMA 4.3. Assume that u+w € I'k and Py, (pc ®v(1)) # {0} for a noncompact
root . If P, (X, @ v(w)) # 0, then we have

(4.6) |PutoXy @ @)= Y ay(DTO A+ y; DIPuto(Xo @ ().
lell(y;w)

PROOF. By Lemma 3.8 P, 1, (X, ® v()) # 0if and only if n(y; w) > 0. We shall
prove (4.6) by using an induction on n(y; w) > 0. When n(y; w) = 0, our assertion is
obvious. Assume that the lemma is true for all § € X, satisfying 0 < n(8; w) < n(y; ). Let
a be an element in Pk satisfying n(y +o; w) > 0. Since axI € I1(y; w) for I € I1(y +o; w),
we have 0 < n(y + o; ) < n(y; w). By the hypothesis of our induction we have

1Pyt (Xyta ® v()?

= Y apeTO+y + o DIPuto(Xo @ v()[ .
Iell(y+a;w)

%))
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Since | 4+ w|* — | + y|* > 0 (see Lemma 3.8), (4.2) and (4.5) imply
2| {a, ) I?

A+ o — 1+

= ay(@ay+a(DRO A+ yiax DTG4y +a: 1)

—Fya(DT G4y 03 1)

=ay,(axDTA+y;axl).
Hence by Lemma 3.6 and (4.7), we have
|Puto(Xy @ v())I?

=2 > ay@xDTO+yiaxDIPuoXe ® o)
aePg Iell(y+o;w)

= Y ay(DTOAy; DIPuto(Xo @ v()I.

Iell(y;w)
Let P be a positive root system containing Px and ¥ = {81, B2, -, Be}. We define
ri € (W—1b)* by
(4.8) 2005, BHIBI TP =61y, 1<ij<t,

where §; ; is Kronecker’s delta. For n € (+/—1b)* we have

¢
n= > mniki. i =200, BIBiI 2.

i=1
Let R[n] = R[n1, n2, - - -, ne] be the ring of all polynomials in 11, 12, - - - , ¢ over the real
number field R. The quotient field of R[7] will be denoted by R(7).

LEMMA 4.4. Letl (# q;) be an element in I1. Then we have

(—DEISe; 1) = > (DT @; DS+ (J); L).
J.LeM, JxL=I,]#¢

PROOF. Weput F(n; I) = ZJ*L:1(—1)I:LT(77§ J)S(n + (J); L). Then the identity
of this lemma is equivalent to F(n; I) = 0 in R(n). We shall prove that F(n; I) = 0 by
using an induction on §/. When §/ = 1 our assertion is obvious. Suppose that §/ > 1 and
F(n; J) =0forall J in [Tzp—1. We put I = (a1, a2, -+, &p). By the definition of F, we
have
@9 Fi: D= Y. D*Tm NSO+ ) L)+ D¥So D+ T 1) .

JxL=I,] #p, L+

We now put I’ = (a1, a2, -+ ,ap—1) and I” = (a2, a3, - - , &¢p). By (4.4) and (4.5) we have
(4.10) S D) =S INRG; 1), Ty ) =T +ar; IR 1) .
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By the hypothesis of our induction we have the followings.
(—DP2S Iy = Y (DT SO+ () L),
JxL=I",J#¢
(—DP2S(+ar; 1)
= Y. EDETO+ai SO+ +(); L)
JxL=I",]#¢
=T +eai; ")+ Y EDET@+en NS +ar+ () L).
JxL=1",] #,L#¢p
These two identities imply that
(=DPSo I+ T +ar; 1)
= Y. D*ETo; NSO+ (I); L)
JxL=I",J #¢
+(=DP S+ ar; 1) - > =DETO s SO +er+ () L)
JxL=I",J#p, L+
= > EDETeNDSM+ () L)
JxL=I",J#¢
- > DETh+a NSt +ar+ () L).
JxL=1",L#¢
We put I = (a2, @3, -, ap_1). Then by (4.4) and (4.5) we have
(=DPS: I+ T +ar; 1)
= Y DT * IS+ a1+ (') L)

J'xL=1""
+ Y DT+ SO +an+ () L xay)
J*L/:l///
= Y COETG e IR @+ IS+ e+ I L)
J/*L/:l///
+ > CDFTOan SO+ (e D) LR+ e+ )i L x ay)
J/*L/:l///
= Y T+ S0+ (I L)
]/*L/ZIH/

X {R(; a1 *J') + R+ (a1 * J'); L' % ap)}.
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By (4.3) and (4.10) we have
(—D¥St; D+ T; 1)

= Y COETO e JIRM ar + )
J/*L/=l///

x S+ {ar* J'); LYR( + (a1 % J'); L' x )

=— > EDETe NSO+ () L).
JxL=1,] #¢,L#p

Consequently, by (4.9) we have F'(n; I) = 0 as claimed.

We now choose a positve root system P of X as follows. If (G, K) is a hermitian pair,
then we choose P for which (cf. Proposition 7.2 in [4]) pc = pT @ p~, where pT is the
subspace of pc generated by the root vectors corresponding to the noncompact positive (resp.
negative) roots. If (G, K) is nonhermitian, then we choose a positive root system P containing
Pr.

DEFINITION 4.5. We put, for the hermitian case, v = pjE and for nonhermitian case
v = pc. v is a simple K-module. The set of all weights (roots) in v will be denoted by X,.

REMARK. If (G, K) is hermitian, then we have pc = v @ t(v) and U (c)v C v. These
imply that [T (w; y) = ¢ forw € Xy and y € X (y). Moreover since b® V), and 7 (v) ® V,, are
orthogonal with respect to the hermitian productin (3.6), pc®V, = 0@V, ®t(0)Q®V, as K-
modules. By these properties the conclusions of Lemma 3.8 and Lemma 4.3, replacing pc and
X, respectively with v and Xy, are also true. Let Wk be the Weyl group of the pair (¢c, bc).
Each s in Wk is realized by s = Ad(k)|p, k € Nk (B), where Nk (B) is the normalizer of B
in K and Ad(k)|p the restriction of Ad(k) to b¢c. Thereby X, is Wi -invariant.

LEMMA 4.6. Let (7, Vy) be a unitary simple K-module with the highest weight ..
Assume that i + w € I'k for all noncompact root w in Xy. Then we have

0Q V) = ®uwex, Puto(®0®Vy), Puto(d® V) # {0}.

PROOF. There exists a finite covering group K* of K such that the function &, (exp H)

= Pk M) (H € b)is well- defined, where X — exp(X) is the exponential mapping of £ to
K*. Let B* be the Cartan subgroup of K* corresponding to b. Define a function Ax on B*
by

AxexpH) = [] (e3(H) _ g=3a(H)y

ae Pk

Applying Weyl’s character formula to 7, (cf. Theorem 4.46 in [7]), we have

(Agtrace(Ad|y ® m,))(exp H) = < Z e‘”(H))( Z 8(t)et(“+p’()(H)),

weXy teWg
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where ¢(¢) is the signature of 7 and Ad|y is the restriction of the adjoint representation of K
to v. Since

Z e H) _ Z g forall 1 € Wk,
weXy weXy

it follows that
4.11) (Agtrace(Ad|y ® 7,))(exp H) = Z Z g(t)e! WHetp)H)

weXy teWg
We now assume that u + w € I'g forall w € Xy, and let 77,1, be the simple K-module with
the highest weight © + w. By (4.11) we have
trace(Ad|, ® ) (k) = Z trace m,1(k) forall k € K,
we Xy
and thus, the assertion of this lemma.

LEMMA 4.7. Assume that u + § € 'k for all noncompact roots §. Then for w in X,
we have

|Pito(Xo @ vGII* = f( + o) 0)
where v(ju) is the highest weight vector of V,, normalized as [v(w)| = 1 and A = . + pk.

PROOF. We choose a K-module v satisfying w € Xy, and let yp be the highest root in
Y. Since v is a simple K-module, we have n(w; yp) > 0. We shall prove the identity in this
lemma by using an induction on n(w; yp). By Lemma 4.6 we have

Xo®v(i) = Y Puy(Xo ®v(1)).
y€Xy

This implies that

1PutoXo @) =1— > [Puyy (X @ ()17
y€Xy,y @
Moreover, since P4y, (0 ® V,) # {0} for all y € Xy, Lemma 3.8 implies that P, 1, (X, ®

v(w)) # 01iff IT(w; y) # ¢. When w = yo we have I1(yo; y) = ¢ forall y # yo,y € .
Therefore | Py (X ® v(w))|*> = 1. On the other hand, since yo + « ¢ Xy forall « € Pk,

we have ay,,(I) = 0 forall I # (;NS, I € I1. Thus by (4.1)

FOA Y0 10) = 1= | Pugyy (X @ (1))

Let us now assume that the formula is true for all roots y in X, satisfying 0 < n(y; y) <
n(w; o). To apply our inductive hypothesis we shall prove that if IT(w; y) # ¢ and y # w,
then n(y; y0) < n(w; yo). Let I be an elemen in /T(w; y). Then Q(1)*X,, € g, \{0}. Since

Q())* Xy € gy \{0} for J € IT(y; yo), we have Q(I * J)* X, = Q(J)*Q(I)* X0 € gy, \{0}.
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This implies that I xJ € I1(w; yp) forall J € I1(y; yo). Since n(w; yo) > §(I*J) = 81 +1J
and g/ > 1, we have n(y; y0) < n(w; yo). Applying Lemma 4.3 to P4, (X, ® v(u)) for
y # w,y € Xy satisfying I1(w; y) # ¢ we have

|Putor(X ® (1))

=1— Y > ao(NTO A+ )| Pury(Xy @ v(w)],
yeXv,yF#w Jell(w;y)

hence by the inductive hypothesis,

=1- Z Z(—l)“ x ap(Day (L)T (A + w; J)S( + y; L)
y#w,Jell(w;y) Lell
=1- Z Z(—l)“ X dp(J)ay ()T (A + w; J)SA+w+(J); L).

y#w,Jell(w;y) Lell

Since a,(J)ay (L) = aw(J x L) and Uyex, yzoll(w;y) = {J € IT 1 J # ¢, a,(J) # 0},
we have from Lemma 4.4

1Pt Xo @0 =1-3" > (=D"a,(DTO+o; NSO+ + (J); L)
BI=1 juL=1,7+#¢

=Y Y (D"a,(HSO+w: )
Tell jup=1,7#¢
=fA+ow o).
REMARK. The assumption of this lemma is crucial to apply our induction. For exam-
ple, itis not trivial that P, 1, (0®@v (1)) = Oforw € Xy, u+w € I'k implies f(A+w; w) = 0.
The following two lemmas will be applied to prove Theorem 5.5.

LEMMA 4.8. Letw € X, and u € I'k. Assume that p + w € I'y and Py ,(pc ®
Vi) # {0}. Then we have

D Puto(Xy @ v() 1 = f(=4 — 07 )| Puyo(Xo @ v(w)I*.
Y€
PROOF. We can assume that w € Xy. Since P, 1, (t(v) ® V,,) = {0}, it is sufficient to
prove that
D Puto(Xy @ V)P = f(—2 — 01 —0) | Puto(Xo ® v()|*.
y€Xy

Let y be an element in Xy, satisfying n(y; w) > 1. First we define a mapping y of I1(y; w)
to IT(—w; —y) by

() = (ap,ap_1, - ,a1) for I =(ar,az, -+ ,0p) €ll(y; ).
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Actually, since
¢(ad(QN) Xy, X—0) = $p(ad(Xa,Xa, | Xa) Xy, X—0)
= (=DP¢(Xy, ad(Xo, Xa, - Xa,) X—0)
= (=D QWU X -0, Xy)
Definition 3.7 implies that ¥ (/) € II(—w, —y). Furthermore, we have (see Definition 4.1)
(4.12) ay() =a—o(Y(I)) for Iell(y;w),

and 1 is bijective, because 2 is the identity on IT(y, ). Next we shall prove that

413) TA+y; )= (—l)tIS(—k —w; Y(I)) forall y € Xy and
4.
I € I[1(y; w) satisfying n(y; w) > 1,

by an induction on n(y; w) > 1. Suppose that n(y; w) = 1. Then we have immediately
TA+y;I)=—S(—x —w; I). Let y be an elemaent in X, satisfying 1 < n(y, w). Let us
assume that the identity (4.13) is true for all § in Xy, satisfying 1 < n(§; w) < n(y, ). Let I
be an element in I1(y; w). We can assume that ] = ax I’ fora € Pg and I’ € T1(y +a; ).
Then by (4.5)

(4.14) Th+y;D=RA+y;DTO0+y+o; 1.
Since n(y + «o; w) < n(y; w), the inductive hypothesis implies that
Th+y+a: )= (=D"'S(=1—w;vU)).

Since y + (I) = w, we have R(A + y; I) = —R(—A — w; ¥ (I)). Consequently, by (4.14)
and (4.4) we conclude that

T4y D) =(—D"R(=1— o ¢ (1)S(—1 — w; y(I")
= (=D S(=h — ;¥ (D).
Hence we have (4.13). Let us now prove this lemma. By using Lemma 4.3, we have

D PuroXy @vIF = Y Y ay(DTOAy; DIPuro(Xo @ v,
y€Xy ye€Xy Iell(y;w)

YooY ay(DTOA+y: DIPuto(Xe @ v(w)?

veEXy Iell(y;w)

=Y (D" a_,(S(—r = w; DI Puto(Xo @ v()|?
lell

= (=2 — ®; —0)| Pytor(Xey ® ()]

Here we used (4.12) and (4.13). By Lemma 4.7 and Lemma 4.8 we have immediately the
following lemma.
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COROLLARY 4.9. Let u € Ik, and assume that u + & € I'k forall § € X,. Then we
have

D 1Puto(Xy @ V()P = f(=1 — 0; —0) f (A + o; ©)

yeZ,

for each w in Xy,

5. Functional equations of f(1; w)

For each w in X, we shall consider the rational function f(n; w) in n (see (4.1)). Our
purpose of this section is to prove Theorem 5.4 and Theorem 5.5. We note that Theorem 5.5
is arefinement of Lemma 4.7.

LEMMA 5.1. Let u € Ik, and assume that p + o € I'k, Py (pc ® V) # {0} fora
noncompact root w € X,. Then we have

G J] 0 olPureXo @)l = [] 0+, ) Pu(X—0 @ v+ o)),

a€Pk aePk

A+ w,a)
(*, @)

’

(5.2) Y 1P Xy @ v = []

yel, aePg

where v(1) (resp. v(iu + w)) is a highest weight vector in V,(resp. V1) normalized as
()| = lv(n + o)l =1, and A = p + pk.

REMARK. The identity (5.1) is due to N. Tatsuuma (cf. [9]).

PROOF OF LEMMA 5.1. By Schur orthogonality relation we have

C= /K(k(Xw ®v(w)), Xo ® v(w) (kv(u + w), v(u + w))dk

= /K(kPquw(Xw ® v(w), Puto(Xo ® v(1)))(kv(n + w), v(n + w))dk

= (deg to) " Pt (X @ v(10)) | .

On the other hand, we have

c— /K (kX oy Xo) (kv (12), (1)) (GO0 F @), 008 T @)dlk

= /K(kv(u), V() k(X -0 ® v(n + @), X—0 @ v(u + w))dk

_ /K (kv (), V(1) K Py (X —p ® 0(1t F 0)), Pu(X o ® (1 + @)k

= (deg ) | Pu(X o ® V(1 + @)
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Hence we have

(5.3) deg 7| Puto(Xoo ® v()|* = deg ol Pu(X— @ v(1t + ).
Bearing in mind deg 77, = ]_[aepk ((;K’—Dg) and the corresponding formula for deg 77,14, (5.3)

implies the identity (5.1). Let us prove the identity (5.2). Let {u; : 1 < i < N}, N =
deg 7,14, be an orthonormal basis of V,, ;. By using Schur orthogonality relation, we have

N
E=3" Y[ kX, ®v(w), Xy ® v(w) kui, uj)dk
K

yeXl, i=1

N
A =Y Y N Puto(Xy @ (). ) (Puto (X, ® V(). )
yeX, i=1

=N ) Puro(Xy @ v
YEZ

On the other hand, we have

N
E= [ oo, 0G0) 3o 3 R X G wid

yex, i=1

= / (kv(w), v(u))trace(Ad ® 4 40) (k)dk
K

=m(M)/K(kU(M),U(M))traceﬂu(k)dk

= m(u)(degm,) " .
Here we used

trace(Ad ® 7y 1.0) (k) = > m(p + o + Y)race(Ty 4oty (k) .
yeXy,uto+yely

where m(u +w+y) = 1 or = 0 (see Lemma 3.4). Hence by (5.4) we have the identity (5.2).
We define a subset D of I" by

(5.5) D={uel:2u )il =9foralli=1,2,--- ¢},
where ¥ = {f1, B2, - - - , B¢} is the same as in (4.8).

LEMMA 5.2. Let u be an element in D. Then we have u + w € I’ forall w € Xy,
Furthermore, we have 6n\; + p € D for all positive integersn andi = 1,2, --- , L.

PROOF. Letw be anoncompactrootin X'. Since u and w are integral,  + w is also an
integral form on bc. We shall prove 1 + w is P-dominant. Let o be a rootin P. By (2.5) we
have

(5.6) 2(u 4 o, @)|a| 72 = 2(u, @)|a| 2 = 3.
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Let ¢ = Zle m;B; be the expression of « by the simple roots in ¥. Then all ms are
nonnegative integers. Furthermore, we can assume that m; > 0 for k, 1 < k < £. Since
|Bil*lae| ™2 = 1/3 and 2(1, Bi) Bkl ~* = 9, we have

20, )| ™2 = me2(w, B 1Bkl H (Bl ) > 3.

Hence by (5.6), we have 2(u + w, Ol)|C(|_2 > 0. Thus u + w € I as claimed. Let us prove
the second assertion of this lemma. It is sufficient to prove that 6nA; € I'. Let o be as above.
If m; = 0, we have 2(6n;, @) = 0. Assume that m; > 0. Since

26nri, a)|a| ™% = 6min(|B;*lal ™2,

(2.5) implies that 6n2; is a P-dominant integral form on bc.

LEMMA 5.3. Let F be an element in R[n]. Suppose that F (L) = 0 forall A € D+ pk.
Then we have F = 0.

PROOF. F is written by
m
(5.7) Fp =Y ) Fi(na. .m0
=0

Let A = u + pg be an element in D + pg. We put A = Zle piXri. Then p; is a rational
number. We shall prove the assertion by using an induction on £. We first assume that F () =
F(n1). By Lemma 5.2 we have 6ni; + A € D + pk for all positive integers n. Hence by
our assumption for F, we have F((6n + p1)A;) = 0. Since the polynomial F'() has the
infinitely many zeros, we have F = 0. Let F be the same as in (5.7). Since Y ;- (6n +

p1)! Fi(p2, -+, pe) = O for all positive integers n,
Fi(p2,-+-,pe)=0 forall i=0, 1,---,m.

We have F;(A) = Oforalli and A € D + pk. Thus by the hypothesis of our induction we
conclude that F = 0.

Let n be an element in (+v/=16)* and « an element in Px. We put ¢ = Zle m; Bi,
where m; is a nonnegative integer. Then

A
(o)=Y SHBiPni.

i=1

Especially, (7, ) € R[n] for all « € Pkg.
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THEOREM 5.4. Let w be an element in X,. Then we have the following functional
equations in R(n).

(5.8) [[oora+oe=[]0+o0fn-o),
a€ePg a€ePg

(5.9) fo+oio)f(-n-w-0)= [ +o.0ma™".
DlEPK

PROOF. We put

q(n) s(n)
d P - 7
p(n) and £ (7; ) r(n)

where p, g,r, s € R[n]. By Lemma 4.7 and Lemma 5.1 we have

S+ o) =

1_[ R ) fA+w;w) = l_[ A+w,0)f(\; —w) forall A € D+ pg .

ae Pk a€ePg

This implies that

[Jx-ergG) =]+ @.0)s)p() =0 forall & € D+ p .

By Lemma 5.3 this identity holds for all n € (+/—1b)*, and therefore, we have the identity
(5.8). The identity (5.9) is also proved by using the same arguments as above.

THEOREM 5.5. Letu € I'k and w € Xy,. Suppose that u + w € I'k and Py ,(pc @
V) # {0} for a noncompact root w. Then we have
|Puvo(Xo @ V() = [ + w1 0).
PROOF. Combining Lemma 4.8 with Lemma 5.1 we have

f(h =0 =0)| PuroXo @) = [ 0+ 0,00, 0)7".

ae Pk

By the second identity in Theorem 5.4, we conclude that

|Puvo(Xo @ V() = [+ w1 0).
The following lemma will be used to calculate the explicit formula of f (n; ).

LEMMA 5.6. Let fi,h; (i = 1,2) be four polynomials in R[n]. We assume that
deghy = deghy = 1 and fih1 = foho. If ho is distinct to a non-zero constant multiple
of hy, then f> is divisible by h.

PROOF. Since degh| = 1, there exists a number i, 1 <i < ¢, such that the first partial

derivative gin' is a non-zero constant. We can assume thati = 1, and put {1 = hy, §; = n; for
1
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2 <i < £. Then we have R[¢] = R[¢1, &2, -+, &l = R[n]. Let g; (i = 1,2) and & be three
polynomials in R[¢] satisfying g, (¢) = fi(n) and h(¢) = ha(n). We put

14 m m
h(&) =) cili+co, g1(0) =Y ¢lri@) and g2(0) =) &5 (@),
—

i=1 j=0
wherer;,s; € R[{2, -+, ¢¢] and ¢; € R. Since

0= fimhi(n) = f20mh2(n)

=3 @ =Y el @) —a) = > e s @),
j=0

j=0 =0
we have
D6l @) =150 = 3¢l s, @) — i)
— Jj=0

Bearing in mind h(¢) — c181, 5, rj € R[&2, -+, &el, it follows that so(¢)(h(¢) — c1£1) = 0.
On the other hand, since h(¢) = ho(n) is not a constant multiple of {1 = h1(n) , we have
h(¢) — c1&1 # 0. Since R[¢] is an integral domain, we conclude that so(¢) = 0. Thus

L) =3, {{s.j (¢) is divisible by ¢; = h1(n). This completes our proof.

6. Product formula for f(n + w; w)

For each w € X, we define a rational function f (; w) and a real number a., (1), I € I,
by Definition 4.1. In this section we shall prove that f(n; w) has a product formula. First we

define a subset A(w) in (v/—1b)* by

(6.1) A() = {{I) - ap(I) # 0,1 € IT\ITo}.

We define the polynomials pg () (§ € AA(a))) and p(n; w) in R[n] by

(6.2) pen =201.6) + 57, pw)= ] pen.
§eA(w)

Since p(n; w) is the least common multiple of the denominators of fractional terms S(n; I)
(I € ) in f(n; w), there exists a polynomial g (1; w) such that

(6.3) pm;w)f(n; @) =g(n; o).
We put At (w) = {a € Pk : £(w, «) > 0}. By Theorem 5.4 we have

pii—o) [ ogh+ew
acA_(w)UAL ()
(6.4)

=pn+wiow)  [] Ot 0gn-o.
aeA_(@)UA4 ()
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We now define the subsets A(w), A, (w) and A, (w)* of Pg, where m is an integer, by
Alw) ={ae € Pk 1w+ a € X},
Ap(®) ={a € Pk : 2(w, 0)la| > =m, 0 +a € T},

Ap@)* ={a e Ap(w) :0—a e X}.

We note that A(w) C AA(a)).

LEMMA 6.1. Let G be an inner type noncompact real simple Lie group and w a non-
compact root in X. Then we have the followings.

(1) A(w) =A_(w) U Ap(w) U A(w), Ao(w) = Ag(w)* and Aj(w) = Ar(w)*.
2) If Aog(w)* # ¢, then G is one of Sp(n,R) and SO(2m,2n + 1),

and A(w) = Ag(w)* U A_1 ().
B) If A_j(@)*"UA(w)* # ¢, then G is of the type G, .

PROOF. Leta be an element in Pg and w + jo (—g < j < p) the a-series containing
w. Weput A = A_(w) U Ag(w) U Aj(w). We first prove that A(w) = A. Let o be an
element in A. Since Ag(w) U Aj(w) C A(w), we can assume o € A_(w). Then by (2.3)
we have ¢ € A(w), and hence, A C A(w). Let us now assume that « € A(w). Since
p > land p+¢q < 3, (2.3) implies that « € A. Thus A = A(w). Moreover, we have
Ag(w) = Ap(w)* and Aj(w)* = Aj(w). Let us prove (2) and (3). Suppose that o € Ag(w)*.
Then w + @ € X and 2(w + «, o:)|oz|_2 = 2. In view of (2.8), (2.9), (2.10) and (2.11) we
have G is one of SO (2m, 2n + 1) and S, (n, R). It remains to prove that if Ag(w)* # ¢, then
A(w) = Aog(w) U A_1(w). By (1) it is sufficient to prove A_(w) = A_j(w) and Aj(w) = ¢.
If Ap(w) # ¢, then w is a short root. By (2.9) and (2.10) we have |2(w, o)|a| 72| < 1 for
all « € Pg. This implies A_(w) = A_j(w). Suppose that « € Aj(w). Since w +a € X,
and 2(w + o, )| ™2 = 3, G is of the type G,. This implies that A;(w) = ¢ for the case
Ap(w)* = ¢. Consider the case A_|(w)* U Aj(w)* # ¢. When Aj(w)* = Aj(w) # ¢, the
above argument implies G is of type G7. If « € A_{(w)*, then we have 2(w — «, oz)|oz|’2 =
—3. This implies also the same conclusion.

LEMMA 6.2. Consider a noncompact root w and a compact root a in Pg. Then for
each & € AA(a)) and ¢ € AA(—a)) we have the followings.

(1)  pe(n+ w) is divisible by (, @) iffa € A_(w) and § = — 20.0)

loe|?

(2)  pc(m) is divisible by (n + w, @) iffa € Ay (w) and ¢ = %a.
(3)  p:(n + w) is divisible by p; (n) iff one of the following three cases;
(i) § =¢ € Ag(w)*, (i) & € A1(w)* and ¢ = 28,
(iii) ¢ € A_(w)* and & = 2¢.
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PROOF. Letusprove (1). Assume that there exists a nonzero real number k such that
ps(n + ) = 2k(n, a). Then we have § = ka and 2(w, a) + k|oz|2 = 0. On the other hand,

since & € A (w), there is I € IT\Iy such that £ = (/). This implies that & is a positive real

_ 2(w,a)
loe|?

these conditions, then we can prove that pg (7 + ) is a non-zero constant multiple of (1, o).

number. Consequently, we have o« € A_(w) and & =

«. Conversely if o and & satisfy

Similarly by using the same arguments we can prove (2). We shall prove (3). Suppose that
there exists a nonzero real number k such that kps (1 + @) = p¢(n). Then we have

(6.5) ¢ = k& and 2(w, £) = (k — DIE*.

By the first identity in (6.5), k is positive. We put § = w+£&. Since & € A(w), it follows from
the definition in (6.1) that § € X'. We have

(6.6) 1817 — |l = 2(w, &) + |E]* = kIg|*.

This implies that [§|> > |w|?. On the other hand, since |£]> = |5]* — 2(w, 8) + |w|?, we have

1 2 1 2
6.7) 2(,8) = (147 Jlol* + (1= £ )18
When [§| = 2|w|?, we have k = 1 and 2‘(3;’) = 2. Therefore £ = ¢ € Ao(w)* which is the

case (i). When |8]? = 3|w|?, (6.7) implies that 2(w, 8) = (4 — 2/k)|w|?. Since

2(8, w)
|w]?

€ {0, £3},

it follows that k = 2 or k = 1/2 or k = 2/7. In the first case, we have § —w = £ € Aj(w)*
and ¢ = 2£. Let us consider the second case: 20.9) — )andk = 1/2. Weputé = —w +¢.

|o]?
Then we have §' € X. Furthermore, by (6.5) we have

1 1
2w, ¢) = —ZIEIZ = -8 — o = —|o?.

Therefore
208, w) = 2(¢, 0) — 2|w|* = —=3|o|?.

Hence we have £ = §' + w € ¥ and 2({, w) = —|w|®> = —|¢|>. Thus ¢ € A_j(w)* and
& = 2¢. Suppose that k = 2/7. Since & € A(w), there are two nonnegative integers p, g such
that £ = pagy + qoo, where {ag, a2} is the positive root system Pg of type G (see (2.11)).
Since |8|? = 3|w|?, the equation in (6.6) implies that & = &g + 20r2. Then, ¢ = 2& ¢ A(—w).
This is contradict to the assumption ¢ € AA(—a)). Thus the final case does not occur.

Let w be a fixed noncompact root in X,. In order to calculate a product formula for
f(n; w) we shall consider two cases: Aj(w)* U A_j(w)* is empty or not. For the first case
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we define two polynomials p(n; w) and g (; ®) as in (6.3). We now put

P+ w;w) = pO + w; w) [] o+ow,
aeA_(w)UAL (w)

Po—o)=pm;—o) [ o,

aeA_(0)UA4 (w)
Then by (6.4) we have
(6.8) P —0)g(n + w; ) = p'(n + ©; 0) g (1; —o).
We also define two polynomials s(1; @) and ¢ (; @) in R[] by

sro)= ] @@ +laP),

aeAg(w)*

g o) =sto) [| -0 [] 0.

acA_(w) acAy(w)

(6.9

Since g (n; w) and s(n; w) are invariant under the transformation: (n, ®) - (n — w, —w), we
can define g (n; —w) and s(; —w) by

(6.10) q(n; —w) =g +w;w) and s(n; —w)=s+w; ).

LEMMA 6.3. Assume that Aj(w)* U A_1(w)* = ¢. Then the greatest common divisor
of p'(n + w; ) and p'(n; —w) is given by q( + w; ®) = q(n; —w).

PROOF. By (6.2) we have p(n + w; w) = Hsej(w) pe (n+ w). The polynomials pg (1)

and p;(n) are mutually prime for two distinct £ and ¢ in Aw). Actually, if pg(n) = cpc ()
for a non-zero real number ¢, then & = c¢ and |&|> = ¢|¢|* These imply ¢ = 1 and & = ¢.
Let p be a common prime divisor of p’(n + w; w) and p’(n; —w). Since p is a divisor of
P’ (n+w; w), we can assume that p = ps(n+w) (§ € A(w)) orp=MN+w,a) (@ € A_(w)U
Ay (w)). If p = pe(n + w), then the formula of p’(n; —w) implies that cp = (n, B), B €
A_(w)UA(w)orcp = pc(n), ¢ € A(—a)), where c is a constant. In the first case, (1) in
Lemma 6.2 implies cp = (1, B), B € A_(w). For the second case, from (3) in Lemma 6.2 it
follows that cp = 2(n, B) + |B1%, B € Ao(w)*. If p = (n+w,a), a € A_(w) U A4 (w), then
by (2) in Lemma 6.2 we have « € A (w). Therefore, p is a divisor of

q+oio)= [] v [] G+e.r) [[ Co.r+irP.

yeA_(w) yeAi(w) y€lp(w)*

Thus g (n + w; w) is divisible by all common prime divisors of p’(n + w; w) and p’(n; —w).
Again by Lemma 6.2 ¢ (n + w; w) is a common divisor of p’(n + w; ) and p’(n; —w) which
implies the conclusion of this lemma.
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We keep the assumption A_1(w)* U A1 (w)* = ¢, and put h(ny; o) = p'(n; w)q(n; w) 1,
h(n; —w) = p'(n; —w)q(n; —»)~'. By (6.8) we have
(6.11) h(n; —0)g(n + w; 0) = h(n + w; ) g (1; —w) .
By Lemma 6.3, h(n + w; ) and h(n; —w) are mutually prime. Therefore, it follows from
Lemma 5.6 that there are two polynomials k(1; w) and k(n; —w) such that
(6.12) g+ w;0) =k(n+w; h(n+ w;0), g0 —w) =k@; —0)h(; —) .
Substituting the first identity for (6.3), we have
f+wi0)=g0+o0)ph+o;0)”",
= k(n + w; 0)h(n + ©; ©) p(n + ©; w) !
= k(n + o; 0)p'(n + ©; ©) (g (1 + ©; ©) p(n + ©; )"
=kn+w0) [[ G+o.0mo sh+ow0)™.
acA_(w)
LEMMA 6.4. Assume that Aj(w)* U A_j(w)* = ¢. Then we have k(n + w; w) =

k(n; —w) and the following identities.

1) fh+o0)=kh+o0) [[ O+o,ama'sh+o0)™,
aeA_(w)

o =) =k; o) [ o)+ o,0) st —o)7".
a6A+(a))
() k(= —w; =)k + 0; 0) = 5(—n — w; —)s(N + ©; V).
PROOF. The first identity in (1) is already shown, and the second one also follows from

the same calculation. It remains to prove the identities k(n + w; w) = k(n; —w) and (2). By
using the first identity in Theorem 5.4 we have

[T oorag+roo= ] G+oofo-o.

aeA_(w)UAL (w) aeA_(w)UAL (w)

Hence by (6.10) and the identities in (1), we have k(n + w; w) = k(n; —w). By the second
identity in (1) we have

fen—o—0) =k(-n—w;—0) [] G+o,0ma) 'sn-—0,-0)",

aeAL(w)

and then, by the first identity in (1) we have

fO1+ 0 0) f(—n — 0; —0) = k() + ©; k(=) — ©; —){s(] + ©; ®)s(—) — 0; —)} ™'

< ]l ateono.

aeA_(w)UAL (w)
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Therefore, the second identity in Theorem 5.4 implies the assertion of (2).

THEOREM 6.5. Let G be an inner type noncompact real simple Lie group and w a
noncompact root. We define f (n; ) by (4.1). Then f(n; w) has one of the following product

formulae.
(1) IfAo(@)*UA_ (@)U A (0)* =¢, then

fo+oo)= [] G+o,amo™.
aeA_(w)

@) If Ao(@)* # ¢, then Aj(@)* U A_1(@)* = ¢ and
fo+oo)= [ Qoo —le®Cm o)+l

aeAg(w)*

< [ o+e.xmo™.

aeA_1(w)
Q) IfA(w)"UA_((0)" # ¢, then Ag(w)* = ¢ and
fo+oio)= [] G+eoomo™ [] @00 -2 e+l

acA_(w) acA(w)*
<[] 2o —le®Qam )+l
aeA_j(w)*

PROOF. If Ag(w)* U A_1(w)* U A(w)* = ¢, then by (6.9) we have s(n + w; w) = 1.
(2) in Lemma 6.4 implies that k(n + w; ®) = ¢, where c is a real constant. Hence by (1) in
Lemma 6.4

fh+w o) =c ]_[ +o,0)@a) .
aeA_(w)

We shall prove ¢ = 1. Let A9 be a Px-regular dominant integral form on bc. By the above
identity, we have

lim f(aro+ w; w) =c.
a—+00

Let S(n; I), I € I1, be the rational function as in Definition 4.1. Since lim,_, 40 S(aXo; I) =

0 for I # q~5 we have lim,_, y, f(alo + w) = 1. Hence we can prove (1). Let us assume
that Ag(w)* # ¢. By (2), (3) in Lemma 6.1 we have A_{(w)* U Aj(w)* = ¢ and A_(w) =
A_1(w). We put

smM=s+w;w), k() =k(n+ w; w),
u(m =Y aw@pan+w) ",

aell

= [[ +ewo,

aeA_1(w)
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wm= [ &,
aeA_1(w)
rm=fn+ow o) —1+um.
By (4.1) there exist two polynomials r1, 7> in R[n] such that r = rq r;l and degr; < degr, —

2. Since each prime divisor of r; is of degree one, it follows from Lemma 5.6 that we can
assume r] and r» are mutually prime. By (1) in Lemma 6.4 we have

(6.13) s(m{l —u(m) +r(miw@) = k@muvm).

Let N be the degree of the polynomial k(n)v(n). We shall prove that srw is a plolynomial
and deg(srw) < N — 2. By (2) in Lemma 6.1 and (2.4) we have

um =Y aw(@pa(n+w)”

aeA(w)
(6.14) |
_ 222 2y—1 L2 -1
Y. APl +le)T + 3 Slal(n )
aeAg(w)* aeA_1(w)

By this formula and (6.9) suw is a plynomial in 7, and hence by (6.13), srw is also a polyno-
mial and deg(srw) < N — 2. Then it follows from (6.14) that

s+ w;0)(1 —un) +r(mM)w(n)

= 1 @o- > kP I (. B)

(6.15) a€Ap(w)*UA_1(w) acAp(w)* Be(Ap(@)*\{ahUA_|(w)
1
- Z §|05|2 l_[ (n, B) + the lower terms.
aeA_j(w)* BeAp(@)*UA_ (o) \{a}

Let us now determine the polynomial k(). By the functional equation of (2) in Lemma 6.4,
we have

km=c [] @) +edlal,

a€Ag(w)*

where c is a constant and ¢, = £1. Comparing the highest and the second highest terms
in (6.15) with k(n)v(n), we have ¢ = 1 and ¢, = —1 for all @ € Ag(w)*. Hence by (1) in
Lemma 6.4 we have (2) in this theorem. Finally, let us consider the case A} (w)*UA_|(w)* #
¢. Since G is of the type G2 (see (3) in Lemma 6.1). Pg and X, are respectively given by

2(y, B)
Px ={B,2y =3B}, Tp ={xy, £(y — B), £(y —2B), £(y —3p)}, BE 3
Let o be an element in Aj(w)* U A_j(w)*. Since w + « € X, we have || = |w| and w is a

short root. Therefore

Al@) " UA_1(@)" ={B} and we{E(y—p), £ —28)}.
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Furthermore, we have

Aly = B) = A1y — B)* = A_1(y —2B)* = {B), A(y —28) = (B, 2B}.

A direct calculation shows that

3182 2(n, B) — 181>

_ : _ =1_ = ’

Jody =By =D =1 B+ 18D =~ 26, B + 18D
411> 4181 31812
FOrty —2py—2p) = 1— L, P |/3|

2.8 2. B) 2. B) + AP
_ (+vy —28.8) 2. B) — IBP)
. B) 20, B)+ 181>

Hence, forw = y — 8 or = y — 28, we have (3) of this theorem. For the case —w =
—y + B, —y + 28, we have also (3) by using the identity (5.8) in Theorem 5.4.

7. Main theorem
Let u € I'k and V,, a simple K-module with the highest weight u. By Lemma 3.4

pPc® Vu = @weE,,,;H—weFK Pu+w(pC by Vu) ’

where P14 (pc ® V) = {0} or is a simple K-module. In this section we shall prove that the
K-module Py, (pc ® V) is nontrivial if and only if f (A + w; @) > 0, where A = u + pg.

DEFINITION 7.1. Let u € Ik, and define the following six sets for A = u + pg.
wM) = A+ow:we X},

sw(r) = {s cwn): [[G o= o} :

a€Pk

rw(x) = {s cwn): [[Go# 0} :

aePk
rwoM) ={A+werw): f(A+ w;, w) =0},
rws(M) =Ad+w:ptwely, fO+w;,w) >0},
rw—(A) = rwM)\(Two(X) Urwi(r)) .
LEMMA 7.2. Assume that all noncompact roots in X have the same length. Then we
have w(X) = sw(A) Urw4(A).

PROOF. First we shall prove Ag(w)*UA_j(w)*U A (w)* = ¢. Let o be an element in
A(w). Since | + a| = |w|, we have 2(w, «)|e| "2 = —1. This implies that A(w) = A_j(w).
By the proof of (3) in Lemma 6.1 if ¢ € A_j(w)*, then w — 2« € X,. Since lo—2a|* > |w|?,
our assumption implies A_j(w)* = ¢, and hence, Ag(w)* U A_1(w)* U Aj(w)* = ¢. Let
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A+ w be an element in w(X). Then for « € Pk, we have (w, o) > 0 or (w, @) < 0. In the first
case we have (A + w, @) > 0. For the later case we have 2(w, o) |oz|_2 = —1. Consequently
we have (A +w, @) = 0or (A +w, @) > 0. Suppose that A +w ¢ sw(}r). Since (A+w, o) > 0
for all @ € Pk, (1) in Theorem 6.5 implies A + @ € rw4(A).

For « in Pg we define a linear transformation s, on (+/—1b)* by

sa(n) =0 —2(n, @)l 2, 1 € (V—1b)*.

The Weyl group Wk of (bc, bc) is generated by the set {sy; @ € Pk} (cf. Theorem 4.41 in
[7D).

LEMMA 7.3. Assume that G is one of Sp(n,R) and SO(2m, 2n + 1). Suppose that
A+ w € rwo(r). Then there exists a unique compact simple short root a in P such that
(m,a) =0, € Ag(w)* and s4 (A + w) € rw—(A).

PROOF. By the assumption for A + w, A + w is Px-regular and f(A + w; w) = 0. We
first prove that Ag(w)* # ¢. Suppose that Ag(w)* = ¢. By (2), (3) in Lemma 6.1 we can
assume Ag(w)* U A_1(w)* U Aj(w)* = ¢. Since A + w is Px-regular, (1) in Theorem 6.5
implies a contradiction : f(A 4+ w; w) # 0. Thus Ag(w)* # ¢. By (2) in Theorem 6.5 there
exists @« € Pk such that (w, ) = 0 and 2(A, @) = |oz|2. Therefore w and « are short roots,
and

(7.1) (1, @) =0, 2(pg, @)|a| 2 =1.

Let us prove that « is a simple root in P. Let Yx = {oy, a2, -, g} be the simple root
system of Pg. Then « is written by o« = Zle m;o;, where m; is a nonnegative integer.
Consequently we have

4
1 =2(pk, a2 =) mi2(pk, e)lei| > (leul*le] 7).
i=1

Since « is a short root, all |e;|?|er|~2’s are positive integers. This implies that o = «; for a

suitable i. Hence « is a simple short root. Here we shall use the Dynkin diagrams (2.9) and
(2.10). Consider the case G = SO (2m, 2n + 1). In view of the Dynkin diagram of Pk the
simle short root « is unique. Furthermore, « is also a unique short root of the Dynkin diagram
of P. Let us prove that s (A + w) € rw_(A). Since 2(A + w, oz)|oz|’2 = land A + w is
Pk -regular, we have sq (A + ®) = A + w —«a € rw(}X). Since w — « is a noncompact long
root, we have

Aglw —a)"UA_j(w—a)*UAj(w—a) =¢.
The formula (1) in Theorem 6.5 implies that f(A + w — «; @ — «) # 0. Moreover, since

2(n + o — «, o;)|oz|‘2 < 0, we have sy (A + ) € rw_(1). Consider the case G = S, (n, R).
Let ¥ = {a1, a2, -, a,} be the simple root system of the Dynkin diagram (2.9). Then all



CHARACTERISTIC FUNCTION OF THE TENSOR K-MODULE 143

a;’s (1 <i < n—1) are compact simple short roots in Pg. The set of all noncompact positive
short roots is given by

{ar +- - +as_1+2a5+ - +2a,-1+a,: 1 <k <s <n}.
Let y be an element in this set. Then Ag(y) is nonempty iff y is of the form
Vi =g + 20,41 + -+ 201 +ap (1 <k <n).

If (yx, @) = 0 for a compact root «, then & = . Especially, Ag(yx)* = {ax}. Moreover, we
can prove that s, (A +®) € rw_(A) by using the same argument as in the case of SO (2m, 2n+

1.

LEMMA 7.4. Let G be the same as in the previous lemma. Suppose that . + o €
rw—(A). Then there exists a unique compact simple short root o« € P such that (u, @) = 0,
a € Ag(w+ a)* and sq(A + w) =L+ o+ a € rwo()).

PROOF. Let A + w be an element in rw_(A). First we shall prove that there exists a
simple root « in Pk such that (i1, ) = 0 and 2(w, oz)|oz|’2 = —2. Since A + w ¢ rwo(A) U
rwy(A), we have either u + w ¢ Ik and f(A + w;w) # 0or f(A + w;w) < 0. If
uw~+w ¢ Ik, then there exists a simple root ¢ € Pk such that (14 + w, @) < 0. Since p is Pk-
dominant, the pair (2(u, o)|a| =2, 2(w, &) |a|~2) is one of the followings: (0, —1), (0, —2)
and (1, —2). For the cases (0, —1) and (1, —2) we have (A + w, @) = 0. If Ag(w)* = ¢,
then (1) in Theorem 6.5 implies f(A + w; w) = 0. When Ag(w)* # ¢, Lemma 6.1 implies
that the case (1, —2) is impossible. Consider the case Ag(w)* # ¢ and (0, —1). Since
a € A_(w) and (A + w, @) = 0, (2) in Theorem 6.5 implies f (A + w; w) = 0. Consequently
ifu+wé¢ I’k and f(A + o; w) # 0, then (, ) = 0 and 2(w, a)|a| 2 = —2. Let us
consider the case f(A 4+ w; w) < 0. Since A 4+ w is Pg-regular, it follows from (1) and
(2) in Theorem 6.5 there exists a simple root « in Px such that (A + w, «) < 0. Then we
have also (u,a) = 0 and 2((,(),0[)|Ol|_2 = —2. Let us prove s, (A + w) € rwo(r). Since
sah+w) =A+w+a,a € Ay(w+a)* and 2(A + w + o, @)|a| 2 = 1, (2) in Theorem 6.5
implies that f (A + o+ «o; @+ o) = 0, and therefore, s, (A + w) € rwo(X). It remains to prove
that « is simple in P and is unique. In view of the proof of the previous lemma it is enough to
consider the case G = S, (n, R). Then the set of all noncompact positive long roots is given
by

Vi =20; +2atiy1+ -+ 201 +oa,: 1 <i<nj}.
If 2(y;, o;)|oz|‘2 = —2 for a compact root o, then 2 < i < n and @« = «;_. Especially,
Ao(yi +ai—1)* = {1}

Let G be of the type G,. Then Px = {«, B},  (resp. B) is short (resp. long), and « is
simple and (o, 8) = 0 (see (2.11)).
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LEMMA 7.5. Let G be of the type G,. Suppose that . + o € rwg(A). Then we have
S¢ (A + w) € rw—_(A). Conversely, suppose that A + w € rw—_()). Then we have s, (. + w) €
rwo(X).

PROOF. Assume that A+w € rwo(X). Since A+w is Px-regular and f(A+w; ) =0,
(1) in Theorem 6.5 and (2) in Lemma 6.1 imply that A_j(w)* U A|(w)* # ¢, and hence, w
is a short root. By (3) in Theorem 6.5 we have

[T @so-185 [] eos-1s»=0.

SeA_1(w)* SeA|(w)*
This implies that
(A, 8) =8> for 8 € A_1(w)* or 2(1,8) =8> for § € Ay(w)*.

In both cases § is a short root, and therefore § = «. Consider the first case. Since 2(A +
w, )| ™2 =1, we have s (A +®) = A+ —a and 2(u + w — «, @)|a|~2 = —1. Therefore
utow—a ¢ I'k. Since w—a is along root, we have Ag(w—a)*UA_|(w—a)*UA (0—a)* =
¢. This implies that f(A + ® — o;  — ) # 0. Thus s, (A + @) € rw_(1). Consider the
second case. Since ¢ € Aj(w)*, we have sy (A + w) = A + ® — 20 and w — 2« € X, Since
o — 2« is a long root and 2(A + @ — 2a, oz)|oz|_2 = —2, we have also s4 (A + w) € rw_(}).
The converse follows from the same arguments.

THEOREM 7.6. Let w € X, and u € I'x. Assume that @ + w € I'x. Then the
K-module P, 1,(pc ® V,,) is nontrivial if and only if f (A + w; w) > 0, where A = u + pk.

PROOF.  Assume that Py, (pc ® V) # {0}. By Corollary 3.5 we have P4, (X, ®
v(u)) # 0. Hence by Theorem 5.5 we have f (A + w; ) > 0. Let us prove the sufficiency of
the theorem. Choosing a suitable covering group K* of K, we can define the character &,
of the analytic subgroup B* of K* corresponding to b. Weyl’s character formula (see (4.11))
implies that

(Agtrace(Ad ® 7)) (exp H) = Z Z g(r)e! O+ H)
Awew(r) 1eWk

for all exp H € B*, where (7., V) is a simple K-module with the highest weight  and
w(A) is the same as in Definition 7.1. We shall prove that

(7.2) (Agtrace(Ad ® 7,,))(exp H) = Z Z e(t)e! *He)H)
Aowerwi (L) teWg

If A + w € w(A) is Px-singular, then

> ettt =0,

teWg
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Since w(A) = sw(r) Urwo(t) Urw_(A) Urwy (L), itis enough to prove

(7.3) Z Z e(t)e! ) H) — ¢

Awerwog(M)Urw—_(r) teWg

If G satisfies that all noncompact roots have the same length, then Lemma 7.2 implies r wo(A)U
rw_(A) = ¢. Hence we can assume that G is one of S,(n,R) and SO(2m,2n + 1), or G
is of the type G,. Consider the case G, and let @ be the short root in Px. By Lemma
7.5 we have so (rwo(A)) C rw—_(A) and so (rw—_(A)) C rwo(r). Since (so()2 = 1, we have
so(rwo(A)) = rw_(A). This implies (7.3). Let G be one of S,(n, R) and SO(2m, 2n + 1).
We define the mappings ¥ : rwo(A) — rw—(A) and ¥’ : rw—(L) — rwo(1) by the fol-
lowings. Let A 4+  be an element in rwo(X). By Lemma 7.3 there exists a unique compact
simple short root & such that (1, ®) = 0, @ € Ap(w)™ and 54 (A + w) € rw_(1). We note that
S¢(A+®) = A+ o —a. We now put ¥ (A + ®) = 54 (A + w). Similarly, by using Lemma 7.4,
we define a mapping ¥’. We shall prove ¥, ¥’ are the identities on rwo(A) and rw_ (1)
respectively. Let A+w € rwo(X) and Yy (A +w) = s4(A+ ). Since ¢ € Ag((w—a)+a)* and
(1, @) = 0, « is the unique compact simple short root determined by A + w — o € rw—_(A).
This implies that ¥'¢¥ (A + @) = A + . Similarly we can prove ¥ is the identity. Hence
¥ is bijective, and thus, rw_ (w) = ¥ (rwo(w)). Therefore, we have (7.3) for this case. Let
A+ o € rwy(A) and 7,4, a simple K-module with the highest weight i 4+ w. By (7.2) we
have

trace(Ad ® m,) (k) = Z trace 7wy 4o (k) .
ntwelk, f(A+w;0)>0

Thus if u + w € I'k and f(A + w; w) > 0then Py1,(pc @ V,.) # {0} as claimed.
References

[1] V.BARGMANN, Irreducible unitary representations of the Lorentz group Ann. of Math. 48 (1947), 568—640.

[2] J. DEXIMIER, Représentation intégrables du groupe De Sitter, Bull. Soc. Math. 89 (1961), 9-41.

[3] I. M. GELFAND and L. M. CEJTLIN, Finite dimensional representations of groups of orthogonal matrices,
Doklady Aca. Nauk. SSSR 71 (1950), 1017-1020.

[4] S.HELGASON, Differential Geometry and Symmetric Spaces, Acad. Press (1962).

[5] T. Hirai, On infinitesimal operators of irreducible representations of the Lorentz group of n-th order, Proc.
Japan Acad. 38 (1962), 83-87.

[6] T. HIRAL On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962),
258-262.

[7] A.W.KNAPP, Representation Theory of Semisimple Groups, Princeton Univ. Press.

[8] A.U.KLIMYK and V. A. SHIROKOV, Representation of Lie groups SU (n, 1), 1U(n) and their algebra I,
preprint (1974).

[9] N. TATSUUMA, Formal degree and Clebsch-Gordan coefficients, J. Math. Kyoto Univ. 18, (1978), 131-135.

[10] L. H. THOMAS, On unitary representations of the group of De Sitter space, Ann. Math. 42 (1940), 113-126.

[11] V. S. VARADARAIJAN, Lie Groups, Lie Algebras, and their Representations, Springer.



146 HISAICHI MIDORIKAWA

Present Address:
DEPARTMENT OF MATHEMATICS, TSUDA COLLEGE,

KODAIRA, TOKYO, 187-8577 JAPAN.



