
TOKYO J. MATH.
VOL. 26, NO. 1, 2003

On a Characteristic Function of the Tensor K-module of Inner Type
Noncompact Real Simple Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let C (resp. R) denote the complex (resp. real) number field. We consider a connected
simply connected complex simple Lie group GC and a connected noncompact inner type
simple real form G of GC. Let K be a maximal compact subgroup of G. We denote the Lie
algebras ofG andK respectively by g and k. Let θ be the Cartan involution of g corresponding
to k. Let’s denote the eigensubspace of θ of g with the eigenvalue −1 by p. Then we have a
Cartan decomposition: g = k⊕p. Consequently the Lie algebra gC ofGC is also decomposed
by gC = kC ⊕pC, where kC (resp. pC) is the complexification of k (resp. p) in gC. Canonically
K acts on the space pC. LetB be a maximal abelian subgroup ofK . SinceK is connected and
G is an inner type simple Lie group, B is also a maximal abelian subgruop of G. Therefore
B is a Cartan subgroup of G and K . Let bC be the complexification of the Lie algebra b of
B. Let Σ be the root system of the pair (gC, bC). Then we have Σ = ΣK ∪ Σn, where ΣK
(resp. Σn) is the set of all compact (resp. noncompact) roots of Σ . We shall fix a positive
root system PK of ΣK . Let (πµ, Vµ) be a simple K-module with the highest weight µ. Then
the tensor space pC ⊗ Vµ is a unitary K-module. Let ν be a PK -dominant integral form on
bC and Vν a simple K-module corresponding to ν. We define a projection operator Pν on
pC ⊗ Vµ by

Pν(Z) = degπν

∫
K

kZtraceπν(k)dk for Z in pC ⊗ Vµ ,

where dk is the Haar measure on K normalized as
∫
K dk = 1. Let ΓK be the set of all

PK -dominant integral form on bC. Then we have the following decomposition:

pC ⊗ Vµ = ⊕ω∈Σn,µ+ω∈ΓKPµ+ω(pC ⊗ Vµ) ,(1.1)

where Pµ+ω(pC ⊗ Vµ) = {0} or is a simple K-module. The purpose of this paper is to
characterize nontrivial K-module Pµ+ω(pC ⊗ Vµ) by using a rational function. Let us state
our results more precisely. We can prove that Pµ+ω(pC ⊗ Vµ) is nontrivial if and only if
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|Pµ+ω(Xω ⊗ v(µ))|2 �= 0, where | ∗ | is the norm on pC ⊗ Vµ, Xω is the root vector corre-
sponding to a noncompact root ω and v(µ) is the highest weight vector of Vµ normalized as

|v(µ)| = 1. Assume that 2(µ, α)|α|−2 ≥ 3 for all α in PK . Then we can prove (see Lemma

4.7) that |Pµ+ω(Xω ⊗ v(µ))|2 is given by a rational function f (λ + ω;ω) in λ = µ + ρK ,

where ρK is one half the sum of all roots in PK . Let (
√−1b)∗ be the dual space of the

real vector space
√−1b. Let f (η;ω) be the rational function in η ∈ (

√−1b)∗ satisfying

f (λ+ω;ω) = |Pµ+ω(Xω⊗v(µ))|2. We can calculate f (η;ω) explicitely (see Theorem 6.5)
by using the functional equations in Theorem 5.4. Finally in §7 we shall prove the following
main theorem.

MAIN THEOREM. Let µ be a PK -dominant integral form on bC and Vµ the simple
K-module with the highest weight µ. Suppose that µ+ ω is PK -dominant for a noncompact
root ω in Σ . Then the K-submodule Pµ+ω(pC ⊗ Vµ) of pC ⊗ Vµ in (1, 1) is nontrivial if and
only if f (λ+ ω;ω) > 0.

The tensorK-modules pC⊗Vµ and pC⊗pC⊗Vµ are closely related with the classification
of irreducible infinitesimal unitary representations of G. For example, by using the Clebsch-
Gordan coefficients of these tensor K-modules, the complete classifications are obtained for
the groups : SL(2,R) in [1], De Sitter group in [2] and [10], SO(2n, 1) in [5], [6] and
SU(n, 1) in [8] and etc. In the subsequent paper we shall apply the main theorem to determine
the multiplicity of Vµ in pC ⊗ pC ⊗ Vµ.

Most parts of this article is reported in “Clebsch-Gordan coefficients for a tensor product
representation Ad ⊗ π of a maximal compact subgroup of real semisimple Lie group”, Lect.
in Math., Kyoto Univ. No. 14 pp. 149–175.

2. Preliminalies

Let G be the connected inner type noncompact real simple Lie group. We shall always
fix a maximal compact subgroup K and the Cartan decomposition g = k ⊕ p. Let B be the
maximal abelian subgroup of K . Since G is inner, B is a Cartan subgroup of K and G. A
linear form α on bC is said to be a root if there exists a nontrivial element X in gC such that
[H,X] ≡ ad(H)X = α(H)X for all H in bC. Let Σ be the set of all roots on bC. ThenΣ is
a finite set. Furthermore, we have the following decomposition.

gC = bC ⊕
∑
α∈Σ

gα ,

where gα is a one dimensional eigenspace corresponding to α. The real subalgebra gu = k ⊕√−1p of gC is said to be a compact real form of gC. We choose a Weyl basisXα ∈ gα, α ∈ Σ ,
satisfying the followings (cf. the proof of Theorem 6.3 in [4]).

Xα −X−α,
√−1(Xα +X−α) ∈ gu and φ(Xα,X−α) = 1 ,(2.1)
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where φ is the Killing form on gC. For the element Hα = ad(Xα)X−α in
√−1b, we have

φ(Hα,H) = α(H) for all H in bC. Let µ be a linear form on
√−1b. Then there exists

a unique Hµ in
√−1b such that φ(Hµ,H) = µ(H) for all H in

√−1b. Let (
√−1b)∗ be

the dual space of
√−1b. We define a positive definite bilinear form (λ, µ) by (λ, µ) =

φ(Hµ,Hλ) for λ,µ ∈ (
√−1b)∗. We put, for each pair of α and β in Σ , a complex number

〈α, β〉 by

〈α, β〉 =
{
φ(ad(Xα)Xβ,X−α−β) if α + β ∈ Σ
0 otherwise .

(2.2)

Then 〈α, β〉 is a pure imaginary number. Let p and q be two nonnegative integers such that
β + jα ∈ Σ if and only if −q ≤ j ≤ p. β + jα,−q ≤ j ≤ p, is said to be the α-series
containing β. We have (cf. the proof of Lemma 4.3.8 in [11])

2(β, α)|α|−2 = q − p and β − 2(β, α)|α|−2α ∈ Σ .(2.3)

Furthermore, we have

| 〈α, β〉 |2 = q(p + 1)
|α|2

2
,(2.4)

and p + q ≤ 3 (cf. Corollary 4.3.12 in [11]). Suppose that |α| ≥ |β|. Then

2(α, β)|β|−2 ∈ {0,±1,±2,±3} .(2.5)

We remark that if |α| > |β|, then |α|2 = 2|β|2 or |α|2 = 3|β|2. Especially if 2(α, β)|β|2 =
±2 (resp. ±3), then |α|2 = 2|β|2 (resp. |α|2 = 3|β|2).

A root in Σ is compact (resp. noncompact) if Xα ∈ kC (resp. Xα ∈ pC). Since kC and
pC are invariant under ad(b),Σ is a disjoint union of the set of all compact rootsΣK and the
set of all noncompact roots Σn. ΣK is also the root system of the pair (kC, bC). Let P be a
positive root system of Σ . Then PK = ΣK ∩ P is a positive root system of ΣK . A linear

form µ on bC is integral if 2(µ, α)|α|−2 is an integer for all α ∈ P , and µ is P -dominant

(resp. PK -dominant) if 2(µ, α)|α|−2 ≥ 0 for all α ∈ P (resp. PK ). We shall denote the set of
all P -dominant (resp. PK -dominant) integral forms on bC by Γ (resp. ΓK ).

Let σ (resp. τ ) be the conjugation of gC with respect to the real form g (resp. gu). By our
choice for the Weyl basis of gC we have

σ(Xα) = −X−α for α ∈ ΣK , σ(Xα) = X−α for α ∈ Σn(2.6)

and

τ (Xα) = −X−α for α ∈ Σ .(2.7)

The inner types noncompact real simple Lie groups (i.e. rank G = rankK) are classified into
three (cf. Table II, p. 354 in [4]):
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(1) all noncompact roots have the same length ,

(2) Sp(n,R) and SO(2m, 2n+ 1) ,(2.8)

(3) the type G2 .

We shall use in §6 and §7 the following Dynkin diagrams of the simple root systems Ψ for
the groups in (2) and (3), where a white circle indicates a compact root and a black circle does
a noncompact root.

G = Sp(n,R) : α1◦ —–
α2◦ —– · · · αn−2◦ —–

αn−1◦ ⇐� αn• ,
K = U(n) : α1◦ —–

α2◦ —– · · · αn−2◦ —–
αn−1◦ .

(2.9)

G = SO(2m, 2n+ 1) : α1◦ —–
α2◦ · · · —–

αm−1◦ —–
αm• —–

αm+1◦ · · · αm+n−1◦ �⇒ αm+n◦ ,

K = SO(2m)⊗ SO(2n+ 1) : α1◦ —–
α2◦ · · · αm−2◦ —–

αm−1◦ αm+1◦ —– · · · αm+n+1◦ �⇒ αm+n◦ ,
|
◦ α0

(2.10)

where α0 = αm−1 + 2αm + · · · + 2αm+n.

G = G2 : α1•�α2◦ ,K = SU(2)⊗ SU(2) : α0◦ α2◦ ,(2.11)

where α0 = 2α1 + 3α2.

3. Decomposition of a tensor K-module

For the simplicity of our notations, the adjoint action Ad(k) (k ∈ K) on pC will be
denoted by kX for X in pC. We define a hermitian structure (X, Y ) on pC by

(X, Y ) = −φ(X, τ(Y )) for X,Y ∈ pC .(3.1)

Then pC is a unitary K-module with respect to this hermitian structure. For µ ∈ ΓK , there
exists a unitary simple K-module (πµ, Vµ) with the highest weight µ. We also denote the
action πµ(k) (k ∈ K) of K on Vµ by kv for v ∈ Vµ. Let dk be the Haar measure on K

normalized as
∫
K dk = 1. We define a character χµ of the K-module (πµ, Vµ) by

χµ(k) = deg(πµ)traceπµ(k) , k ∈ K ,(3.2)

where degπµ = dimVµ. Then we have∫
K

χµ(k
−1k′)χµ(k)dk = χµ(k

′) , k′ ∈ K .(3.3)

For a finite dimensionalK-module V , we define a projection operator Pµ on V by

Pµ(v) =
∫
K

kvχµ(k)dk , v ∈ V ,(3.4)
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where χµ(k) is the complex conjugate of χµ(k).

LEMMA 3.1. The projection operator Pµ on V satisfies the followings.

(Pµ)
2 = Pµ and kPµ = Pµk for all k ∈ K .

PROOF. Changing the variables and the order of integrals, we have for v ∈ V ,

(Pµ)
2(v) =

∫
K

∫
K

k′kvχµ(k′)χµ(k)dkdk′

=
∫
K

∫
K

kvχµ((k′)−1k)χµ(k′)dkdk′

=
∫
K

kv

∫
K

χµ((k′)−1k)χµ(k′)dk′dk .

Hence by the formula (3.3), we have (Pµ)2 = Pµ. For k ∈ K and v ∈ V we have

kPµ(v) =
∫
K

kk′vχµ(k′)dk′

=
∫
K

(kk′k−1)(kv)χµ(kk′k−1)dk′

= Pµ(kv) .

Thus we can prove that kPµv = Pµkv.

We now define an action of kC on Vµ by

Xv = d

dt
exp(tX)v|t=0 for X ∈ kC and v ∈ Vµ .

By the choice of Xα in (2.1) we have

(Xαv,w) = (v,X−αw) for all α ∈ ΣK and v,w ∈ Vµ .(3.5)

We define a unitaryK-module structure on pC ⊗ Vµ by

k(X ⊗ v) = kX⊗ kv for k ∈ K ,
(X ⊗ v, Y ⊗ w) = (X, Y )(v,w) for X,Y ∈ pC and v,w ∈ Vµ .

(3.6)

Thereby pC ⊗ Vµ is a finite dimensional unitary K-module. Let ω be a noncompact root in
Σ . Assume that µ+ ω is PK -dominant. By the second property in Lemma 3.1 we have

YPµ+ω(X ⊗ v) = Pµ+ω(ad(Y )X⊗ v)+ Pµ+ω(X ⊗ Yv)

for all Y ∈ kC, X ∈ pC and v ∈ Vµ .
(3.7)

DEFINITION 3.2. Let p be a nonnegative integer. We define a set Πp by

Π0 = {φ̃} , Πp = {(α1, α2, · · · , αp) : αi ∈ PK } for p > 1 , and put Π =
∞⋃
p=0

Πp .
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Let I = (α1, α2, · · · , αp) and J = (β1, β2, · · · , βq) be two elements in Π . We define a
multiplicative operation � in Π by

I � J = (α1, α2, · · · , αp, β1, β2, · · · , βq) .
Then Π is a semigroup with the identity φ̃.

DEFINITION 3.3. Let U(kC) be the universal enveloping algebra of kC. For each I in
Π we define an elementQ(I) in U(kC) by

Q(I) = 1 for I = φ̃ and Q(I) = X−α1X−α2 · · ·X−αp for I = (α1, α2, · · · , αp) .
Then Q is a semigroup homomorphism of Π to U(kC). Furthermore, Q(I) acts on pC by
Q(I)X = ad(Q(I))X for X in pC. We also define the adjoint operator Q(I)∗ of Q(I) by
(Q(I)X, Y ) = (X,Q(I)∗Y ) for X,Y ∈ pC.

LEMMA 3.4. Let µ ∈ ΓK and Vµ a simple K-module with the highest weight µ. Then
we have

pC ⊗ Vµ =
⊕

ω∈Σn,µ+ω∈ΓK
Pµ+ω(pC ⊗ Vµ) ,

where Pµ+ω(pC ⊗ Vµ) = {0} or is a simple K-module.

PROOF. By Peter-Weyl’s theorem, we have (cf. Theorem 1.12 (c) in [ 7 ])

pC ⊗ Vµ =
⊕
λ∈ΓK

Pλ(pC ⊗ Vµ) .

Let Vλ be a simpleK-submodule of Pλ(pC ⊗ Vµ). We shall prove that Vλ = Pµ+γ (pC ⊗ Vµ)

for a suitable noncompact root γ . We note that the simple K-module Vµ is generated by
the set {Q(I)v(µ) : I ∈ Π}, where v(µ) is the highest weight vector of Vµ normalized as
|v(µ)| = 1. Moreover, it follows from (3.7) that

XαPλ(X ⊗ v) = Pλ(ad(Xα)X ⊗ v)+ Pλ(X ⊗Xαv)(3.8)

for all X ∈ pC, v ∈ Vµ and α ∈ ΣK . Let v(λ) be the highest weight vector of Vλ. It follows
from (3.8) that v(λ) is written by

v(λ) =
∑
ω∈Σn

∑
I∈Π

cω,IQ(I)Pλ(Xω ⊗ v(µ)) ,(3.9)

where cω,I is a complex constant. Since v(λ) is the highest weight vector, (3.5) implies that

(v(λ), v(λ)) =
∑
ω∈Σn

cω,φ̃(v(λ), Pλ(Xω ⊗ v(µ))) .

Consequently, we have λ = µ+ γ for a noncompact root γ . Again by (3.9) we have

v(λ) =
∑
ω∈Σn

∑
I∈Π

cω,IQ(I)Pµ+γ (Xω ⊗ v(µ)) .
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Let ω be a noncompact root. When ω > γ , we have Pµ+γ (Xω ⊗ v(µ)) = 0 because µ+ γ is
the highest weight in Pµ+γ (pC ⊗ Vµ). When ω < γ , the weight of Q(I)Pµ+γ (Xω ⊗ v(µ))

is distinct to µ + γ . Hence we have v(λ) = cγ,φ̃Pµ+γ (Xγ ⊗ v(µ)). This implies that

Vλ = Pµ+γ (pC ⊗ Vµ).

In view of the proof of the above lemma we have the following.

COROLLARY 3.5. Let ω be a noncompact root in Σ . If µ + ω ∈ ΓK and
Pµ+ω(pC ⊗ Vµ) �= {0}, then we have Pµ+ω(Xω ⊗ v(µ)) �= 0.

LEMMA 3.6. Let ω be a noncompact root in Σ, and suppose that µ + ω ∈ ΓK,

Pµ+ω(pC ⊗ Vµ) �= {0}. If Pµ+ω(Xγ ⊗ v(µ)) �= 0 for a noncompact root γ, then we have

(|λ+ ω|2 − |λ+ γ |2)|Pµ+ω(Xγ ⊗ v(µ))|2 =
∑
α∈PK

2| 〈α, γ 〉 |2|Pµ+ω(Xγ+α ⊗ v(µ))|2 ,

where v(µ) is the highest weight vector in Vµ, λ = µ+ ρK and ρK is one half the sum of all
roots in PK .

PROOF. Let ΩK be the Casimir operator onK given by

ΩK =
�∑
i=1

(Hi)
2 +H2ρK +

∑
α∈PK

2X−αXα ,

where {H1,H2, · · · ,H�} is an orthonormal basis of
√−1b with respect to the Killing form φ.

Since Pµ+ω(pC ⊗ Vµ) is a simple K-module, ΩK is a scalar operator on this space. We can

verify ΩKv(µ + ω) = (|λ + ω|2 − |ρK |2)v(µ + ω), where v(µ + ω) is the highest weight
vector of Pµ+ω(pC ⊗ Vµ). Then we have for γ ∈ Σn,

ΩKPµ+ω(Xγ ⊗ v(µ)) = (|λ+ ω|2 − |ρK |2)Pµ+ω(Xγ ⊗ v(µ)) .

On the other hand, since

ΩKPµ+ω(Xγ ⊗ v(µ)) = (|λ+ γ |2 − |ρK |2)Pµ+ω(Xγ ⊗ v(µ))

+
∑
α∈PK

2 〈α, γ 〉X−αPµ+ω(Xγ+α ⊗ v(µ)) ,

we have

(|λ+ ω|2 − |λ+ γ |2)Pµ+ω(Xγ ⊗ v(µ)) =
∑
α∈PK

2 〈α, γ 〉X−αPµ+ω(Xγ+α ⊗ v(µ)) .
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Consequently, by (3.5) we have

(|λ+ ω|2 − |λ+ γ |2)|Pµ+ω(Xω ⊗ v(µ))|2

=
∑
α∈PK

2 〈α, γ 〉 (X−αPµ+ω(Xγ+α ⊗ v(µ)), Pµ+ω(Xγ ⊗ v(µ)))

=
∑
α∈PK

2| 〈γ, α〉 |2|Pµ+ω(Xγ+α ⊗ v(µ))|2 .

DEFINITION 3.7. Let γ and ω be two noncompact roots. We put

Π(γ ;ω) = {I ∈ Π : Q(I)∗Xγ ∈ gω\{0}} .

LEMMA 3.8. Suppose that µ+ ω ∈ ΓK and Pµ+ω(pC ⊗ Vµ) �= {0} for ω ∈ Σn, and
let γ be a root in Σn. Then Pµ+ω(Xγ ⊗ v(µ)) �= 0 if and only if Π(γ ;ω) �= φ. Moreover if

Pµ+ω(Xγ ⊗ v(µ)) �= 0, then |λ+ ω|2 − |λ+ γ |2 > 0.

PROOF. By Corollary 3.5 Pµ+ω(Xω ⊗ v(µ)) is the highest weight vector of the simple
K-module Pµ+ω(pC ⊗ v(µ)). Assume that Pµ+ω(Xγ ⊗ v(µ)) �= 0. When ω = γ we have

φ̃ ∈ Π(ω;ω). Suppose ω �= γ . Since Pµ+ω(Xγ ⊗ v(µ)) is not the highest weight vector,

there is β ∈ PK such that XβPµ+ω(Xγ ⊗ v(µ)) �= 0 .(3.10)

Similarly, since the dimension of the space of the highest vectors is one, we can choose
I ∈ Π satisfying Q(I)∗Pµ+ω(Xγ ⊗ v(µ)) ∈ CPµ+ω(Xω ⊗ v(µ))\{0}. Since Xαv(µ) = 0
for α ∈ PK , we have

Q(I)∗Pµ+ω(Xγ ⊗ v(µ)) = Pµ+ω(Q(I)∗Xγ ⊗ v(µ)) ,

and hence, I ∈ Π(γ ;ω). Conversely assume that I ∈ Π(γ ;ω). Since Q(I)∗Xγ ∈ gω\{0},
we have Q(I)∗Pµ+ω(Xγ ⊗ v(µ)) �= 0. This implies that Pµ+ω(Xγ ⊗ v(µ)) �= 0. The

inequality |λ+ ω|2 − |λ+ γ |2 > 0 for Pµ+ω(Xγ ⊗ v(µ)) �= 0 follows from Lemma 3.6 and
(3.10).

4. Rational function associated with the coefficient |Pµ+ω(Xω ⊗ v(µ))|2

The purpose of this section is to prove Lemma 4.7. In order to prove this lemma we shall
prepare three lemmas after the following two definitions.

DEFINITION 4.1. For a generic point η in (
√−1b)∗, ω ∈ Σn and I ∈ Π , we define

R(η; I), S(η; I), T (η; I), aω(I) (I ∈ Π) and f (η;ω) as follows:

R(η; φ̃) = S(η; φ̃) = T (η; φ̃) = aω(φ̃) = 1
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and for I = (α1, α2, · · · , αp) ∈ Π

R(η; I) = (|η + 〈I 〉 |2 − |η|2)−1 ,

S(η; I) =
∏

J,L∈Π,J�L=I,J �=φ̃
R(η; J ) ,

T (η; I) =
∏

J,L∈Π,J�L=I
R(η + 〈J 〉 ;L) ,(4.1)

aω(I) = 2�I |φ(Q(I)∗Xω,X−ω−〈I 〉)|2 ,
f (η;ω) =

∑
I∈Π

(−1)�I aω(I)S(η; I),

where �I = p and 〈I 〉 = ∑p

i=1 αi .

For γ ∈ Σn, α ∈ PK and J,L ∈ Π , we have

aγ (α)aγ+α(J ) = aγ (α � J ) ,(4.2)

R(η; J )+ R(η + 〈J 〉 ;L) = R(η + 〈J 〉 ;L)R(η; J )R(η; J � L)−1 ,(4.3)

S(η;L � α) = S(η;L)R(η;L � α) ,(4.4)

T (η; α � J ) = T (η + α; J )R(η; α � J ) .(4.5)

DEFINITION 4.2. Let ω and γ be two noncompact roots. When Π(γ ;ω) �= φ (see
Definition 3.7), we define n(γ ;ω) as the maximal integer of the set {�I : I ∈ Π(γ ;ω)}.

LEMMA 4.3. Assume thatµ+ω ∈ ΓK and Pµ+ω(pC ⊗v(µ)) �= {0} for a noncompact
root ω. If Pµ+ω(Xγ ⊗ v(µ)) �= 0, then we have

|Pµ+ω(Xγ ⊗ v(µ))|2 =
∑

I∈Π(γ ;ω)
aγ (I)T (λ+ γ ; I)|Pµ+ω(Xω ⊗ v(µ))|2 .(4.6)

PROOF. By Lemma 3.8 Pµ+ω(Xγ ⊗ v(µ)) �= 0 if and only if n(γ ;ω) ≥ 0. We shall
prove (4.6) by using an induction on n(γ ;ω) ≥ 0. When n(γ ;ω) = 0, our assertion is
obvious. Assume that the lemma is true for all δ ∈ Σn satisfying 0 ≤ n(δ;ω) < n(γ ;ω). Let
α be an element in PK satisfying n(γ+α;ω) ≥ 0. Since α�I ∈ Π(γ ;ω) for I ∈ Π(γ+α;ω),
we have 0 ≤ n(γ + α;ω) < n(γ ;ω). By the hypothesis of our induction we have

|Pµ+ω(Xγ+α ⊗ v(µ))|2

=
∑

I∈Π(γ+α;ω)
aγ+α(I)T (λ+ γ + α; I)|Pµ+ω(Xω ⊗ v(µ))|2 .(4.7)
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Since |µ+ ω|2 − |µ+ γ |2 > 0 (see Lemma 3.8), (4.2) and (4.5) imply

2| 〈α, γ 〉 |2
|λ+ ω|2 − |λ+ γ |2 aγ+α(I)T (λ+ γ + α; I)

= aγ (α)aγ+α(I)R(λ + γ ; α � I)T (λ+ γ + α; I)
= aγ (α � I)T (λ+ γ ; α � I) .

Hence by Lemma 3.6 and (4.7), we have

|Pµ+ω(Xγ ⊗ v(µ))|2

=
∑
α∈PK

∑
I∈Π(γ+α;ω)

aγ (α � I)T (λ+ γ ; α � I)|Pµ+ω(Xω ⊗ v(µ))|2

=
∑

I∈Π(γ ;ω)
aγ (I)T (λ+ γ ; I)|Pµ+ω(Xω ⊗ v(µ))|2 .

Let P be a positive root system containing PK and Ψ = {β1, β2, · · · , β�}. We define

λi ∈ (√−1b)∗ by

2(λi , βj )|βj |−2 = δi,j , 1 ≤ i, j ≤ � ,(4.8)

where δi,j is Kronecker’s delta. For η ∈ (√−1b)∗ we have

η =
�∑
i=1

ηiλi , ηi = 2(η, βi)|βi |−2 .

Let R[η] = R[η1, η2, · · · , η�] be the ring of all polynomials in η1, η2, · · · , η� over the real
number field R. The quotient field of R[η] will be denoted by R(η).

LEMMA 4.4. Let I ( �= φ̃) be an element in Π . Then we have

(−1)(�I )−1S(η; I) =
∑

J,L∈Π,J�L=I,J �=φ̃
(−1)�LT (η; J )S(η + 〈J 〉 ;L) .

PROOF. We put F(η; I) = ∑
J�L=I (−1)�LT (η; J )S(η + 〈J 〉 ;L). Then the identity

of this lemma is equivalent to F(η; I) = 0 in R(η). We shall prove that F(η; I) = 0 by
using an induction on �I . When �I = 1 our assertion is obvious. Suppose that �I > 1 and
F(η; J ) = 0 for all J in Π(�I)−1. We put I = (α1, α2, · · · , αp). By the definition of F , we
have

F(η; I) =
∑

J�L=I,J �=φ̃,L �=φ̃
(−1)�LT (η; J )S(η + 〈J 〉 ;L)+ (−1)�IS(η; I)+ T (η; I) .(4.9)

We now put I ′ = (α1, α2, · · · , αp−1) and I ′′ = (α2, α3, · · · , αp). By (4.4) and (4.5) we have

S(η; I) = S(η; I ′)R(η; I) , T (η; I) = T (η + α1; I ′′)R(η; I) .(4.10)
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By the hypothesis of our induction we have the followings.

(−1)p−2S(η; I ′) =
∑

J�L=I ′,J �=φ̃
(−1)�LT (η; J )S(η + 〈J 〉 ;L),

(−1)p−2S(η + α1; I ′′)

=
∑

J�L=I ′′,J �=φ̃
(−1)�LT (η + α1; J )S(η + α1 + 〈J 〉 ;L)

= T (η + α1; I ′′)+
∑

J�L=I ′′,J �=φ̃,L �=φ̃
(−1)�LT (η + α1; J )S(η + α1 + 〈J 〉 ;L) .

These two identities imply that

(−1)pS(η; I ′)+ T (η + α1; I ′′)

=
∑

J�L=I ′,J �=φ̃
(−1)�LT (η; J )S(η+ 〈J 〉 ;L)

+ (−1)p−2S(η + α1; I ′′)−
∑

J�L=I ′′,J �=φ̃,L �=φ̃
(−1)�LT (η + α1; J )S(η + α1 + 〈J 〉 ;L)

=
∑

J�L=I ′,J �=φ̃
(−1)�LT (η; J )S(η+ 〈J 〉 ;L)

−
∑

J�L=I ′′,L �=φ̃
(−1)�LT (η + α1; J )S(η + α1 + 〈J 〉 ;L) .

We put I ′′′ = (α2, α3, · · · , αp−1). Then by (4.4) and (4.5) we have

(−1)pS(η; I ′)+ T (η + α1; I ′′)

=
∑

J ′�L=I ′′′
(−1)�LT (η; α1 � J

′)S(η + α1 + 〈
J ′〉 ;L)

+
∑

J�L′=I ′′′
(−1)�L

′
T (η + α1; J )S(η+ α1 + 〈J 〉 ;L′ � αp)

=
∑

J ′�L′=I ′′′
(−1)�L

′
T (η + α1; J ′)R(η; α1 � J

′)S(η + 〈α1 � J
′〉;L′)

+
∑

J ′�L′=I ′′′
(−1)�L

′
T (η + α1; J ′)S(η + 〈α1 � J 〉;L′)R(η + 〈α1 � J

′〉;L′ � αp)

=
∑

J ′�L′=I ′′′
(−1)�L

′
T (η + α1; J ′)S(η + 〈α1 � J

′〉;L′)

× {R(η; α1 � J
′)+ R(η + 〈α1 � J

′〉;L′ � αp)} .
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By (4.3) and (4.10) we have

(−1)�I S(η; I)+ T (η; I)
=

∑
J ′�L′=I ′′′

(−1)�L
′
T (η + α1; J ′)R(η; α1 � J

′)

× S(η + 〈α1 � J
′〉;L′)R(η + 〈α1 � J

′〉;L′ � αp)

= −
∑

J�L=I,J �=φ̃,L �=φ̃
(−1)�LT (η; J )S(η+ 〈J 〉;L) .

Consequently, by (4.9) we have F(η; I) = 0 as claimed.
We now choose a positve root system P of Σ as follows. If (G,K) is a hermitian pair,

then we choose P for which (cf. Proposition 7.2 in [4]) pC = p+ ⊕ p−, where p± is the
subspace of pC generated by the root vectors corresponding to the noncompact positive (resp.
negative) roots. If (G,K) is nonhermitian, then we choose a positive root system P containing
PK .

DEFINITION 4.5. We put, for the hermitian case, v = p± and for nonhermitian case
v = pC. v is a simple K-module. The set of all weights (roots) in v will be denoted byΣ�.

REMARK. If (G,K) is hermitian, then we have pC = v⊕τ (v) andU(kC)v ⊂ v. These
imply thatΠ(ω; γ ) = φ for ω ∈ Σ� and γ ∈ Στ(�). Moreover since v⊗Vµ and τ (v)⊗Vµ are
orthogonal with respect to the hermitian product in (3.6), pC⊗Vµ = v⊗Vµ⊕τ (v)⊗Vµ asK-
modules. By these properties the conclusions of Lemma 3.8 and Lemma 4.3, replacing pC and
Σn respectively with v andΣ�, are also true. Let WK be the Weyl group of the pair (kC, bC).
Each s in WK is realized by s = Ad(k)|�C, k ∈ NK(B), where NK(B) is the normalizer of B
in K and Ad(k)|�C the restriction of Ad(k) to bC. TherebyΣ� is WK -invariant.

LEMMA 4.6. Let (πµ, Vµ) be a unitary simple K-module with the highest weight µ.
Assume that µ+ ω ∈ ΓK for all noncompact root ω in Σ�. Then we have

v ⊗ Vµ = ⊕ω∈Σ�Pµ+ω(v ⊗ Vµ), Pµ+ω(v ⊗ Vµ) �= {0} .
PROOF. There exists a finite covering groupK∗ ofK such that the function ξρK (expH)

= eρK(H)(H ∈ b) is well- defined, where X → exp(X) is the exponential mapping of k to
K∗. Let B∗ be the Cartan subgroup of K∗ corresponding to b. Define a function ∆K on B∗
by

∆K(expH) =
∏
α∈PK

(e
1
2α(H) − e−

1
2α(H)) .

Applying Weyl’s character formula to πµ (cf. Theorem 4.46 in [7]), we have

(∆K trace(Ad|� ⊗ πµ))(expH) =
( ∑
ω∈Σ�

eω(H)
)( ∑

t∈WK
ε(t)et (µ+ρK)(H)

)
,



CHARACTERISTIC FUNCTION OF THE TENSOR K-MODULE 127

where ε(t) is the signature of t and Ad|� is the restriction of the adjoint representation of K
to v. Since ∑

ω∈Σ�
eω(H) =

∑
ω∈Σ�

etω(H) for all t ∈ WK,

it follows that

(∆K trace(Ad|� ⊗ πµ))(expH) =
∑
ω∈Σ�

∑
t∈WK

ε(t)et (µ+ω+ρK)(H) .(4.11)

We now assume that µ+ω ∈ ΓK for all ω ∈ Σ�, and let πµ+ω be the simple K-module with
the highest weight µ+ ω. By (4.11) we have

trace(Ad|� ⊗ πµ)(k) =
∑
ω∈Σ�

traceπµ+ω(k) for all k ∈ K ,

and thus, the assertion of this lemma.

LEMMA 4.7. Assume that µ + δ ∈ ΓK for all noncompact roots δ. Then for ω in Σn
we have

|Pµ+ω(Xω ⊗ v(µ))|2 = f (λ+ ω;ω) ,
where v(µ) is the highest weight vector of Vµ normalized as |v(µ)| = 1 and λ = µ+ ρK .

PROOF. We choose a K-module v satisfying ω ∈ Σ�, and let γ0 be the highest root in
Σ�. Since v is a simple K-module, we have n(ω; γ0) ≥ 0. We shall prove the identity in this
lemma by using an induction on n(ω; γ0). By Lemma 4.6 we have

Xω ⊗ v(µ) =
∑
γ∈Σ�

Pµ+γ (Xω ⊗ v(µ)) .

This implies that

|Pµ+ω(Xω ⊗ v(µ))|2 = 1 −
∑

γ∈Σ�,γ �=ω
|Pµ+γ (Xω ⊗ v(µ))|2 .

Moreover, since Pµ+γ (v ⊗ Vµ) �= {0} for all γ ∈ Σ�, Lemma 3.8 implies that Pµ+γ (Xω ⊗
v(µ)) �= 0 iff Π(ω; γ ) �= φ. When ω = γ0 we have Π(γ0; γ ) = φ for all γ �= γ0, γ ∈ Σ�.
Therefore |Pµ+γ0(Xγ0 ⊗ v(µ))|2 = 1. On the other hand, since γ0 + α /∈ Σ� for all α ∈ PK ,

we have aγ0(I) = 0 for all I �= φ̃, I ∈ Π . Thus by (4.1)

f (λ+ γ0; γ0) = 1 = |Pµ+γ0(Xγ0 ⊗ v(µ))|2 .
Let us now assume that the formula is true for all roots γ in Σ� satisfying 0 ≤ n(γ ; γ0) <

n(ω; γ0). To apply our inductive hypothesis we shall prove that if Π(ω; γ ) �= φ and γ �= ω,
then n(γ ; γ0) < n(ω; γ0). Let I be an elemen in Π(ω; γ ). Then Q(I)∗Xω ∈ gγ \{0}. Since
Q(J )∗Xγ ∈ gγ0\{0} for J ∈ Π(γ ; γ0), we haveQ(I � J )∗Xω = Q(J )∗Q(I)∗Xω ∈ gγ0\{0}.
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This implies that I �J ∈ Π(ω; γ0) for all J ∈ Π(γ ; γ0). Since n(ω; γ0) ≥ �(I �J ) = �I+�J
and �I ≥ 1, we have n(γ ; γ0) < n(ω; γ0). Applying Lemma 4.3 to Pµ+γ (Xω ⊗ v(µ)) for
γ �= ω, γ ∈ Σ� satisfyingΠ(ω; γ ) �= φ we have

|Pµ+ω(Xω ⊗ v(µ))|2

= 1 −
∑

γ∈Σ�,γ �=ω

∑
J∈Π(ω;γ )

aω(J )T (λ+ ω; J )|Pµ+γ (Xγ ⊗ v(µ))|2 ,

hence by the inductive hypothesis,

= 1 −
∑

γ �=ω,J∈Π(ω;γ )

∑
L∈Π

(−1)�L × aω(J )aγ (L)T (λ+ ω; J )S(λ+ γ ;L)

= 1 −
∑

γ �=ω,J∈Π(ω;γ )

∑
L∈Π

(−1)�L × aω(J )aγ (L)T (λ+ ω; J )S(λ+ ω + 〈J 〉;L) .

Since aω(J )aγ (L) = aω(J � L) and ∪γ∈Σ�,γ �=ωΠ(ω; γ ) = {J ∈ Π : J �= φ̃, aω(J ) �= 0},
we have from Lemma 4.4

|Pµ+ω(Xω ⊗ v(µ))|2 = 1 −
∑
�I≥1

∑
J�L=I,J �=φ̃

(−1)�Laω(I)T (λ+ ω; J )S(λ+ ω + 〈J 〉;L)

=
∑
I∈Π

∑
J�L=I,J �=φ̃

(−1)�I aω(I)S(λ+ ω; I)

= f (λ+ ω;ω) .
REMARK. The assumption of this lemma is crucial to apply our induction. For exam-

ple, it is not trivial that Pµ+ω(v⊗v(µ)) = 0 forω ∈ Σ�, µ+ω ∈ ΓK implies f (λ+ω;ω) = 0.

The following two lemmas will be applied to prove Theorem 5.5.

LEMMA 4.8. Let ω ∈ Σn and µ ∈ ΓK . Assume that µ + ω ∈ ΓK and Pµ+ω(pC ⊗
Vµ) �= {0}. Then we have

∑
γ∈Σn

|Pµ+ω(Xγ ⊗ v(µ))|2 = f (−λ− ω; −ω)|Pµ+ω(Xω ⊗ v(µ))|2 .

PROOF. We can assume that ω ∈ Σ�. Since Pµ+ω(τ(v)⊗ Vµ) = {0}, it is sufficient to
prove that

∑
γ∈Σ�

|Pµ+ω(Xγ ⊗ v(µ))|2 = f (−λ− ω; −ω)|Pµ+ω(Xω ⊗ v(µ))|2 .

Let γ be an element in Σ� satisfying n(γ ;ω) ≥ 1. First we define a mapping ψ of Π(γ ;ω)
to Π(−ω; −γ ) by

ψ(I) = (αp, αp−1, · · · , α1) for I = (α1, α2, · · · , αp) ∈ Π(γ ;ω) .
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Actually, since

φ(ad(Q(I)∗)Xγ ,X−ω) = φ(ad(XαpXαp−1 · · ·Xα1)Xγ ,X−ω)

= (−1)pφ(Xγ , ad(Xα1Xα2 · · ·Xαp)X−ω)

= (−1)pφ(Q(ψ(I))∗X−ω,Xγ ) ,

Definition 3.7 implies that ψ(I) ∈ Π(−ω,−γ ). Furthermore, we have (see Definition 4.1)

aγ (I) = a−ω(ψ(I)) for I ∈ Π(γ ;ω) ,(4.12)

and ψ is bijective, because ψ2 is the identity on Π(γ,ω). Next we shall prove that

T (λ+ γ ; I) = (−1)�IS(−λ− ω;ψ(I)) for all γ ∈ Σ� and

I ∈ Π(γ ;ω) satisfying n(γ ;ω) ≥ 1 ,
(4.13)

by an induction on n(γ ;ω) ≥ 1. Suppose that n(γ ;ω) = 1. Then we have immediately
T (λ + γ ; I) = −S(−λ − ω; I). Let γ be an elemaent in Σ� satisfying 1 < n(γ, ω). Let us
assume that the identity (4.13) is true for all δ in Σ� satisfying 1 ≤ n(δ;ω) < n(γ, ω). Let I
be an element inΠ(γ ;ω). We can assume that I = α � I ′ for α ∈ PK and I ′ ∈ Π(γ + α;ω).
Then by (4.5)

T (λ+ γ ; I) = R(λ + γ ; I)T (λ+ γ + α; I ′) .(4.14)

Since n(γ + α;ω) < n(γ ;ω), the inductive hypothesis implies that

T (λ+ γ + α; I ′) = (−1)�I
′
S(−λ− ω;ψ(I ′)) .

Since γ + 〈I 〉 = ω, we have R(λ + γ ; I) = −R(−λ − ω;ψ(I)). Consequently, by (4.14)
and (4.4) we conclude that

T (λ+ γ ; I) = (−1)�IR(−λ− ω;ψ(I))S(−λ − ω;ψ(I ′))

= (−1)�IS(−λ− ω;ψ(I)) .
Hence we have (4.13). Let us now prove this lemma. By using Lemma 4.3, we have∑

γ∈Σ�
|Pµ+ω(Xγ ⊗ v(µ))|2 =

∑
γ∈Σ�

∑
I∈Π(γ ;ω)

aγ (I)T (λ+ γ ; I)|Pµ+ω(Xω ⊗ v(µ))|2 ,

=
∑
γ∈Σn

∑
I∈Π(γ ;ω)

aγ (I)T (λ+ γ ; I)|Pµ+ω(Xω ⊗ v(µ))|2

=
∑
I∈Π

(−1)�I a−ω(I)S(−λ− ω; I)|Pµ+ω(Xω ⊗ v(µ))|2

= f (−λ− ω; −ω)|Pµ+ω(Xω ⊗ v(µ))|2 .
Here we used (4.12) and (4.13). By Lemma 4.7 and Lemma 4.8 we have immediately the
following lemma.
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COROLLARY 4.9. Let µ ∈ ΓK , and assume that µ+ δ ∈ ΓK for all δ ∈ Σn. Then we
have ∑

γ∈Σn
|Pµ+ω(Xγ ⊗ v(µ))|2 = f (−λ− ω; −ω)f (λ+ ω;ω)

for each ω in Σn.

5. Functional equations of f (η;ω)
For each ω in Σn, we shall consider the rational function f (η;ω) in η (see (4.1)). Our

purpose of this section is to prove Theorem 5.4 and Theorem 5.5. We note that Theorem 5.5
is a refinement of Lemma 4.7.

LEMMA 5.1. Let µ ∈ ΓK , and assume that µ+ ω ∈ ΓK,Pµ+ω(pC ⊗ Vµ) �= {0} for a
noncompact root ω ∈ Σn. Then we have∏

α∈PK
(λ, α)|Pµ+ω(Xω ⊗ v(µ))|2 =

∏
α∈PK

(λ+ ω, α)|Pµ(X−ω ⊗ v(µ+ ω))|2 ,(5.1)

∑
γ∈Σn

|Pµ+ω(Xγ ⊗ v(µ))|2 =
∏
α∈PK

(λ+ ω, α)

(λ, α)
,(5.2)

where v(µ) (resp. v(µ + ω)) is a highest weight vector in Vµ(resp. Vµ+ω) normalized as
|v(µ)| = |v(µ+ ω)| = 1, and λ = µ+ ρK .

REMARK. The identity (5.1) is due to N. Tatsuuma (cf. [9]).

PROOF OF LEMMA 5.1. By Schur orthogonality relation we have

C =
∫
K

(k(Xω ⊗ v(µ)),Xω ⊗ v(µ))(kv(µ + ω), v(µ+ ω))dk

=
∫
K

(kPµ+ω(Xω ⊗ v(µ)), Pµ+ω(Xω ⊗ v(µ)))(kv(µ + ω), v(µ+ ω))dk

= (degπµ+ω)−1|Pµ+ω(Xω ⊗ v(µ))|2 .
On the other hand, we have

C =
∫
K

(kXω,Xω)(kv(µ), v(µ))(kv(µ + ω), v(µ+ ω))dk

=
∫
K

(kv(µ), v(µ))(k(X−ω ⊗ v(µ+ ω)),X−ω ⊗ v(µ+ ω))dk

=
∫
K

(kv(µ), v(µ))(kPµ(X−ω ⊗ v(µ+ ω)), Pµ(X−ω ⊗ v(µ+ ω)))dk

= (degπµ)−1|Pµ(X−ω ⊗ v(µ + ω))|2.
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Hence we have

degπµ|Pµ+ω(Xω ⊗ v(µ))|2 = degπµ+ω|Pµ(X−ω ⊗ v(µ+ ω))|2 .(5.3)

Bearing in mind degπµ = ∏
α∈PK

(λ,α)
(ρK,α)

and the corresponding formula for degπµ+ω, (5.3)

implies the identity (5.1). Let us prove the identity (5.2). Let {ui : 1 ≤ i ≤ N}, N =
degπµ+ω, be an orthonormal basis of Vµ+ω. By using Schur orthogonality relation, we have

E =
∑
γ∈Σn

N∑
i=1

∫
K

(k(Xγ ⊗ v(µ)),Xγ ⊗ v(µ))(kui, ui)dk

=
∑
γ∈Σn

N∑
i=1

N−1(Pµ+ω(Xγ ⊗ v(µ)), ui)(Pµ+ω(Xγ ⊗ v(µ)), ui )

=N−1
∑
γ∈Σn

|Pµ+ω(Xγ ⊗ v(µ))|2 .

(5.4)

On the other hand, we have

E =
∫
K

(kv(µ), v(µ))
∑
γ∈Σn

N∑
i=1

(kX−γ ,X−γ )(kui, ui)dk

=
∫
K

(kv(µ), v(µ))trace(Ad ⊗ πµ+ω)(k)dk

= m(µ)

∫
K

(kv(µ), v(µ))trace πµ(k)dk

= m(µ)(degπµ)−1 .

Here we used

trace(Ad ⊗ πµ+ω)(k) =
∑

γ∈Σn,µ+ω+γ∈ΓK
m(µ+ ω + γ )trace(πµ+ω+γ (k)) ,

wherem(µ+ω+ γ ) = 1 or = 0 (see Lemma 3.4). Hence by (5.4) we have the identity (5.2).
We define a subset D of Γ by

D = {µ ∈ Γ : 2(µ, βi)|βi |−2 ≥ 9 for all i = 1, 2, · · · , �} ,(5.5)

where Ψ = {β1, β2, · · · , β�} is the same as in (4.8).

LEMMA 5.2. Let µ be an element in D. Then we have µ + ω ∈ Γ for all ω ∈ Σn.
Furthermore, we have 6nλi + µ ∈ D for all positive integers n and i = 1, 2, · · · , �.

PROOF. Let ω be a noncompact root inΣ . Since µ and ω are integral, µ+ω is also an
integral form on bC. We shall prove µ+ ω is P -dominant. Let α be a root in P . By (2.5) we
have

2(µ+ ω, α)|α|−2 ≥ 2(µ, α)|α|−2 − 3 .(5.6)
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Let α = ∑�
i=1miβi be the expression of α by the simple roots in Ψ . Then all m′

is are
nonnegative integers. Furthermore, we can assume that mk > 0 for k, 1 ≤ k ≤ �. Since

|βk|2|α|−2 ≥ 1/3 and 2(µ, βk)|βk|−2 ≥ 9, we have

2(µ, α)|α|−2 ≥ mk(2(µ, βk)|βk|−2)(|βk|2|α|−2) ≥ 3 .

Hence by (5.6), we have 2(µ+ ω, α)|α|−2 ≥ 0. Thus µ + ω ∈ Γ as claimed. Let us prove
the second assertion of this lemma. It is sufficient to prove that 6nλi ∈ Γ . Let α be as above.
If mi = 0, we have 2(6nλi, α) = 0. Assume that mi > 0. Since

2(6nλi, α)|α|−2 = 6min(|βi |2|α|−2) ,

(2.5) implies that 6nλi is a P -dominant integral form on bC.

LEMMA 5.3. Let F be an element in R[η]. Suppose that F(λ) = 0 for all λ ∈ D+ρK .
Then we have F ≡ 0.

PROOF. F is written by

F(η) =
m∑
i=0

(η1)
iFi(η2, · · · , η�) .(5.7)

Let λ = µ + ρK be an element in D + ρK . We put λ = ∑�
i=1 piλi . Then pi is a rational

number. We shall prove the assertion by using an induction on �. We first assume that F(η) =
F(η1). By Lemma 5.2 we have 6nλ1 + λ ∈ D + ρK for all positive integers n. Hence by
our assumption for F , we have F((6n + p1)λ1) = 0. Since the polynomial F(η1) has the
infinitely many zeros, we have F ≡ 0. Let F be the same as in (5.7). Since

∑m
i=0(6n +

p1)
iFi(p2, · · · , p�) = 0 for all positive integers n,

Fi(p2, · · · , p�) = 0 for all i = 0 , 1, · · · ,m .

We have Fi(λ) = 0 for all i and λ ∈ D + ρK . Thus by the hypothesis of our induction we
conclude that F ≡ 0.

Let η be an element in (
√−1b)∗ and α an element in PK . We put α = ∑�

i=1miβi ,
where mi is a nonnegative integer. Then

(η, α) =
λ∑
i=1

mi

2
|βi |2ηi .

Especially, (η, α) ∈ R[η] for all α ∈ PK .
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THEOREM 5.4. Let ω be an element in Σn. Then we have the following functional
equations in R(η). ∏

α∈PK
(η, α)f (η + ω;ω) =

∏
α∈PK

(η + ω, α)f (η; −ω) ,(5.8)

f (η + ω;ω)f (−η − ω; −ω) =
∏
α∈PK

(η + ω, α)(η, α)−1 .(5.9)

PROOF. We put

f (η + ω;ω) = q(η)

p(η)
and f (η; −ω) = s(η)

r(η)

where p, q, r, s ∈ R[η]. By Lemma 4.7 and Lemma 5.1 we have
∏
α∈PK

(λ, α)f (λ+ ω;ω) =
∏
α∈PK

(λ+ ω, α)f (λ; −ω) for all λ ∈ D + ρK .

This implies that
∏
α

(λ, α)r(λ)q(λ) −
∏
α

(λ+ ω, α)s(λ)p(λ) = 0 for all λ ∈ D + ρK .

By Lemma 5.3 this identity holds for all η ∈ (
√−1b)∗, and therefore, we have the identity

(5.8). The identity (5.9) is also proved by using the same arguments as above.

THEOREM 5.5. Let µ ∈ ΓK and ω ∈ Σn. Suppose that µ+ ω ∈ ΓK and Pµ+ω(pC ⊗
Vµ) �= {0} for a noncompact root ω. Then we have

|Pµ+ω(Xω ⊗ v(µ))|2 = f (λ+ ω;ω) .
PROOF. Combining Lemma 4.8 with Lemma 5.1 we have

f (−λ− ω; −ω)|Pµ+ω(Xω ⊗ v(µ))|2 =
∏
α∈PK

(λ+ ω, α)(λ, α)−1 .

By the second identity in Theorem 5.4, we conclude that

|Pµ+ω(Xω ⊗ v(µ))|2 = f (λ+ ω;ω) .
The following lemma will be used to calculate the explicit formula of f (η;ω).
LEMMA 5.6. Let fi, hi (i = 1, 2) be four polynomials in R[η]. We assume that

degh1 = degh2 = 1 and f1h1 = f2h2. If h2 is distinct to a non-zero constant multiple
of h1, then f2 is divisible by h1.

PROOF. Since degh1 = 1, there exists a number i, 1 ≤ i ≤ �, such that the first partial

derivative ∂h1
∂ηi

is a non-zero constant. We can assume that i = 1, and put ζ1 = h1, ζi = ηi for
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2 ≤ i ≤ �. Then we have R[ζ ] = R[ζ1, ζ2, · · · , ζ�] = R[η]. Let g i (i = 1, 2) and h be three
polynomials in R[ζ ] satisfying g i (ζ ) = fi(η) and h(ζ ) = h2(η). We put

h(ζ ) =
�∑
i=1

ciζi + c0, g 1(ζ ) =
m∑
j=0

ζ
j

1 rj (ζ ) and g 2(ζ ) =
m∑
j=0

ζ
j

1 sj (ζ ) ,

where rj , sj ∈ R[ζ2, · · · , ζ�] and ci ∈ R. Since

0 = f1(η)h1(η)− f2(η)h2(η)

=
m∑
j=0

ζ
j+1
1 rj (ζ )−

m∑
j=0

ζ
j
1 sj (ζ )(h(ζ )− c1ζ1)−

m∑
j=0

c1ζ
j+1
1 sj (ζ ) ,

we have
m∑
j=0

ζ
j+1
1 (rj (ζ )− c1sj (ζ )) =

m∑
j=0

ζ
j

1 sj (ζ )(h(ζ )− c1ζ1) .

Bearing in mind h(ζ )− c1ζ1, sj , rj ∈ R[ζ2, · · · , ζ�], it follows that s0(ζ )(h(ζ )− c1ζ1) = 0.
On the other hand, since h(ζ ) = h2(η) is not a constant multiple of ζ1 = h1(η) , we have
h(ζ ) − c1ζ1 �= 0. Since R[ζ ] is an integral domain, we conclude that s0(ζ ) = 0. Thus

f2(η) = ∑m
j=1 ζ

j
1 sj (ζ ) is divisible by ζ1 = h1(η). This completes our proof.

6. Product formula for f (η + ω;ω)
For each ω ∈ Σn we define a rational function f (η;ω) and a real number aω(I), I ∈ Π ,

by Definition 4.1. In this section we shall prove that f (η;ω) has a product formula. First we

define a subset ∆̂(ω) in (
√−1b)∗ by

∆̂(ω) = {〈I 〉 : aω(I) �= 0, I ∈ Π\Π0} .(6.1)

We define the polynomials pξ (η) (ξ ∈ ∆̂(ω)) and p(η;ω) in R[η] by

pξ (η) = 2(η, ξ)+ |ξ |2 , p(η;ω) =
∏

ξ∈∆̂(ω)
pξ (η) .(6.2)

Since p(η;ω) is the least common multiple of the denominators of fractional terms S(η; I)
(I ∈ Π) in f (η;ω), there exists a polynomial g (η;ω) such that

p(η;ω)f (η;ω) = g (η;ω) .(6.3)

We put ∆±(ω) = {α ∈ PK : ±(ω, α) > 0}. By Theorem 5.4 we have

p(η; −ω)
∏

α∈∆−(ω)∪∆+(ω)
(η, α)g (η + ω;ω)

=p(η + ω;ω)
∏

α∈∆−(ω)∪∆+(ω)
(η + ω, α)g (η; −ω) .

(6.4)



CHARACTERISTIC FUNCTION OF THE TENSOR K-MODULE 135

We now define the subsets ∆(ω),∆m(ω) and ∆m(ω)∗ of PK , where m is an integer, by

∆(ω) = {α ∈ PK : ω + α ∈ Σ} ,
∆m(ω) = {α ∈ PK : 2(ω, α)|α|−2 = m,ω + α ∈ Σ} ,
∆m(ω)

∗ = {α ∈ ∆m(ω) : ω − α ∈ Σ} .

We note that ∆(ω) ⊂ ∆̂(ω).

LEMMA 6.1. Let G be an inner type noncompact real simple Lie group and ω a non-
compact root in Σ . Then we have the followings.

(1) ∆(ω) = ∆−(ω) ∪∆0(ω) ∪∆1(ω) , ∆0(ω) = ∆0(ω)
∗ and ∆1(ω) = ∆1(ω)

∗.

(2) If ∆0(ω)
∗ �= φ, then G is one of Sp(n,R) and SO(2m, 2n+ 1),

and ∆(ω) = ∆0(ω)
∗ ∪∆−1(ω).

(3) If ∆−1(ω)
∗ ∪∆1(ω)

∗ �= φ, then G is of the type G2 .

PROOF. Let α be an element in PK and ω+ jα (−q ≤ j ≤ p) the α-series containing
ω. We put A = ∆−(ω) ∪ ∆0(ω) ∪ ∆1(ω). We first prove that ∆(ω) = A. Let α be an
element in A. Since ∆0(ω) ∪ ∆1(ω) ⊂ ∆(ω), we can assume α ∈ ∆−(ω). Then by (2.3)
we have α ∈ ∆(ω), and hence, A ⊂ ∆(ω). Let us now assume that α ∈ ∆(ω). Since
p ≥ 1 and p + q ≤ 3, (2.3) implies that α ∈ A. Thus A = ∆(ω). Moreover, we have
∆0(ω) = ∆0(ω)

∗ and∆1(ω)
∗ = ∆1(ω). Let us prove (2) and (3). Suppose that α ∈ ∆0(ω)

∗.

Then ω + α ∈ Σ and 2(ω + α, α)|α|−2 = 2. In view of (2.8), (2.9), (2.10) and (2.11) we
haveG is one of SO(2m, 2n+ 1) and Sp(n,R). It remains to prove that if∆0(ω)

∗ �= φ, then
∆(ω) = ∆0(ω)∪∆−1(ω). By (1) it is sufficient to prove∆−(ω) = ∆−1(ω) and∆1(ω) = φ.

If ∆0(ω) �= φ, then ω is a short root. By (2.9) and (2.10) we have |2(ω, α)|α|−2| ≤ 1 for
all α ∈ PK . This implies ∆−(ω) = ∆−1(ω). Suppose that α ∈ ∆1(ω). Since ω + α ∈ Σn

and 2(ω + α, α)|α|−2 = 3, G is of the type G2. This implies that ∆1(ω) = φ for the case
∆0(ω)

∗ = φ. Consider the case ∆−1(ω)
∗ ∪∆1(ω)

∗ �= φ. When ∆1(ω)
∗ = ∆1(ω) �= φ, the

above argument implies G is of type G2. If α ∈ ∆−1(ω)
∗, then we have 2(ω − α, α)|α|−2 =

−3. This implies also the same conclusion.

LEMMA 6.2. Consider a noncompact root ω and a compact root α in PK . Then for

each ξ ∈ ∆̂(ω) and ζ ∈ ∆̂(−ω) we have the followings.

(1) pξ (η + ω) is divisible by (η, α) iff α ∈ ∆−(ω) and ξ = − 2(ω,α)
|α|2 α.

(2) pζ (η) is divisible by (η + ω, α) iff α ∈ ∆+(ω) and ζ = 2(ω,α)
|α|2 α.

(3) pξ (η + ω) is divisible by pζ (η) iff one of the following three cases;
(i) ξ = ζ ∈ ∆0(ω)

∗ , (ii) ξ ∈ ∆1(ω)
∗ and ζ = 2ξ,

(iii) ζ ∈ ∆−1(ω)
∗ and ξ = 2ζ.
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PROOF. Let us prove (1). Assume that there exists a nonzero real number k such that

pξ (η + ω) = 2k(η, α). Then we have ξ = kα and 2(ω, α) + k|α|2 = 0. On the other hand,

since ξ ∈ ∆̂(ω), there is I ∈ Π\Π0 such that ξ = 〈I 〉. This implies that k is a positive real

number. Consequently, we have α ∈ ∆−(ω) and ξ = − 2(ω,α)
|α|2 α. Conversely if α and ξ satisfy

these conditions, then we can prove that pξ (η + ω) is a non-zero constant multiple of (η, α).
Similarly by using the same arguments we can prove (2). We shall prove (3). Suppose that
there exists a nonzero real number k such that kpξ (η + ω) = pζ (η). Then we have

ζ = kξ and 2(ω, ξ) = (k − 1)|ξ |2 .(6.5)

By the first identity in (6.5), k is positive. We put δ = ω+ ξ . Since ξ ∈ ∆̂(ω), it follows from
the definition in (6.1) that δ ∈ Σ . We have

|δ|2 − |ω|2 = 2(ω, ξ) + |ξ |2 = k|ξ |2 .(6.6)

This implies that |δ|2 > |ω|2. On the other hand, since |ξ |2 = |δ|2 − 2(ω, δ)+ |ω|2, we have

2(ω, δ) =
(

1 + 1

k

)
|ω|2 +

(
1 − 1

k

)
|δ|2 .(6.7)

When |δ|2 = 2|ω|2, we have k = 1 and 2(δ,ω)
|ω|2 = 2. Therefore ξ = ζ ∈ ∆0(ω)

∗ which is the

case (i). When |δ|2 = 3|ω|2, (6.7) implies that 2(ω, δ) = (4 − 2/k)|ω|2. Since

2(δ, ω)

|ω|2 ∈ {0,±3} ,

it follows that k = 2 or k = 1/2 or k = 2/7. In the first case, we have δ − ω = ξ ∈ ∆1(ω)
∗

and ζ = 2ξ . Let us consider the second case: 2(δ,ω)
|ω|2 = 0 and k = 1/2. We put δ′ = −ω + ζ .

Then we have δ′ ∈ Σ . Furthermore, by (6.5) we have

2(ω, ζ ) = −1

4
|ξ |2 = −1

4
|δ − ω|2 = −|ω|2 .

Therefore

2(δ′, ω) = 2(ζ, ω)− 2|ω|2 = −3|ω|2 .
Hence we have ζ = δ′ + ω ∈ Σ and 2(ζ, ω) = −|ω|2 = −|ζ |2. Thus ζ ∈ ∆−1(ω)

∗ and

ξ = 2ζ . Suppose that k = 2/7. Since ξ ∈ ∆̂(ω), there are two nonnegative integers p, q such
that ξ = pα0 + qα2, where {α0, α2} is the positive root system PK of type G2 (see (2.11)).

Since |δ|2 = 3|ω|2, the equation in (6.6) implies that ξ = α0 + 2α2. Then, ζ = 2
7ξ /∈ ∆̂(−ω).

This is contradict to the assumption ζ ∈ ∆̂(−ω). Thus the final case does not occur.
Let ω be a fixed noncompact root in Σn. In order to calculate a product formula for

f (η;ω) we shall consider two cases: ∆1(ω)
∗ ∪ ∆−1(ω)

∗ is empty or not. For the first case



CHARACTERISTIC FUNCTION OF THE TENSOR K-MODULE 137

we define two polynomials p(η;ω) and g (η;ω) as in (6.3). We now put

p′(η + ω;ω) = p(η + ω;ω)
∏

α∈∆−(ω)∪∆+(ω)
(η + ω, α) ,

p′(η; −ω) = p(η; −ω)
∏

α∈∆−(ω)∪∆+(ω)
(η, α) .

Then by (6.4) we have

p′(η; −ω)g (η + ω;ω) = p′(η + ω;ω)g (η; −ω) .(6.8)

We also define two polynomials s(η;ω) and q(η;ω) in R[η] by

s(η;ω) =
∏

α∈∆0(ω)
∗
(2(η, α)+ |α|2),

q(η;ω) = s(η;ω)
∏

α∈∆−(ω)
(η − ω, α)

∏
α∈∆+(ω)

(η, α) .
(6.9)

Since q(η;ω) and s(η;ω) are invariant under the transformation: (η, ω) → (η−ω,−ω), we
can define q(η; −ω) and s(η; −ω) by

q(η; −ω) = q(η + ω;ω) and s(η; −ω) = s(η + ω;ω) .(6.10)

LEMMA 6.3. Assume that∆1(ω)
∗ ∪∆−1(ω)

∗ = φ. Then the greatest common divisor
of p′(η + ω;ω) and p′(η; −ω) is given by q(η + ω;ω) = q(η; −ω).

PROOF. By (6.2) we have p(η+ω;ω) = ∏
ξ∈∆̂(ω) pξ (η+ω). The polynomials pξ (η)

and pζ (η) are mutually prime for two distinct ξ and ζ in ∆̂(ω). Actually, if pξ (η) = cpζ (η)

for a non-zero real number c, then ξ = cζ and |ξ |2 = c|ζ |2. These imply c = 1 and ξ = ζ .
Let p be a common prime divisor of p′(η + ω;ω) and p′(η; −ω). Since p is a divisor of

p′(η+ω;ω), we can assume that p = pξ (η+ω) (ξ ∈ ∆̂(ω)) or p = (η+ω, α) (α ∈ ∆−(ω)∪
∆+(ω)). If p = pξ (η + ω), then the formula of p′(η; −ω) implies that cp = (η, β), β ∈
∆−(ω) ∪ ∆+(ω) or cp = pζ (η), ζ ∈ ∆̂(−ω), where c is a constant. In the first case, (1) in
Lemma 6.2 implies cp = (η, β), β ∈ ∆−(ω). For the second case, from (3) in Lemma 6.2 it

follows that cp = 2(η, β)+|β|2, β ∈ ∆0(ω)
∗. If p = (η+ω, α), α ∈ ∆−(ω)∪∆+(ω), then

by (2) in Lemma 6.2 we have α ∈ ∆+(ω). Therefore, p is a divisor of

q(η+ ω;ω) =
∏

γ∈∆−(ω)
(η, γ )

∏
γ∈∆+(ω)

(η + ω, γ )
∏

γ∈∆0(ω)
∗
(2(η, γ )+ |γ |2) .

Thus q(η + ω;ω) is divisible by all common prime divisors of p′(η + ω;ω) and p′(η; −ω).
Again by Lemma 6.2 q(η+ω;ω) is a common divisor of p′(η+ω;ω) and p′(η; −ω) which
implies the conclusion of this lemma.
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We keep the assumption∆−1(ω)
∗ ∪∆1(ω)

∗ = φ, and put h(η;ω) = p′(η;ω)q(η;ω)−1,

h(η; −ω) = p′(η; −ω)q(η; −ω)−1. By (6.8) we have

h(η; −ω)g (η + ω;ω) = h(η + ω;ω)g (η; −ω) .(6.11)

By Lemma 6.3, h(η + ω;ω) and h(η; −ω) are mutually prime. Therefore, it follows from
Lemma 5.6 that there are two polynomials k(η;ω) and k(η; −ω) such that

g (η + ω;ω) = k(η + ω;ω)h(η + ω;ω) , g (η; −ω) = k(η; −ω)h(η; −ω) .(6.12)

Substituting the first identity for (6.3), we have

f (η + ω;ω) = g (η + ω;ω)p(η + ω;ω)−1 ,

= k(η + ω;ω)h(η + ω;ω)p(η + ω;ω)−1

= k(η + ω;ω)p′(η + ω;ω)(q(η+ ω;ω)p(η + ω;ω))−1

= k(η + ω;ω)
∏

α∈∆−(ω)
(η + ω, α)(η, α)−1s(η + ω;ω)−1 .

LEMMA 6.4. Assume that ∆1(ω)
∗ ∪ ∆−1(ω)

∗ = φ. Then we have k(η + ω;ω) =
k(η; −ω) and the following identities.

(1) f (η + ω;ω) = k(η + ω;ω)
∏

α∈∆−(ω)
(η + ω, α)(η, α)−1s(η + ω;ω)−1 ,

f (η; −ω) = k(η; −ω)
∏

α∈∆+(ω)
(η, α)(η + ω, α)−1s(η; −ω)−1 .

(2) k(−η − ω; −ω)k(η+ ω;ω) = s(−η − ω; −ω)s(η + ω;ω) .
PROOF. The first identity in (1) is already shown, and the second one also follows from

the same calculation. It remains to prove the identities k(η + ω;ω) = k(η; −ω) and (2). By
using the first identity in Theorem 5.4 we have

∏
α∈∆−(ω)∪∆+(ω)

(η, α)f (η + ω;ω) =
∏

α∈∆−(ω)∪∆+(ω)
(η + ω, α)f (η; −ω) .

Hence by (6.10) and the identities in (1), we have k(η + ω;ω) = k(η; −ω). By the second
identity in (1) we have

f (−η − ω; −ω) = k(−η − ω; −ω)
∏

α∈∆+(ω)
(η + ω, α)(η, α)−1s(−η − ω,−ω)−1 ,

and then, by the first identity in (1) we have

f (η + ω;ω)f (−η − ω; −ω) = k(η + ω;ω)k(−η − ω; −ω){s(η+ ω;ω)s(−η− ω; −ω)}−1

×
∏

α∈∆−(ω)∪∆+(ω)
(η + ω, α)(η, α)−1 .
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Therefore, the second identity in Theorem 5.4 implies the assertion of (2).

THEOREM 6.5. Let G be an inner type noncompact real simple Lie group and ω a
noncompact root. We define f (η;ω) by (4.1). Then f (η;ω) has one of the following product
formulae.

(1) If ∆0(ω)
∗ ∪∆−1(ω)

∗ ∪∆1(ω)
∗ = φ , then

f (η + ω;ω) =
∏

α∈∆−(ω)
(η + ω, α)(η, α)−1 .

(2) If ∆0(ω)
∗ �= φ, then ∆1(ω)

∗ ∪∆−1(ω)
∗ = φ and

f (η + ω;ω) =
∏

α∈∆0(ω)
∗
(2(η, α)− |α|2)(2(η, α)+ |α|2)−1

×
∏

α∈∆−1(ω)

(η + ω, α)(η, α)−1 .

(3) If ∆1(ω)
∗ ∪∆−1(ω)

∗ �= φ , then ∆0(ω)
∗ = φ and

f (η + ω;ω) =
∏

α∈∆−(ω)
(η + ω, α)(η, α)−1

∏
α∈∆1(ω)

∗
(2(η, α)− |α|2){2((η, α)+ |α|2)}−1

×
∏

α∈∆−1(ω)
∗
2((η, α)− |α|2)(2(η, α)+ |α|2)−1 .

PROOF. If∆0(ω)
∗ ∪∆−1(ω)

∗ ∪∆1(ω)
∗ = φ, then by (6.9) we have s(η+ω;ω) = 1.

(2) in Lemma 6.4 implies that k(η + ω;ω) = c, where c is a real constant. Hence by (1) in
Lemma 6.4

f (η + ω;ω) = c
∏

α∈∆−(ω)
(η + ω, α)(η, α)−1 .

We shall prove c = 1. Let λ0 be a PK -regular dominant integral form on bC. By the above
identity, we have

lim
a→+∞ f (aλ0 + ω;ω) = c .

Let S(η; I), I ∈ Π, be the rational function as in Definition 4.1. Since lima→+∞ S(aλ0; I) =
0 for I �= φ̃, we have lima→+∞ f (aλ0 + ω) = 1. Hence we can prove (1). Let us assume
that ∆0(ω)

∗ �= φ. By (2), (3) in Lemma 6.1 we have ∆−1(ω)
∗ ∪∆1(ω)

∗ = φ and ∆−(ω) =
∆−1(ω). We put

s(η) = s(η + ω;ω), k(η) = k(η + ω;ω) ,
u(η) =

∑
α∈Π1

aω(α)pα(η + ω)−1 ,

v(η) =
∏

α∈∆−1(ω)

(η + ω, α) ,
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w(η) =
∏

α∈∆−1(ω)

(η, α) ,

r(η) = f (η + ω;ω)− 1 + u(η) .

By (4.1) there exist two polynomials r1, r2 in R[η] such that r = r1r
−1
2 and deg r1 ≤ deg r2 −

2. Since each prime divisor of r2 is of degree one, it follows from Lemma 5.6 that we can
assume r1 and r2 are mutually prime. By (1) in Lemma 6.4 we have

s(η){1 − u(η)+ r(η)}w(η) = k(η)v(η) .(6.13)

Let N be the degree of the polynomial k(η)v(η). We shall prove that srw is a plolynomial
and deg(srw) ≤ N − 2. By (2) in Lemma 6.1 and (2.4) we have

u(η) =
∑

α∈∆(ω)
aω(α)pα(η + ω)−1

=
∑

α∈∆0(ω)
∗

2|α|2(2(η, α)+ |α|2)−1 +
∑

α∈∆−1(ω)

1

2
|α|2(η, α)−1 .

(6.14)

By this formula and (6.9) suw is a plynomial in η, and hence by (6.13), srw is also a polyno-
mial and deg(srw) ≤ N − 2. Then it follows from (6.14) that

s(η + ω;ω)(1 − u(η)+ r(η))w(η)

=
∏

α∈∆0(ω)
∗∪∆−1(ω)

(η, α)−
∑

α∈∆0(ω)
∗
|α|2

∏
β∈(∆0(ω)

∗\{α})∪∆−1(ω)

(η, β)

−
∑

α∈∆−1(ω)
∗

1

2
|α|2

∏
β∈∆0(ω)

∗∪∆−1(ω)\{α}
(η, β)+ the lower terms .

(6.15)

Let us now determine the polynomial k(η). By the functional equation of (2) in Lemma 6.4,
we have

k(η) = c
∏

α∈∆0(ω)
∗
(2(η, α)+ εα|α|2) ,

where c is a constant and εα = ±1. Comparing the highest and the second highest terms
in (6.15) with k(η)v(η), we have c = 1 and εα = −1 for all α ∈ ∆0(ω)

∗. Hence by (1) in
Lemma 6.4 we have (2) in this theorem. Finally, let us consider the case∆1(ω)

∗∪∆−1(ω)
∗ �=

φ. Since G is of the type G2 (see (3) in Lemma 6.1). PK andΣn are respectively given by

PK = {β, 2γ − 3β},Σn = {±γ,±(γ − β),±(γ − 2β),±(γ − 3β)}, 2(γ, β)

|β|2 = 3 .

Let α be an element in ∆1(ω)
∗ ∪∆−1(ω)

∗. Since ω ± α ∈ Σ , we have |α| = |ω| and ω is a
short root. Therefore

∆1(ω)
∗ ∪∆−1(ω)

∗ = {β} and ω ∈ {±(γ − β),±(γ − 2β)} .
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Furthermore, we have

∆̂(γ − β) = ∆1(γ − β)∗ = ∆−1(γ − 2β)∗ = {β}, ∆̂(γ − 2β) = {β, 2β} .
A direct calculation shows that

f (η + γ − β; γ − β) = 1 − 3|β|2
2((η, β)+ |β|2) = 2(η, β)− |β|2

2((η, β)+ |β|2) ,

f (η + γ − 2β; γ − 2β) = 1 − 4|β|2
2(η, β)

+ 4|β|2
2(η, β)

3|β|2
2(2(η, β)+ |β|2)

= (η + γ − 2β, β)

(η, β)

2((η, β)− |β|2)
2(η, β)+ |β|2 .

Hence, for ω = γ − β or = γ − 2β, we have (3) of this theorem. For the case −ω =
−γ + β,−γ + 2β, we have also (3) by using the identity (5.8) in Theorem 5.4.

7. Main theorem

Let µ ∈ ΓK and Vµ a simple K-module with the highest weight µ. By Lemma 3.4

pC ⊗ Vµ = ⊕ω∈Σn,µ+ω∈ΓKPµ+ω(pC ⊗ Vµ) ,

where Pµ+ω(pC ⊗ Vµ) = {0} or is a simple K-module. In this section we shall prove that the
K-module Pµ+ω(pC ⊗ Vµ) is nontrivial if and only if f (λ+ ω;ω) > 0, where λ = µ+ ρK .

DEFINITION 7.1. Let µ ∈ ΓK , and define the following six sets for λ = µ+ ρK .

w(λ) = {λ+ ω : ω ∈ Σn},

sw(λ) =
{
ξ ∈ w(λ) :

∏
α∈PK

(ξ, α) = 0

}
,

rw(λ) =
{
ξ ∈ w(λ) :

∏
α∈PK

(ξ, α) �= 0

}
,

rw0(λ) = {λ+ ω ∈ rw(λ) : f (λ+ ω;ω) = 0} ,
rw+(λ) = {λ+ ω : µ+ ω ∈ ΓK, f (λ+ ω;ω) > 0} ,
rw−(λ) = rw(λ)\(rw0(λ) ∪ rw+(λ)) .

LEMMA 7.2. Assume that all noncompact roots in Σ have the same length. Then we
have w(λ) = sw(λ) ∪ rw+(λ).

PROOF. First we shall prove∆0(ω)
∗ ∪∆−1(ω)

∗ ∪∆1(ω)
∗ = φ. Let α be an element in

∆(ω). Since |ω+ α| = |ω|, we have 2(ω, α)|α|−2 = −1. This implies that∆(ω) = ∆−1(ω).

By the proof of (3) in Lemma 6.1 if α ∈ ∆−1(ω)
∗, then ω−2α ∈ Σn. Since |ω−2α|2 > |ω|2,

our assumption implies ∆−1(ω)
∗ = φ, and hence, ∆0(ω)

∗ ∪ ∆−1(ω)
∗ ∪ ∆1(ω)

∗ = φ. Let
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λ+ω be an element in w(λ). Then for α ∈ PK , we have (ω, α) ≥ 0 or (ω, α) < 0. In the first
case we have (λ + ω, α) > 0. For the later case we have 2(ω, α)|α|−2 = −1. Consequently
we have (λ+ω, α) = 0 or (λ+ω, α) > 0. Suppose that λ+ω /∈ sw(λ). Since (λ+ω, α) > 0
for all α ∈ PK , (1) in Theorem 6.5 implies λ+ ω ∈ rw+(λ).

For α in PK we define a linear transformation sα on (
√−1b)∗ by

sα(η) = η − 2(η, α)|α|−2α, η ∈ (√−1b)∗ .

The Weyl group WK of (kC, bC) is generated by the set {sα; α ∈ PK } (cf. Theorem 4.41 in
[7]).

LEMMA 7.3. Assume that G is one of Sp(n,R) and SO(2m, 2n + 1). Suppose that
λ + ω ∈ rw0(λ). Then there exists a unique compact simple short root α in P such that
(µ, α) = 0, α ∈ ∆0(ω)

∗ and sα(λ+ ω) ∈ rw−(λ).

PROOF. By the assumption for λ+ ω, λ + ω is PK -regular and f (λ + ω;ω) = 0. We
first prove that ∆0(ω)

∗ �= φ. Suppose that ∆0(ω)
∗ = φ. By (2), (3) in Lemma 6.1 we can

assume ∆0(ω)
∗ ∪ ∆−1(ω)

∗ ∪ ∆1(ω)
∗ = φ. Since λ + ω is PK -regular, (1) in Theorem 6.5

implies a contradiction : f (λ + ω;ω) �= 0. Thus ∆0(ω)
∗ �= φ. By (2) in Theorem 6.5 there

exists α ∈ PK such that (ω, α) = 0 and 2(λ, α) = |α|2. Therefore ω and α are short roots,
and

(µ, α) = 0, 2(ρK, α)|α|−2 = 1 .(7.1)

Let us prove that α is a simple root in P . Let ΨK = {α1, α2, · · · , α�} be the simple root

system of PK . Then α is written by α = ∑�
i=1miαi , where mi is a nonnegative integer.

Consequently we have

1 = 2(ρK, α)|α|−2 =
�∑
i=1

mi2(ρK, αi)|αi |−2(|αi |2|α|−2) .

Since α is a short root, all |αi |2|α|−2’s are positive integers. This implies that α = αi for a
suitable i. Hence α is a simple short root. Here we shall use the Dynkin diagrams (2.9) and
(2.10). Consider the case G = SO(2m, 2n + 1). In view of the Dynkin diagram of PK the
simle short root α is unique. Furthermore, α is also a unique short root of the Dynkin diagram

of P . Let us prove that sα(λ + ω) ∈ rw−(λ). Since 2(λ + ω, α)|α|−2 = 1 and λ + ω is
PK -regular, we have sα(λ + ω) = λ + ω − α ∈ rw(λ). Since ω − α is a noncompact long
root, we have

∆0(ω − α)∗ ∪∆−1(ω − α)∗ ∪∆1(ω − α)∗ = φ .

The formula (1) in Theorem 6.5 implies that f (λ + ω − α;ω − α) �= 0. Moreover, since

2(µ+ ω − α, α)|α|−2 < 0, we have sα(λ+ ω) ∈ rw−(λ). Consider the case G = Sp(n,R).
Let Ψ = {α1, α2, · · · , αn} be the simple root system of the Dynkin diagram (2.9). Then all
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αi ’s (1 ≤ i ≤ n−1) are compact simple short roots in PK . The set of all noncompact positive
short roots is given by

{αk + · · · + αs−1 + 2αs + · · · + 2αn−1 + αn : 1 ≤ k < s < n} .

Let γ be an element in this set. Then ∆0(γ ) is nonempty iff γ is of the form

γk = αk + 2αk+1 + · · · + 2αn−1 + αn (1 ≤ k ≤ n) .

If (γk, α) = 0 for a compact root α, then α = αk . Especially,∆0(γk)
∗ = {αk}. Moreover, we

can prove that sα(λ+ω) ∈ rw−(λ) by using the same argument as in the case of SO(2m, 2n+
1).

LEMMA 7.4. Let G be the same as in the previous lemma. Suppose that λ + ω ∈
rw−(λ). Then there exists a unique compact simple short root α ∈ P such that (µ, α) = 0,
α ∈ ∆0(ω + α)∗ and sα(λ+ ω) = λ+ ω + α ∈ rw0(λ).

PROOF. Let λ + ω be an element in rw−(λ). First we shall prove that there exists a

simple root α in PK such that (µ, α) = 0 and 2(ω, α)|α|−2 = −2. Since λ + ω /∈ rw0(λ) ∪
rw+(λ), we have either µ + ω /∈ ΓK and f (λ + ω;ω) �= 0 or f (λ + ω;ω) < 0. If
µ+ω /∈ ΓK , then there exists a simple root α ∈ PK such that (µ+ω, α) < 0. Since µ is PK -

dominant, the pair (2(µ, α)|α|−2, 2(ω, α)|α|−2) is one of the followings: (0,−1), (0,−2)
and (1,−2). For the cases (0,−1) and (1,−2) we have (λ + ω, α) = 0. If ∆0(ω)

∗ = φ,
then (1) in Theorem 6.5 implies f (λ + ω;ω) = 0. When ∆0(ω)

∗ �= φ, Lemma 6.1 implies
that the case (1,−2) is impossible. Consider the case ∆0(ω)

∗ �= φ and (0,−1). Since
α ∈ ∆−(ω) and (λ+ ω, α) = 0, (2) in Theorem 6.5 implies f (λ+ ω;ω) = 0. Consequently

if µ + ω /∈ ΓK and f (λ + ω;ω) �= 0, then (µ, α) = 0 and 2(ω, α)|α|−2 = −2. Let us
consider the case f (λ + ω;ω) < 0. Since λ + ω is PK -regular, it follows from (1) and
(2) in Theorem 6.5 there exists a simple root α in PK such that (λ + ω, α) < 0. Then we

have also (µ, α) = 0 and 2(ω, α)|α|−2 = −2. Let us prove sα(λ + ω) ∈ rw0(λ). Since

sα(λ+ω) = λ+ω+ α, α ∈ ∆0(ω+ α)∗ and 2(λ+ω+ α, α)|α|−2 = 1, (2) in Theorem 6.5
implies that f (λ+ω+α;ω+α) = 0, and therefore, sα(λ+ω) ∈ rw0(λ). It remains to prove
that α is simple in P and is unique. In view of the proof of the previous lemma it is enough to
consider the case G = Sp(n,R). Then the set of all noncompact positive long roots is given
by

{γi = 2αi + 2αi+1 + · · · + 2αn−1 + αn : 1 ≤ i ≤ n} .

If 2(γi, α)|α|−2 = −2 for a compact root α, then 2 ≤ i ≤ n and α = αi−1. Especially,
∆0(γi + αi−1)

∗ = {αi−1}.
Let G be of the type G2. Then PK = {α, β}, α (resp. β) is short (resp. long), and α is

simple and (α, β) = 0 (see (2.11)).
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LEMMA 7.5. Let G be of the type G2. Suppose that λ + ω ∈ rw0(λ). Then we have
sα(λ+ ω) ∈ rw−(λ). Conversely, suppose that λ+ ω ∈ rw−(λ). Then we have sα(λ+ ω) ∈
rw0(λ).

PROOF. Assume that λ+ω ∈ rw0(λ). Since λ+ω is PK -regular and f (λ+ω;ω) = 0,
(1) in Theorem 6.5 and (2) in Lemma 6.1 imply that ∆−1(ω)

∗ ∪∆1(ω)
∗ �= φ, and hence, ω

is a short root. By (3) in Theorem 6.5 we have

∏
δ∈∆−1(ω)

∗
((λ, δ)− |δ|2)

∏
δ∈∆1(ω)

∗
(2(λ, δ)− |δ|2) = 0 .

This implies that

(λ, δ) = |δ|2 for δ ∈ ∆−1(ω)
∗ or 2(λ, δ) = |δ|2 for δ ∈ ∆1(ω)

∗ .

In both cases δ is a short root, and therefore δ = α. Consider the first case. Since 2(λ +
ω, α)|α|−2 = 1, we have sα(λ+ω) = λ+ω−α and 2(µ+ω−α, α)|α|−2 = −1. Therefore
µ+ω−α /∈ ΓK . Sinceω−α is a long root, we have∆0(ω−α)∗∪∆−1(ω−α)∗∪∆1(ω−α)∗ =
φ. This implies that f (λ + ω − α;ω − α) �= 0. Thus sα(λ + ω) ∈ rw−(λ). Consider the
second case. Since α ∈ ∆1(ω)

∗, we have sα(λ+ ω) = λ+ ω − 2α and ω − 2α ∈ Σn. Since
ω − 2α is a long root and 2(λ+ ω − 2α, α)|α|−2 = −2, we have also sα(λ + ω) ∈ rw−(λ).
The converse follows from the same arguments.

THEOREM 7.6. Let ω ∈ Σn and µ ∈ ΓK . Assume that µ + ω ∈ ΓK . Then the
K-module Pµ+ω(pC ⊗ Vµ) is nontrivial if and only if f (λ+ ω;ω) > 0, where λ = µ+ ρK .

PROOF. Assume that Pµ+ω(pC ⊗ Vµ) �= {0}. By Corollary 3.5 we have Pµ+ω(Xω ⊗
v(µ)) �= 0. Hence by Theorem 5.5 we have f (λ+ ω;ω) > 0. Let us prove the sufficiency of
the theorem. Choosing a suitable covering group K∗ of K , we can define the character ξρK
of the analytic subgroup B∗ of K∗ corresponding to b. Weyl’s character formula (see (4.11))
implies that

(∆K trace(Ad ⊗ πµ))(expH) =
∑

λ+ω∈w(λ)

∑
t∈WK

ε(t)et (λ+ω)(H)

for all expH ∈ B∗, where (πµ, Vµ) is a simple K-module with the highest weight µ and
w(λ) is the same as in Definition 7.1. We shall prove that

(∆K trace(Ad ⊗ πµ))(expH) =
∑

λ+ω∈rw+(λ)

∑
t∈WK

ε(t)et (λ+ω)(H) .(7.2)

If λ+ ω ∈ w(λ) is PK -singular, then

∑
t∈WK

ε(t)et (λ+ω)(H) = 0 .
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Since w(λ) = sw(λ) ∪ rw0(λ) ∪ rw−(λ) ∪ rw+(λ), it is enough to prove

∑
λ+ω∈rw0(λ)∪rw−(λ)

∑
t∈WK

ε(t)et (λ+ω)(H) = 0 .(7.3)

IfG satisfies that all noncompact roots have the same length, then Lemma 7.2 implies rw0(λ)∪
rw−(λ) = φ. Hence we can assume that G is one of Sp(n,R) and SO(2m, 2n + 1), or G
is of the type G2. Consider the case G2, and let α be the short root in PK . By Lemma

7.5 we have sα(rw0(λ)) ⊂ rw−(λ) and sα(rw−(λ)) ⊂ rw0(λ). Since (sα)2 = 1, we have
sα(rw0(λ)) = rw−(λ). This implies (7.3). Let G be one of Sp(n,R) and SO(2m, 2n + 1).
We define the mappings ψ : rw0(λ) → rw−(λ) and ψ ′ : rw−(λ) → rw0(λ) by the fol-
lowings. Let λ + ω be an element in rw0(λ). By Lemma 7.3 there exists a unique compact
simple short root α such that (µ, α) = 0, α ∈ ∆0(ω)

∗ and sα(λ+ω) ∈ rw−(λ). We note that
sα(λ+ω) = λ+ω− α. We now put ψ(λ+ω) = sα(λ+ω). Similarly, by using Lemma 7.4,
we define a mapping ψ ′. We shall prove ψ ′ψ , ψψ ′ are the identities on rw0(λ) and rw−(λ)
respectively. Let λ+ω ∈ rw0(λ) andψ(λ+ω) = sα(λ+ω). Since α ∈ ∆0((ω−α)+α)∗ and
(µ, α) = 0, α is the unique compact simple short root determined by λ + ω − α ∈ rw−(λ).
This implies that ψ ′ψ(λ + ω) = λ + ω. Similarly we can prove ψψ ′ is the identity. Hence
ψ is bijective, and thus, rw−(ω) = ψ(rw0(ω)). Therefore, we have (7.3) for this case. Let
λ + ω ∈ rw+(λ) and πµ+ω a simple K-module with the highest weight µ+ ω. By (7.2) we
have

trace(Ad ⊗ πµ)(k) =
∑

µ+ω∈ΓK ,f (λ+ω;ω)>0

traceπµ+ω(k) .

Thus if µ+ ω ∈ ΓK and f (λ+ ω;ω) > 0 then Pµ+ω(pC ⊗ Vµ) �= {0} as claimed.
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