
TOKYO J. MATH.
VOL. 30, NO. 1, 2007

Some Problems on p-class Field Towers

Satoshi FUJII† and Keiji OKANO

Waseda University

(Communicated by Y. Yamada)

1. Introduction

Let p be a prime number,k a finite extension of the field of rational numbersQ and

L(k) the maximal unramified abelianp-extension ofk. Let L̃(k) be the maximal unramified
pro-p extension ofk, which is called thep-class field tower ofk, and denote its Galois group

Gal(L̃(k)/k) overk by G̃k. Then Gal(L(k)/k) = G̃ab
k � Ak, thep-primary part of the ideal

class group ofk, by the class field theory. For a number fieldk which can be an infinite

extension ofQ, we use the same notation, e.g.L̃(k) andG̃k, as in a finite extension. Let
k∞ be the cyclotomicZp-extension over a number fieldk; in other words,k∞ is the unique
infinite Galois subextension of the field obtained by adjoining tok all roots of unity ofp-
power order, whose Galois group is isomorphic to the additive group of the ringZp of p-adic
integers. Denote bykn the unique subextension ofk∞ overk of degreepn.

Iwasawa theory ofZp-extensions deals with Galois groups of various abelianp-
extensions overkn andk∞, in particular, of the maximal unramified abelian pro-p extensions
over kn andk∞. Recently, a number of mathematicians have been engaged in the study of
non-abelian extensions ofk∞ andkn using Iwasawa theory, especially the study of maximal
pro-p extensions with restricted ramification. For example, Ozaki [18] studied the maximal
unramified pro-p extension ofkn for all n, and proved a non-abelian analogy of the Iwasawa
class number formula. And from the point of view of the analogy between the theory of
Zp-extensions of algebraic number fields and the theory of the Jacobian variety of algebraic
curves, A. Schmidt and K. Wingberg study the Galois group of “the maximal positively rami-
fied extensions over algebraic number fields”, which is the analogy of the fundamental group
of compact Riemann surfaces.

In such studies, the question which asks what kind of groups can appear as the Galois

groupG̃k∞ of the maximalunramified pro-p extensionL̃(k∞) of k∞, and what kind of prop-

erties characterizẽGk∞ is an interesting problem for reasons of being concerned with the

Received October 4, 2005; revised April 13, 2006
2000Mathematics Subject Classification. 11R23.
†This research is partially supported by the Waseda University Grant for Special Research Projects: 2004B-895



212 SATOSHI FUJII AND KEIJI OKANO

theory of class field towers. Although a lot of investigations into this problem have been

done, quite a few groups are known which appear asG̃k∞ . For example, in the case of infinite
non-abelian groups, we know almost nothing, while in the case of finite non-abelian groups,
they are dihedral groups or generalized quaternion groups (Mizusawa [14], [15]). More pre-
cisely, in the case of infinite non-abelian groups, we do not know more than that there is an

example of a non-free pro-p groupG̃k∞ for an odd primep and some CM-fieldk. While there

are no known effective sufficient conditions forG̃k∞ to be a free pro-p group, we will give
some conditions, though ineffective, in the last section of this article. It seems that one of the

reasons of the difficulty in determining the structure ofG̃k∞ is the existence of archimedean
primes of algebraic number fields.

In this paper under the condition thatG̃k∞ is a non-abelian free pro-p group for some
kind of k we answer the following two questions which are concerned with the theory of class

field towers. We must here mention that we have no examples of suchG̃k∞ up to now.
(a) For an odd primep, to find an example of a number fieldk with the infinitep-class

field tower whosep-primary part of the ideal class groupAk satisfies the condition
that dimZ/pZ Ak/A

p
k = 2.

(b) For the cyclotomicZp-extensionk∞/k, in case that̃Gkn is infinite, to know whether

G̃kn has no torsion elements, in particular, whether its cohomological dimension is
finite.

The question (a) arises from the fact that, for any odd primep and any imaginary quadratic
field k, thep-class field tower is infinite if dimZ/pZ Ak/A

p
k ≥ 3 ([9], [11]). We remark that

Hajir [4] showedk = Q(
√−5 · 11 · 461), whose 2-primary part of the ideal class group is

isomorphic toZ/2Z ⊕ Z/4Z, has the infinite 2-class field tower. On the other hand Hajir [5]
also connected the question (b) with the Fontaine-Mazur conjecture. Unfortunately we have

no examples of the non-abelian free pro-p Galois groupG̃k∞ , as mentioned above. Therefore,
the question whether there exist such Galois groups seems a most interesting problem.

The main results in this article are the following.

THEOREM 1.1. Let p be an odd prime number, k a CM-field with the maximal totally
real field k+, k∞ the cyclotomic Zp-extension of k and kn its n-th layer. Suppose that

(1) G̃k∞ is a free pro-p group with rank λ ≥ 2,
(2) the prime p does not split in k∞/Q,
(3) the class number of k+ is prime to p.

If p ≥ 5 and dimZ/pZ Ak0/A
p
k0

= 2, or p = 3 and Ak0 � Z/3aZ ⊕ Z/3bZ with a, b ≥ 2,

then L̃(k1)/k1 is an infinite extension.

It is known that if dimZ/pZ Ak0/A
p
k0

≥ 3, thenL̃(k0)/k0 is an infinite extension by [9].
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THEOREM 1.2. Let p be an odd prime number, k a CM-field, ζp a primitive p-th root

of unity, k+ the maximal totally real subfield of k and k∞/k the cyclotomic Zp-extension.
Suppose that

(1) G̃k+∞ � Z/pZ, and G̃k∞L(k+∞) is a free pro-p group,

(2) k∞/k is totally ramified at any prime lying above p,

(3) λ(k∞/k) ≥ 1+2
√

1 + δ + s ; where λ(k∞/k) is the Iwasawa λ-invariant of k∞/k,
s the number of primes of k∞ lying above p, and δ = 1 or 0 according as ζp ∈ k

or not.
For all n sufficiently large, more precisely if dimZ/pZ Akn/A

p
kn

= dimZ/pZ G̃ab
k∞/(G̃ab

k∞)p, then

#G̃kn = ∞ and G̃kn has an element of order p.

Theorem 1.2 follows from the next theorem.

THEOREM 1.3. Let p be an odd prime number, K/k an unramified Galois extension
of degree p of CM-fields and denote by K+ and k+ the maximal totally real field of K and k

respectively. Let K∞, k∞ the cyclotomic Zp-extension of K and k respectively. Assume that

G̃K∞ is a free pro-p group and G̃K+∞ is trivial. Then G̃k∞ is expressed as

G̃k∞ �
{

(Z/pZ × Zp)
∐

Fλ(k∞/k)−1 (if ζp ∈ k)

Z/pZ
∐

Fλ(k∞/k) (if ζp /∈ k) ,

where ζp is a primitive p-th root of unity, Fd is a free pro-p group of rank d, λ(k∞/k) is the
Iwasawa λ-invariant of k∞/k, and the symbol

∐
stands for the free pro-p product.

Though in each proof of Theorem 1.1 and Theorem 1.3, the assumption that the Galois

groupsG̃k∞ andG̃K∞ are free plays a crucial role, it is very difficult to check whether these
Galois groups are free.

We remark that Theorem 1.1 may be an answer of the above question (a) because if
λ = 2 andn ≥ 0 then dimZ/pZ Akn/A

p
kn

= 2 under the condition of the theorem. It is known

under some similar situations that #G̃kn = ∞ for all sufficiently largen. In Theorem 1.3, we

remark that the assumptioñGK+∞ = 0 is equivalent to the statementG̃k+∞ � Z/pZ, and that

the Iwasawaµ-invariants ofK∞/K andk∞/k are zero, sincẽGK∞ is a free pro-p group.

2. Preliminaries

In the following, for any finite number fieldk, we use the notationk∞, λ(k∞/k),
µ(k∞/k) for the cyclotomicZp-extension ofk and the Iwasawaλ, µ-invariants ofk∞/k

respectively. For any odd primep and any CM-fieldk, we also use the notationk+
for the maximal totally real subfield ofk, and putλ(k∞/k)− = λ(k∞/k) − λ(k+∞/k+),
µ(k∞/k)− = µ(k∞/k) − µ(k+∞/k+).
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To prove our results, we will use some lemmas in this section. First, we introduce pro-p

group theoretical lemmas. The first one is a criterion for the infiniteness of a finitely generated
pro-p group. The second one is a pro-p analogue of the theorem of Dyer and Scott in [1]. It
has been proved in [20] by Scheiderer in the case where a given group is finitely generated,
and extended by Herfort, Ribes and Zalesskii in [6] to the general case (but we need only the
finitely generated case).

LEMMA 2.1 (Theorem 7.21 of [10]). Let p be a prime number and G a finitely gen-
erated pro-p group, i.e., G is generated by finite elements of G topologically. Put d :=
dimZ/pZ H1(G, Z/pZ) and r := dimZ/pZ H2(G, Z/pZ). Let 1 → R → F → G → 1 be
a minimal presentation of G by a free pro-p group F . Let I ⊆ Z/pZ[[F ]] be the argumen-
tation ideal of the complete group ring Z/pZ[[F ]] of F with coefficients in Z/pZ, and put
F(n) := {a ∈ F |a − 1 ∈ In} (The set {F(n)|n ≥ 1} is called the Zassenhaus filtration.)

(1) If a ∈ F and b ∈ F(n), then [a, b] = aba−1b−1 ∈ F(n + 1) and bp ∈ F(pn).

(2) If G is finite and R ⊆ F(n), then r > (dn(n − 1)n−1)/nn.

LEMMA 2.2. (Scheiderer [20], Herfort-Ribes-Zalesskii [6])Let p be a prime number
and let G be a pro-p group that contains an open free pro-p subgroup H of index p. Then G

is written as a free pro-p product:

G �
( ∐

x∈X

(Z/pZ × F (x))

) ∐
F ,

where F is a free pro-p group and F (x)’s are free pro-p groups indexed by a profinite space
X (the profinite space X is a quotient of the space of conjugacy classes of elements of order
p in G).

The following two lemmas are basic facts in the theory ofZp-extensions. Lemma 2.3

describes the relation rank of̃Gkn by usingG̃k∞ . Note that Gal(k∞/k)(� Zp) acts onG̃k∞
non-canonically via the inner automorphism (this action is defined modulo InnG̃k∞), since
thep-cohomological dimension of Gal(k∞/k) is 1. Lemma 2.4, called Kida’s formula, is an
analogue of the formula of Riemann-Hurwitz.

LEMMA 2.3. Let k be a finite extension of Q and k∞/k the cyclotomic Zp-extension
which is totally ramified at all primes lying above p. Then we may assume that an extension

γ̃ ∈ Gal(L̃(k∞)/k) of a topological generator γ ∈ Γ = Gal(k∞/k) generates the inertia

subgroup of a prime lying above p. We define the action of Γ on G̃k∞ by γ (g) := γ̃ g γ̃ −1.

Let Rn be the kernel of the natural mapping from G̃k∞ to G̃kn and s the number of primes of

k∞ lying above p. Then there are elements g2, . . . , gs ∈ G̃k∞ such that Rn is generated by

[Γ pn
, G̃k∞] = 〈σ(g)g−1|σ ∈ Γ pn

, g ∈ G̃k∞〉 and νn(gi ) = giγ (gi ) · · · γ pn−1(gi ) (2 ≤ i ≤
s) as a closed normal subgroup of G̃k∞ .

PROOF. For a proof, see [18] or Lemma 13.15 of [21]. �
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LEMMA 2.4. (Kida [8]) Let p be an odd prime, and let k and K be CM-fields such
that K/k is a Galois p-extension. Let K∞ (resp. k∞) be the cyclotomic Zp-extension of K

(resp. k). Assume µ(k∞/k)− = 0. Then µ(K∞/K)− = 0 and

λ(K∞/K)− = [K∞ : k∞](λ(k∞/k)− − δ) +
∑
w+

(e(w+) − 1) + δ ,

where the sum on the right side is taken over all finite non-p-primes w+ on K+∞, split in
the extension K∞/K+∞, e(w+) is the ramification index in K+∞/k+∞ of w+, and δ = 1 or 0
according as ζp ∈ k or not.

As a corollary to Lemmas 2.1 and 2.3, we obtain an upper bound of the relation ranks of

G̃kn and a sufficient condition for thep-class field tower to be infinite.

COROLLARY 2.1. Let k be a finite extension of Q and k∞/k the cyclotomic

Zp-extension which is totally ramified at any prime lying above p. Put hi
n =

dimZ/pZ Hi (G̃kn, Z/pZ) and hi = dimZ/pZ Hi (G̃k∞ , Z/pZ). Suppose that h2 < ∞. Then

h1
n ≤ h2

n ≤ h1
n + h2 + s − 1. In particular, if h1

n ≥ 2 + 2
√

h2 + s, then #G̃kn = ∞.

PROOF. Applying the five term sequence to the sequence 1→ Rn → G̃k∞ → G̃kn →
1, we obtain an exact sequence

0 −−→ H1(G̃kn , Z/pZ) −−→ H1(G̃k∞, Z/pZ) −−→ H1(Rn, Z/pZ)G̃kn

−−→ H2(G̃kn , Z/pZ) −−→ H2(G̃k∞, Z/pZ).

It follows from Lemma 2.3 that dimZ/pZ H1(Rn, Z/pZ)G̃kn ≤ h1 + s − 1. Thush2
n ≤ h1

n +
h2 + s − 1. The inequalityh1

n ≤ h2
n is always valid sinceG̃ab

kn
� Ak is finite. If 1 →

R → F → G̃kn → 1 is a minimal presentation of̃Gkn by a free pro-p group F , then

R ⊆ Fp[F,F ] ⊆ F(2). By Lemma 2.1, ifh2
n ≤ h1

n +h2+ s −1 ≤ (h1
n)

2/4, then #G̃kn = ∞,
so that the second assertion follows. �

3. Proof of Theorem 1.1

First of all, we remark that our assumptions and Corollary 2.1 imply thath1
n = h2

n for

eachn ≥ 0. This implies H2(G̃kn, Qp/Zp) = 0 for all n ≥ 0. By the natural isomorphisms

of the Galois groups〈J 〉 = Gal(k/k+) � Gal(kn/k+
n ) � Gal(k∞/k+∞) for all n ≥ 0, we

identify these groups. The involutionJ also acts oñGk∞ andG̃kn via the inner automorphism

which is defined modulo InñGk∞ and modulo InñGkn . We define this action as following: Let

Z ⊂ Gal(L̃(k∞)/k+) be the decomposition group of a prime lying abovep. We may assume
γ̃ ∈ Z. Then there is the natural isomorphismZ � Γ × 〈J 〉 sinceγ̃ generates the inertia
group by our assumptions, so that we can chose an extension ofJ such that it commutes tõγ .
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So we define the action ofJ by inner automorphism by this extension. Note that the action of

J on G̃k∞-, G̃kn-cohomology groups is independent on the choice of the extension ofJ .

Suppose thath1
1 ≥ 3. Since the class number ofk+

n is prime top for all n ≥ 0

and H2(G̃kn , Z/pZ) � H1(G̃kn , Qp/Zp)/p from H2(G̃kn , Qp/Zp) = 0, one sees that

H2(G̃kn, Z/pZ) = H2(G̃kn , Z/pZ)−, the minus part of H2(G̃kn, Z/pZ) with respect to the

action ofJ . Hence #̃Gk1 = ∞ by [9].

Let λ be the Iwasawaλ-invariant ofk∞/k. By the assumption(1), G̃k∞ is a free pro-

p group of rankλ. Let {x1, . . . , xλ} be a system of generators ofG̃k∞ . We may assume

J (xi) = x−1
i for eachi with 1 ≤ i ≤ λ. Since the class number ofk+ is prime top, k∞/k

is totally ramified at the prime lying abovep. To go to the rest of the proof, we need the

description ofRn which is defined by the exact sequence 1→ Rn → G̃k∞ → G̃kn → 1.

Sincep does not split ink∞/Q, Rn is a closed normal subgroup of̃Gk∞ generated by the

elementsγ pn
(xi)x

−1
i (1 ≤ i ≤ λ) by Lemma 2.3. Ifλ ≥ 3, then dimZ/pZ Ak1/A

p

k1
≥ 3 by

Theorem 1 of Fukuda [3], and henceL̃(k1)/k1 is infinite by the above arguments. Suppose

thatp ≥ 5 andλ = 2. SinceG̃k∞ is a free pro-p group of rank 2 and dimZ/pZ Akn/A
p
kn

= 2,

the exact sequence

1 −→ Rn −→ G̃k∞ −→ G̃kn −→ 1

is a minimal presentation of̃Gkn for everyn ≥ 0. This implies thatRn ⊆ G̃
p

k∞C2(G̃k∞),

whereCi(G̃k∞) stands for thei-th lower central series of̃Gk∞ andG̃
p
k∞ is the closed normal

subgroup topologically generated by thep-th powers of elements of̃Gk∞ . So that especially

γ (xi)x
−1
i ∈ G̃

p

k∞C2(G̃k∞) for i = 1 and 2. Now we consider the filtration

G̃k∞ ⊇ G̃
p
k∞C2(G̃k∞) ⊇ G̃

p
k∞C3(G̃k∞) ⊇ G̃

p
k∞C4(G̃k∞) ⊇ G̃

p
k∞C5(G̃k∞)

of G̃k∞ . Since the mapC2(G̃k∞)/C3(G̃k∞) → G̃
p
k∞C2(G̃k∞)/G̃

p
k∞C3(G̃k∞) is surjective and

sinceJ acts onC2(G̃k∞)/C3(G̃k∞) trivially because of the fact̃Gab
k∞ = (G̃ab

k∞)−, we see that

γ (xi)x
−1
i ≡ J (γ (xi)x

−1
i ) = γ (xi)

−1xi modG̃
p

k∞C3(G̃k∞). From the fact that abelian pro-p

groups are uniquely divisible byn such thatp � n, we obtainγ (xi) ≡ xi modG̃
p
k∞C3(G̃k∞),

i.e. γ (xi)x
−1
i ∈ G̃

p
k∞C3(G̃k∞). Next we consider the surjective map

C3(G̃k∞)/C3(G̃k∞)pC4(G̃k∞) → G̃
p
k∞C3(G̃k∞)/G̃

p
k∞C4(G̃k∞) .

Note thatC3(G̃k∞)/C4(G̃k∞) is generated overZp by the elements[x1, [x1, x2]]C4(G̃k∞)

and[x2, [x1, x2]]C4(G̃k∞). Then we see that

C3(G̃k∞)/C3(G̃k∞)pC4(G̃k∞) � (Z/pZ)⊕2
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and thatC3(G̃k∞)/C3(G̃k∞)pC4(G̃k∞) is a Z/pZ[[Γ ]]-module. Recall thatZ/pZ[[Γ ]] is
a complete discrete valuation ring with the maximal ideal(γ − 1). These facts show that

C3(G̃k∞)/C3(G̃k∞)pC4(G̃k∞) is killed by (γ − 1)p−1 becausep ≥ 3. Since(γ − 1)p−1 ≡
γ p−1 + · · · + γ + 1 modp, we obtain

1 ≡ (γ p−1 + · · · + γ + 1)(γ (xi)x
−1
i ) ≡ γ p(xi)x

−1
i modG̃

p
k∞C4(G̃k∞)

by the above surjective mapC3(G̃k∞)/C3(G̃k∞)pC4(G̃k∞) → G̃
p
k∞C3(G̃k∞)/G̃

p
k∞C4(G̃k∞).

In the same way as the above, we can show thatγ p(xi)x
−1
i ∈ G̃

p
k∞C5(G̃k∞). By the properties

of the Zassenhaus filtration, we obtainG̃
p
k∞, C5(G̃k∞) ⊆ G̃k∞(5) (hereG̃k∞(n) stands for the

n-th Zassenhaus filtration of̃Gk∞ ), henceγ p(xi)x
−1
i ∈ G̃k∞(5). We mentioned in the above

that both the generator rank and the relation rank ofG̃kn are equal to 2. By Lemma 2.3,

R1 ⊆ G̃k∞(5) and hence

r = 2 <
25

5544 = 8192

3125
.

This implies thatL̃(k1)/k1 is infinite.
Suppose thatp = 3, λ = 2 andAk � Z/3aZ ⊕ Z/3bZ with a, b ≥ 2. Then we have

γ (xi)x
−1
i ∈ G̃9

k∞C2(G̃k∞). We consider the filtration

G̃k∞ ⊇G̃9
k∞C2(G̃k∞) ⊇ G̃9

k∞C3(G̃k∞)⊇G̃9
k∞C3(G̃k∞)3C4(G̃k∞)⊇G̃9

k∞C3(G̃k∞)3C5(G̃k∞)

of G̃k∞ . By using the action ofJ , we see thatγ (xi)x
−1
i ∈ G̃9

k∞C3(G̃k∞). >From the above

arguments, the surjective maps

C3(G̃k∞)/C3(G̃k∞)3C4(G̃k∞) −→ G̃9
k∞C3(G̃k∞)/G̃9

k∞C3(G̃k∞)3C4(G̃k∞)

and

C4(G̃k∞)/C5(G̃k∞) −→ G̃9
k∞C3(G̃k∞)3C4(G̃k∞)/G̃9

k∞C3(G̃k∞)3C5(G̃k∞) ,

yields thatγ 3(xi)x
−1
i ∈ G̃k∞(5) sinceG̃9

k∞, C3(G̃k∞)3 ⊆ G̃k∞(9) andC5(G̃k∞) ⊆ G̃k∞(5).

HenceL̃(k1)/k1 is infinite.

4. Proof of Theorem 1.2 and Theorem 1.3

First, we prove Theorem 1.3. Suppose thatp, k andK satisfy the assumption of Theorem

1.3. RegardG̃K∞ ⊆ G̃k∞ . PutG = G̃k∞ ⊇ H = G̃K∞ , λ = λ(k∞/k) = λ(k∞/k)− and

λ′ = λ(K∞/K) = λ(K∞/K)−. Then we haveH ab = (H ab)− � Z⊕λ′
p , Gab � (Gab)+ ⊕

(Gab)− � Z/pZ ⊕ Z⊕λ
p asZp-modules, since(H ab)− and(Gab)−, which are defined as the

minus part ofH ab andGab with respect to the action of Gal(k∞/k+∞) � Gal(K∞/K+∞), have
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no torsion andµ(k∞/k) = 0. It follows thatH is a free pro-p group with rankλ′ and that

H1(G, Z/pZ) � (Z/pZ)⊕(λ+1)

(i.e. the generator rank ofG is λ + 1). The key to the proof is the next proposition that Ozaki
had also obtained.

PROPOSITION 4.1. The cohomology group H2(G, Z/pZ) is isomorphic to (Z/pZ)⊕2

or Z/pZ (i.e. the relation rank of G is 2 or 1) according as ζp ∈ k or not.

PROOF. SinceH ab is a Zp-torsion freeZp[G/H ]-module andG/H is a cyclic group

of orderp, H ab can be described as follows (see Reiner [19]):

H ab � Zp[G/H ]⊕ap ⊕ I (G/H)⊕ap−1 ⊕ Z⊕a1
p (ap, ap−1, a1 ≥ 0) ,

whereI (G/H) is the augmentation ideal of the group ringZp[G/H ]. Therefore the coinvari-

ant(H ab)G/H is described as(H ab)G/H � (I (G/H)/I2(G/H))⊕ap−1 ⊕Z
⊕(ap+a1)
p . From the

facts thatZ⊕λ
p = (Gab)− is equal to(H ab)G/H andI (G/H)/I2(G/H) � Z/pZ, we obtain

ap−1 = 0 andap + a1 = λ. Hence we have

H1(H, Z/pZ) � Z/pZ[G/H ]⊕ap ⊕ (Z/pZ)⊕a1

asZ/pZ[G/H ]-modules, andp ap + a1 = λ′. On the other hand, by Theorem 2.4,λ′ =
p(λ − δ) + δ, whereδ is the same as in Theorem 2.4. Hencea1 = δ. Thus we obtain

H1(H, Z/pZ) � Z/pZ[G/H ]⊕(λ−δ) ⊕ (Z/pZ)⊕δ .

Therefore H0(G/H, H1(H, Z/pZ)) � (Z/pZ)⊕λ and H1(G/H, H1(H, Z/pZ)) �
(Z/pZ)⊕δ . Next, we determine the relation rank ofG. SinceHq(H, Z/pZ) = 0 for all
q ≥ 2, the Serre-Hochschild spectral sequence induces a long exact sequence

0 −−→ H1(G/H, Z/pZ) −−→ H1(G, Z/pZ) −−→ H0(G/H, H1(H, Z/pZ))

−−→ H2(G/H, Z/pZ) −−→ H2(G, Z/pZ) −−→ H1(G/H, H1(H, Z/pZ))

d
1,1
2−−→ H3(G/H, Z/pZ) −−→ · · ·

Computing the dimension overZ/pZ of each term in the above exact sequence, we see that
the sequence

0 → H2(G/H, Z/pZ) → H2(G, Z/pZ) → H1(G/H, H1(H, Z/pZ))
d

1,1
2→ H3(G/H, Z/pZ)

is exact. Ifζp �∈ k, then we know H2(G, Z/pZ) � H2(G/H, Z/pZ) � Z/pZ. In order to
determine the relation rank ofG in the caseζp ∈ k, we investigate the map

d
1,1
2 : H1(G/H, H1(H, Z/pZ)) → H3(G/H, Z/pZ) .
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If d
1,1
2 = 0, then we obtain H2(G, Z/pZ) � (Z/pZ)⊕2 by the above exact sequence. So that

it is sufficient to showd1,1
2 = 0. The group extension

1 −→ H ab −→ G/[H,H ] −→ G/H −→ 1

defines a cohomology classu ∈ H2(G/H,H ab), where[H,H ] is the topological commutator

subgroup ofH . Using H1(H, Z/pZ) = Hom(H ab, Z/pZ), we obtain a canonical pairing

H ab× H1(H, Z/pZ) → Z/pZ which induces a cup-product

∪ : H2(G/H,H ab) × H1(G/H, H1(H, Z/pZ)) → H3(G/H, Z/pZ) .

Let u∪ be the mapx �→ u ∪ x. Then the mapsd1,1
2 andu∪ are the same up to sign, i.e.

d
1,1
2 = ±u∪ (see Neukirch, Schmidt and Wingberg [17, Theorem 2.1.8]). Assume thatG

contains no element of orderp. ThenG must be free, according to Lemma 2.2. However,
this contradicts the fact thatGab has a subgroup isomorphic toZ/pZ. Therefore there is some
elementx in G such thatxp = 1. SinceH is free,x is not contained inH . HenceG/H is
generated by the image ofx, and hence the above group extension splits. It followsu = 0,

andd
1,1
2 is a zero map. This completes the proof of Proposition 4.1. �

By Lemma 2.2, we have

G �
( r∐

i=1

(Z/pZ × Fdi )

) ∐
Fd

for somedi , d, andr (note thatG is finitely generated). Hence

Gab �
r⊕

i=1

(Z/pZ ⊕ Z⊕di
p ) ⊕ Z⊕d

p .

SinceGab � Z/pZ ⊕ Z⊕λ
p , we haver = 1. Thus, by Proposition 4.1 and Künneth formula

(see [7]),G must be isomorphic to(Z/pZ × Zp)
∐

Fλ−1 or Z/pZ
∐

Fλ according asζp ∈ k

or not. This completes the proof of Theorem 1.3.
We prove Theorem 1.2. Letk be a CM-field satisfying the condition in Theorem

1.2. Then, by Theorem 1.3 and the assumption in Theorem 1.2, the Galois groupG̃k∞ =
Gal(L̃(k∞)/k∞) has the formG̃k∞ � (Z/pZ × Zp)

∐
Fλ(k∞/k)−1 or Z/pZ

∐
Fλ(k∞/k).

Since

dimZ/pZ Akn/A
p

kn
= dimZ/pZ G̃ab

k∞/(G̃ab
k∞)p = λ(k∞/k) + 1 ≥ 2 + 2

√
1 + δ + s ,

we have #̃Gkn = ∞ by Corollary 2.1. Next, let

1 −→ R −→ F −→ G̃k∞ −→ 1

be a minimal presentation of̃Gk∞ by a free pro-p groupF of rankλ(k∞/k)+1 and letNn be

the kernel of the composite of the mapF → G̃k∞ and the surjective restrictioñGk∞ → G̃kn .
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Denote a generator of̃Gk∞ with orderp by α and the pre-image bya ∈ F . Since 1→ Nn →
F → G̃kn → 1 is a minimal presentation of̃Gkn , the image ofa in G̃kn must be a generator
with orderp. This completes the proof.

5. On the Freeness of Gal(L̃(k∞)/k∞)

In this section, we give a sufficient condition for Gal(L̃(k∞)/k∞) to be free for an imag-
inary quadratic fieldk. But, up to now, we cannot find an example of such ak.

PROPOSITION 5.1. Let k be an imaginary quadratic field and p an odd prime number.
Let Mk/k be the maximal pro-p extension unramified outside p. Suppose that p does not split
in k/Q. Let p be the prime of k lying above p. Let k� be the completion of k with respect to

the prime p and k�/k� the maximal pro-p extension. If Gal(Mk/k) is a free pro-p group and

the natural mapping Gal(k�/k�) → Gal(Mk/k) is not injective, then Gal(L̃(k∞)/k∞) is a
free pro-p group.

An equivalent condition of the freeness of Gal(Mk/k) was essentially given by Minardi
[13] (see also [2]). Note that if Gal(Mk/k) is a free pro-p group, then it is a pro-p group of
rank 2.

PROOF. If p = 3 and k = Q(
√−3), then the claim is trivial because

Gal(L̃(k∞)/k∞) = 1. So we may remove this case. LetH be the image of the mapping

Gal(k�/k�) → Gal(Mk/k). ThenH is the decomposition group of a prime ofMk lying
abovep. ThenH is a free pro-p group since Gal(Mk/k) is a free pro-p group. Note that we

see Gal(k�/k�) is a free pro-p group of rank 3 by the injection from the principal local unit

group ofk� to theZp-torsion free module Gal(Mk/k)ab. By our assumption that the mapping

Gal(k�/k�) → Gal(Mk/k) is not injective, one sees that the generator rank ofH is less than

3, so that it is equal to 2. Let̃L′(k∞)/k∞ be the maximal unramified pro-p extension which

is completely decomposed at all primes ofk∞ abovep, and putH̃ = H ∩ Gal(Mk/k∞). Let

H = 〈gH̃ g−1|g ∈ Gal(Mk/k∞)〉 be the minimal closed normal subgroup of Gal(Mk/k∞)

which containsH̃ . Then we have the exact sequence

1 −→ H −→ Gal(Mk/k∞) −→ Gal(L̃′(k∞)/k∞) −→ 1

of pro-p groups. Since Gal(Mk/k) is a free pro-p group of rank 2, Gal(Mk/k∞) is a free
pro-p Γ -operator group of rank 1. By the Hochschild-Serre spectral sequence, we have the
following exact sequence

0→H2(Gal(L̃′(k∞)/k∞), Zp)→H/[H, Gal(Mk/k∞)]→Λ→Gal(L̃′(k∞)/k∞)ab→0 .
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Also, since Gal(L̃′(k∞)/k∞)ab is a freeZp-module, there is a distinguished polynomial

f (T ) ∈ Zp[T ] such that Gal(L̃′(k∞)/k∞)ab � Λ/(f (T )) asΛ-modules. This shows that

H/[H, Gal(Mk/k∞)] � Λ ⊕ H2(Gal(L̃′(k∞)/k∞), Zp)

asΛ-modules.
SinceH is the decomposition group of a prime lying abovep andH is a free pro-p

group of rank 2,H̃ is a free pro-p Γ -operator group of rank 1. Hence there is a surjective
mapping

H̃ ab � Λ � H/[H, Gal(Mk/k∞)] � Λ ⊕ H2(Gal(L̃′(k∞)/k∞), Zp) .

Therefore H2(Gal(L̃′(k∞)/k∞), Zp) = 0. Since Gal(L̃′(k∞)/k∞)ab is Zp-torsion free, this

shows that Gal(L̃(k∞)/k∞) is a free pro-p group. By the exact sequence

1 −→ D −→ Gal(L̃(k∞)/k∞) −→ Gal(L̃′(k∞)/k∞) −→ 1 ,

we have the exact sequence

0 −→ D/[D, Gal(L̃(k∞)/k∞)] −→ Gal(L̃(k∞)/k∞)ab −→ Gal(L̃′(k∞)/k∞)ab −→ 0 .

Since Gal(L̃(k∞)/k∞)ab � Gal(L̃′(k∞)/k∞)ab, we see thatD = 1, we conclude that

Gal(L̃(k∞)/k∞) = Gal(L̃′(k∞)/k∞) is a free pro-p group. �

Note that Proposition 5.1 is not contained in the theorems of Kuz’min [12] and

Mukhamedov [16]. It is still an open problem whether Gal(k�/k�) → Gal(Mk/k) is al-
ways injective or not. Also, by using the Iwasawa main conjecture, we have many examples

of imaginary quadratic fields such that Gal(L̃(k∞)/k∞) is not a free pro-p group (see [18]).

REMARK. After the submission, the referee remarked that Gal(L̃(k∞)/k∞) = 1 under
the assumption of Proposition 5.1if the generalized Greenberg’s conjecture is true fork and
p.

ACKNOWLEDGEMENT. The authors would like to thank the referee for pointing out
the above remark. Also, the authors would like to express their gratitude for a number of
helpful suggestions to Doctor Yasushi Mizusawa.
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