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1. [Introduction

Let p be a prime numberk a finite extension of the field of rational numbepsand
L (k) the maximal unramified abeligmextension ok. Let L (k) be the maximal unramified
pro-p extension ok, which is called thep-class field tower ok, and denote its Galois group
Gal(L(k)/k) overk by Gy. Then GalL(k)/k) = G2 ~ Ay, the p-primary part of the ideal
class group ok, by the class field theory. For a number figldvhich can be an infinite
extension ofQ, we use the same notation, e.fj(k) and Gy, as in a finite extension. Let
koo be the cyclotomi& ,-extension over a number fiekd in other wordsk is the unique
infinite Galois subextension of the field obtained by adjoining @l roots of unity of p-
power order, whose Galois group is isomorphic to the additive group of th&rjraj p-adic
integers. Denote by, the unique subextension bf, overk of degreep”.

Iwasawa theory ofZ ,-extensions deals with Galois groups of various abelian
extensions ovek, andk, in particular, of the maximal unramified abelian pre@xtensions
overk, andks. Recently, a number of mathematicians have been engaged in the study of
non-abelian extensions &f, andk, using lwasawa theory, especially the study of maximal
pro-p extensions with restricted ramification. For example, Ozaki [18] studied the maximal
unramified prop extension ok, for all n, and proved a non-abelian analogy of the lwasawa
class number formula. And from the point of view of the analogy between the theory of
Z ,-extensions of algebraic number fields and the theory of the Jacobian variety of algebraic
curves, A. Schmidt and K. Wingberg study the Galois group of “the maximal positively rami-
fied extensions over algebraic number fields”, which is the analogy of the fundamental group
of compact Riemann surfaces.

In such studies, the question which asks what kind of groups can appear as the Galois
groupf}koo of the maximalnramified pro-p extension’. (k) of koo, and what kind of prop-

erties characterizé?koo is an interesting problem for reasons of being concerned with the
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theory of class field towers. Although a lot of investigations into this problem have been
done, quite a few groups are known which appea(fi@@. For example, in the case of infinite
non-abelian groups, we know almost nothing, while in the case of finite non-abelian groups,
they are dihedral groups or generalized quaternion groups (Mizusawa [14], [15]). More pre-
cisely, in the case of infinite non-abelian groups, we do not know more than that there is an
example of a non-free prpgroupékoo for an odd primegp and some CM-field. While there
are no known effective sufficient conditions 6y, to be a free prgs group, we will give
some conditions, though ineffective, in the last section of this article. It seems that one of the
reasons of the difficulty in determining the structuref, is the existence of archimedean
primes of algebraic number fields.
In this paper under the condition th&t_, is a non-abelian free prp-group for some
kind of k we answer the following two questions which are concerned with the theory of class
field towers. We must here mention that we have no examples ofés;é;)gMp to now.
(a) Foran odd prime, to find an example of a number fietdwith the infinite p-class
field tower whosep-primary part of the ideal class groufy satisfies the condition
that diny,,z Ax/AL = 2.
(b) Forthe cyclotomi& ,-extensiorks/ k, in case thaf}k” is infinite, to know whether
Gkn has no torsion elements, in particular, whether its cohomological dimension is
finite.
The question (a) arises from the fact that, for any odd prinad any imaginary quadratic
field k, the p-class field tower is infinite if dim, ,z Ax/AY > 3 ([9], [11]). We remark that
Hajir [4] showedk = Q(+/—5-11-461), whose 2-primary part of the ideal class group is
isomorphic toZ /2Z & Z/4Z, has the infinite 2-class field tower. On the other hand Hajir [5]
also connected the question (b) with the ForaMazur conjecture. Unfortunately we have
no examples of the non-abelian free présalois groupékoo, as mentioned above. Therefore,
the question whether there exist such Galois groups seems a most interesting problem.
The main results in this article are the following.

THEOREM 1.1. Let p bean odd prime number, k a CM-field with the maximal totally
real field k™, ko the cyclotomic Z p-extension of k and k,, its n-th layer. Suppose that

(1) Gy, isafreepro-p groupwithrank 1 > 2,

(2) theprime p doesnot splitinks/Q,

(3) theclassnumber of k™ isprimeto p.
If p > 5and dimz;,z Ak,/ AL = 2,0r p = 3and Ay, =~ Z/3Z & Z/3Z witha, b > 2,
then L(k1)/k1 isaninfinite extension.

Itis known that if diny,,z Ako/A,‘fo > 3, theni(ko)/ko is an infinite extension by [9].
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THEOREM 1.2. Let p beanodd prime number, k a CM-field, ¢, a primitive p-th root
of unity, k* the maximal totally real subfield of k and k. /k the cyclotomic Z ,-extension.
Suppose that

(1) G,x ~Z/pZ,andG,_, =, isafreepro-p group,

(2) koo/k istotally ramified at any prime lying above p,

() Alkoo/k) = 1421+ 8 + 5 ; Where A(koo/ k) isthe lwasawa A-invariant of ko / k,

s the number of primes of k, lying above p, and § = 1 or 0 according as¢,, € k
or not.
For all n sufficiently large, more precisely if dimz, ,z Ay, /Ap, = dimz,,z GZEO/(GZEO)P, then
#Gy, = oo and Gy, hasan element of order p.
Theorem 1.2 follows from the next theorem.

THEOREM 1.3. Let p bean odd prime number, K /k an unramified Galois extension
of degree p of CM-fields and denote by K™ and k+ the maximal totally real field of X and &
respectively. Let Ko, koo the cyclotomic Z ,-extension of K and k respectively. Assume that

Gk, isafreepro-p groupand G+ istrivial. Then Gy, is expressed as

G (Z/pZ xZp) ] Fathoosiy-1 (if &p € k)
koo =2 .

Z/pZ |1 Fitkoo/b) (if ¢p¢h),
where ¢, isa primitive p-th root of unity, F, isafree pro-p group of rank d, A (ko / k) isthe
Iwasawa A-invariant of k«/ k, and the symbol | | standsfor the free pro-p product.

Though in each proof of Theorem 1.1 and Theorem 1.3, the assumption that the Galois
groupsG,., andG g, are free plays a crucial role, it is very difficult to check whether these
Galois groups are free.

We remark that Theorem 1.1 may be an answer of the above question (a) because if
A =2andn > 0thending,,z Akn/A,fn = 2 under the condition of the theorem. It is known

under some similar situations thaf?ﬁ; = oo for all sufficiently largen. In Theorem 1.3, we
remark that the assumptic(ﬁ,(:o = 0 is equivalent to the statemeﬁ;{; ~ Z/pZ, and that
the Iwasawau-invariants ofK ../ K andk../k are zero, sinc& g is a free prop group.

2. Preliminaries

In the following, for any finite number field, we use the notatiot.o, A(keo/k),
w(koo/ k) for the cyclotomicZ ,-extension ofk and the Iwasawa., u-invariants ofks/k
respectively. For any odd primg and any CM-fieldk, we also use the notatiok™
for the maximal totally real subfield of, and puti(keo/k)™ = A(keo/k) — A(kL/kT),
t(koo/ k)™ = plkoo/k) — m(ki/k™).
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To prove our results, we will use some lemmas in this section. First, we introduge pro-
group theoretical lemmas. The first one is a criterion for the infiniteness of a finitely generated
pro-p group. The second one is a ppoanalogue of the theorem of Dyer and Scott in [1]. It
has been proved in [20] by Scheiderer in the case where a given group is finitely generated,
and extended by Herfort, Ribes and Zalesskii in [6] to the general case (but we need only the
finitely generated case).

LEmMMA 2.1 (Theorem 7.21 of [10]). Let p be a prime number and G a finitely gen-
erated pro-p group, i.e, G is generated by finite elements of G topologically. Put d :=
dimz,,z HY(G, Z/pZ) and r := dimz,,z H*(G,Z/pZ). Let1 - R — F — G — 1be
a minimal presentation of G by a free pro-p group F. Let I C Z/pZ[[F]] be the argumen-
tation ideal of the complete group ring Z/pZ[[F]] of F with coefficientsin Z/pZ, and put
F(n):={ae€ Fla—1eI"} (Theset {F(n)|n > 1} iscalled the Zassenhaus filtration.)

(1) Ifae Fandb e F(n),then[a, b] = aba='h~1 € F(n + 1) andb? € F(pn).

(2) IfGisfiniteand R C F(n), thenr > (d"(n — 1)"~1)/n".

LEMMA 2.2. (Scheiderer [20], Herfort-Ribes-Zalesskii [6Bt p be a prime number

and let G be a pro-p group that contains an open free pro-p subgroup H of index p. Then G
iswritten as a free pro-p product:

G~ (]_[(Z/pz x F("))> [IF.

xeX

where F is a free pro-p group and F™)’s are free pro-p groups indexed by a profinite space
X (the profinite space X is a quotient of the space of conjugacy classes of elements of order
pinG).

The following two lemmas are basic facts in the theoryZgfextensions. Lemma 2.3
describes the relation rank 6f;, by usingGy._ . Note that Galkeo/k)(~ Z ) acts onGy.,
non-canonically via the inner automorphism (this action is defined modulGln) since

the p-cohomological dimension of Gal/k) is 1. Lemma 2.4, called Kida’s formula, is an
analogue of the formula of Riemann-Hurwitz.

LEMMA 2.3. Letk beafinite extension of Q and k~./ k the cyclotomic Z ,-extension
which is totally ramified at all primes lying above p. Then we may assume that an extension
7 € Gal(L(koo)/k) of atopological generator y € I' = Gal(koo/k) generates the inertia
subgroup of a prime lying above p. We define the action of I" on ka by y(g) := pgp L.
Let R, bethe kernel of the natural mapping from G, to Gy, and s the number of primes of
kso lying above p. Then there are elements go, ..., gs € Gkoc such that R, is generated by
(17", Gl = (6(9)g7 o € TP, g € Gr,) and vu(gi) = giv(gi)---y? " Hag) 2 <i <
5) asa closed normal subgroup of Gy, .

PROOF. For a proof, see [18] or Lemma 13.15 of [21]. O
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LEMMA 2.4. (Kida [8])Let p be an odd prime, and let £k and K be CM-fields such
that K/k is a Galois p-extension. Let K, (resp. ko) be the cyclotomic Z ,-extension of K
(resp. k). Assume pu(koo/k)~ = 0. Then u(K/K)~ = 0and

MKoo/K)™ = [Koo : kool(Akoo/ k)™ —8) + 2(6(w+) -D+4,

W

where the sum on the right side is taken over all finite non-p-primes w* on K%, split in
the extension K/ K1, e(w™) is the ramification index in K% /kZ, of w*, and§ = 1 or O
according as ¢, € k or not.

As a corollary to Lemmas 2.1 and 2.3, we obtain an upper bound of the relation ranks of
Gkn and a sufficient condition for the-class field tower to be infinite.

COROLLARY 2.1. Let k be a finite extension of Q and k. /k the cyclotomic
Z ,-extension which is totally ramified at any prime lying above p. Put hi =
dimz,,z H (Gy,, Z/pZ) and h' = dimz,,z H (G, Z/pZ). Suppose that h? < oco. Then
hY < h? < hl 4+ h? 45 — 1. Inparticular, if b > 2+ 2J/h2 + 5, then #Gy,, = oo.

PROOF. Applying the five term sequence to the sequenee R, — G, — Gj, —
1, we obtain an exact sequence

0 —> HYGy,.Z2/pZ) —> HY(Gyo.Z/pZ) —> HY(R,.Z/pZ)Cm
—— H(Gy,.Z2/pZ) — H*(Gy..Z/p2).

It follows from Lemma 2.3 that digy ,z HX(R,, Z/pZ)C < hl+4s—1. Thush? < nl +
h? + s — 1. The inequalityr} < h2 is always valid sinc&G2® ~ A, is finite. If 1 —
R —> F — Gk” — 1 is a minimal presentation cfﬁkn by a free prop group F, then
R C FP[F, F] C F(2). ByLemma2.1,ifh? < h} +h’+s—1 < (h})?/4, then#;, = oo,

n —

so that the second assertion follows. O

3. Proof of Theorem 1.1

First of all, we remark that our assumptions and Corollary 2.1 imply ifhat 12 for
eachn > 0. This implies H(Gy,, Q,/Z,) = 0 for alln > 0. By the natural isomorphisms
of the Galois groupsJ) = Gal(k/k™) ~ Gal(k,/k;) ~ Galks/kZ) for all n > 0, we
identify these groups. The involutiohalso acts ortf}koo andék,, via the inner automorphism
which is defined modulo I, and modulo InG, . We define this action as following: Let

Z C Gal(L(kso)/ k™) be the decomposition group of a prime lying abgvéVe may assume
y € Z. Then there is the natural isomorphistn>~ I" x (J) sincey generates the inertia
group by our assumptions, so that we can chose an extensibauah that it commutes t@.
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So we define the action of by inner automorphism by this extension. Note that the action of
Jon Gkoo-, Gkn—cohomology groups is independent on the choice of the extensién of
Suppose thah% > 3. Since the class number 6f is prime top for all n > 0
and H(Gy,,Z/pZ) ~ HYGy,,Q,/Z,)/p from H(Gy,,Q,/Z,) = O, one sees that
H2(Gy,.Z/pZ) = HX(Gy,,Z/pZ)~, the minus part of B(Gy,, Z/pZ) with respect to the
action ofJ. Hence #, = oo by [9].
Let 1 be the Iwasawa-invariant ofk.,/k. By the assumptioiil), Gy, is a free pro-
p group of ranki. Let {x1,...,x;} be a system of generators 6f.,. We may assume
J(x;) = xfl for eachi with 1 < i < A. Since the class number bt is prime top, koo/k
is totally ramified at the prime lying above. To go to the rest of the proof, we need the
description ofR, which is defined by the exact sequence-l R, — G, — Gi, — 1.
Since p does not split ink-/Q, R, is a closed normal subgroup 6f; generated by the
elements/”" (x;)x; 1 (1 < i < ) by Lemma 2.3. Ifx > 3, then dinz,,z Ak /AL = 3 by
Theorem 1 of Fukuda [3], and henégk1)/ k1 is infinite by the above arguments. Suppose
thatp > 5 andx = 2. SinceGy, is a free prop group of rank 2 and digy 7 Ak"/A,’{’n =2,
the exact sequence

1— R, — Gy, — Gi, — 1

is a minimal presentation afy, for everyn > 0. This implies thatR, < G}_C2(Gx,,),
whereC; (Gy.,) stands for the-th lower central series dby,, andG}_ is the closed normal

subgroup topologically generated by theh powers of elements cf}‘koo. So that especially
yaxte Gy _C2(Gy,,) fori = 1and 2. Now we consider the filtration

Giy, 2 G _C2(Gr,) 2 Gi_C3(Gr) 2 Gf_Ca(Gy,) 2 Gf_Cs(Gi,)

of Gy, Since the mag>(Gy, )/ C3(Gr,) — GlfooCZ(ékoo)/élfoo C3(Gy,,) is surjective and
sinceJ acts onC2(Gx,,)/ C3(Gy,,) trivially because of the faat{? = (G{*)~, we see that
yGi)xt = Ty (ax ) = y () "Ly mod Gl C3(Gy.,). From the fact that abelian pro-
groups are uniquely divisible bysuch thatp { n, we obtainy (x;) = x; modG}_C3(Gx..),
e y(xte Gy _C3(Gr,,). Next we consider the surjective map

C3(Giy,)/ C3(Gi, )" Ca(Gry) — Gf_C3(Gr,)/Gy Ca(Gry,) -

Note thatCs(Gy,.)/Ca(Gk,.) is generated oveZ , by the element$x1, [x1, x2]1Ca(Gi..)
and[x, [x1, x2]1C4(Gy,,). Then we see that

C3(Gr)/ C3(Gro )P Ca(Gr) =~ (Z/ pZ)®?
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and thatC3(Gy.,)/C3(Gr,, )’ Ca(Gr.,) is aZ/pZ[[I']]-module. Recall thaZ/pZ[[I']] is

a complete discrete valuation ring with the maximal ideal— 1). These facts show that
C3(Gi.,)/C3(Gr, )P Ca(Gry,) is killed by (y — 1)P~1 because > 3. Since(y — 1)?~1 =
y?~14+ ... +y + 1 modp, we obtain

1=+ +y + Dy Gx D = yP@)x; P modGLCa(Giy,)

by the above surjective maf(Gr,,)/ C3(Gi,, )’ Ca(Gr,,) — Gf_C3(Gr,,)/Gp _Ca(Giy).

In the same way as the above, we can showjthat;)x; * € Gl _Cs(Gr.,). By the properties
of the Zassenhaus filtration, we obtiﬂtj’oo, Cs(Gr,,) € Gr, (5) (hereGy (n) stands for the
n-th Zassenhaus filtration affkm), henceyl’(x,-)xfl € ka(S). We mentioned in the above
that both the generator rank and the relation raniGgf are equal to 2. By Lemma 2.3,
R1 C Gy (5) and hence

This implies thatL (k1) / k1 is infinite.
Suppose thap = 3,1 = 2 andA; ~ Z/3°Z @ Z/3"Z with a, b > 2. Then we have
y@xte G} Ca(Gy.,). We consider the filtration

Giy 26y _C2(Gry,) 2 Gy _C3(Giy) 2GY_C3(G,)*Ca(Gir) 2GR Ca(Giy)3C5 (G,

of Gy, By using the action off, we see thay (x;)x; * € G,?w C3(Gy,,). >From the above
arguments, the surjective maps

C3(Giy,)/ C3(Gi)3Ca(Gry) — G} C3(Gio,)/ Gy C3(Gro)*Ca(Giyy)
and
Ca(Giy)/C5(Gry) — G C3(Gry,)°Ca(Gry,) /G C3(Gio)*Cs(Giy) -

yields thaty3(xi)x; " € Gy, (5) sinceG}_, C3(Gi.,)® € Gi.,(9) andCs(Gi,,) S G, (5).
HenceL (k1)/ky is infinite.

4. Proof of Theorem 1.2 and Theorem 1.3

First, we prove Theorem 1.3. Suppose that andK satisfy the assumption of Theorem
1.3. RegardGk,, € Gy,,. PUtG = Gy, 2 H = Gk, A = Alkoo/k) = A(koo/k)™ and
X = MKoo/K) = M(Koo/K)™. Then we havei® = (H3)~ ~ 78" G¥ ~ (G &
(G~ ~ 7/pZ ® Z$* asZ ,-modules, sinceH )~ and(G)~, which are defined as the
minus part ofH 2 and G2 with respect to the action of G/ k) ~ Gal(K~/K 1), have
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no torsion andk (koo /k) = 0. It follows thatH is a free prop group with ranky” and that
HYG,2/p2) ~ (2/pZ)®**D

(i.e. the generator rank @f is A + 1). The key to the proof is the next proposition that Ozaki

had also obtained.

PROPOSITION 4.1. The cohomology group H3(G, Z/ pZ) isisomorphic to (Z/pZ)®?
or Z/pZ (i.e. therelation rank of G is2 or 1) according as ¢, € k or not.

PROOF. SinceH®is aZp,-torsion freeZ ,[G/H]-module andG/H is a cyclic group
of order p, H2 can be described as follows (see Reiner [19]):

H®~7,[G/H1® & 1(G/H)®r & 29" (ap,ap-1,a1>0),

wherel (G/H) is the augmentation ideal of the group ring[G/ H]. Therefore the coinvari-
ant(H®)g,; is described a6 ) g,y ~ (1(G/H)/IX(G/H)®r-1@Z 2 From the
facts thaZ * = (G?~ is equal to(H?®)g,» and!(G/H)/1*(G/H) ~ Z/pZ, we obtain
ap-1 = 0anda, + a1 = 1. Hence we have

HY(H,Z/pZ) ~Z/pZIG/H1®" @ (Z/pZ)®“

asZ/pZ[G/H]-modules, antp a, + a1 = A’. On the other hand, by Theorem 24, =
p(A —8) + 6, wheres is the same as in Theorem 2.4. Henge= §. Thus we obtain

HY(H,Z/pZ) ~Z/pZIG/HI®*D & (Z/pZ2)®*

Therefore M(G/H,HY(H,Z/pZ)) =~ (Z/p2)® and H(G/H ,HY(H,Z/pZ)) =~
(Z/pZ)®°. Next, we determine the relation rank 6f Since HY(H,Z/pZ) = 0 for all
q > 2, the Serre-Hochschild spectral sequence induces a long exact sequence

0 — HYG/H,Z/pZ) — HYG,Z/pZ) — HO(G/H,HY(H,Z/pZ))
— H4G/H,Z/pZ) — H3G,Z/pZ) —> HYNG/H,HY(H,Z/pZ))
1,1

d2 3
—— H°(G/H,Z/pZ) —

Computing the dimension ov&r/ pZ of each term in the above exact sequence, we see that
the sequence

1,1

0— H%(G/H,Z/pZ) — H*(G,Z/pZ) — HXG/H,HY(H,Z/pZ)) %2 H3(G/H,Z/pZ)

is exact. If¢, ¢ k, then we know K(G, Z/pZ) ~ H*(G/H,Z/pZ) ~ Z/pZ. In order to
determine the relation rank @f in the case, € k, we investigate the map

dy' :HY(G/H,HY(H,Z/pZ)) — HX(G/H, Z/pZ).
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If dy* = 0, then we obtain A(G, Z/pZ) ~ (Z/pZ)®? by the above exact sequence. So that
it is sufficient to showizl’l = 0. The group extension

1— H® — G/[H,H] — G/H — 1

defines a cohomology classe H2(G/H, H2), where[H, H]is the topological commutator
subgroup ofH. Using H'(H,Z/pZ) = Hom(H®, Z/pZ), we obtain a canonical pairing
H3 x HY(H,Z/pZ) — Z/pZ which induces a cup-product

U: H3(G/H, H®) x HY(G/H,HY(H,Z/pZ)) — H3(G/H,Z/pZ).

Let uU be the mapc — u U x. Then the mapsdzl’1 anduU are the same up to sign, i.e.
d%’l = 4uU (see Neukirch, Schmidt and Wingberg [17, Theorem 2.1.8]). AssumeGthat
contains no element of order. ThenG must be free, according to Lemma 2.2. However,
this contradicts the fact that®” has a subgroup isomorphicZg pZ. Therefore there is some
elementx in G such thate” = 1. SinceH is free,x is not contained in{. HenceG/H is
generated by the image of and hence the above group extension splits. It follaws 0,

anddzl’l is a zero map. This completes the proof of Proposition 4.1. O

By Lemma 2.2, we have

G~ <]_[(Z/pz x Fd,)) 11 Fa

i=1

for somed;, d, andr (note thatG is finitely generated). Hence

r
G~ Pz/rzez8% oz .
i=1
SinceGa® ~ 7/pZ & Zj‘?*, we haver = 1. Thus, by Proposition 4.1 and Kunneth formula
(see [7]),G must be isomorphic t&Z/pZ x Z,) | [ Fx—1 0rZ/pZ || F, according ag, € k
or not. This completes the proof of Theorem 1.3.
We prove Theorem 1.2. Lét be a CM-field satisfying the condition in Theorem

1.2. Then, by Theorem 1.3 and the assumption in Theorem 1.2, the Galois@yggup:
GaI(Z(koo)/koo) has the 1:OI’I’]'G~](oo ~ (Z/pZ x Zp) ]_[Fk(koo/k)fl orZ/pZ ]_[ Fk(kw/k)-
Since

dimz, pz Ax, /AL = dimzpz G2 /(GE2)P = Akoo/k) + 1> 2+ 2T+ 5+,
we have #, = oo by Corollary 2.1. Next, let
l1—R— F — Gkoc — 1

be a minimal presentation (531‘;{0c by a free prop groupF of ranki (ks /k) + 1 and letN, be
the kernel of the composite of the ma&p— Gy, and the surjective restrictioiy,, — Gy, .



220 SATOSHI FUJII AND KEIJI OKANO

Denote a generator aﬁkoo with orderp by « and the pre-image by € F. Since 1- N, —

F — Gy, — 1is aminimal presentation @, , the image of: in G;, must be a generator
with orderp. This completes the proof.

5. On theFreeness of Gal(L (koo)/koo)

In this section, we give a sufficient condition for Ghlkso)/koo) to be free for an imag-
inary quadratic field. But, up to now, we cannot find an example of such a

PrROPOSITION 5.1. Letk beanimaginary quadratic field and p an odd prime number.
Let M/ k bethe maximal pro- p extension unramified outside p. Supposethat p doesnot split
ink/Q. Let p bethe prime of k lying above p. Let k, be the completion of k with respect to
the prime p and k,/ k, the maximal pro-p extension. If Gal(My/ k) is a free pro-p group and
the natural mapping Gal(kp/ky) — Gal(My/k) is not injective, then Gal(L(koo)/koo) is@
free pro-p group.

An equivalent condition of the freeness of G}/ k) was essentially given by Minardi

[13] (see also [2]). Note that if G&W,/ k) is a free prop group, then it is a prg> group of
rank 2.

PROOF. If p = 3 andk = Q(/-3), then the claim is trivial because
Gal(L(kxo)/kso) = 1. So we may remove this case. LEtbe the image of the mapping
GaI(E/kp) — Gal(My/k). ThenH is the decomposition group of a prime #f; lying
abovep. ThenH is a free prop group since GalM,/k) is a free prop group. Note that we
see GaﬂE/kp) is a free prop group of rank 3 by the injection from the principal local unit
group ofky, to theZ ,-torsion free module GéM;/ k). By our assumption that the mapping
GaI(E/kp) — Gal(My/k) is not injective, one sees that the generator rank o less than
3, so that it is equal to 2. Lefl/(koo)/koo be the maximal unramified prp-extension which
is completely decomposed at all primeskaf abovep, and putd = H N Gal(My/ks). Let
H = (gHg g € Gal(M;/ks)) be the minimal closed normal subgroup of Qd}/keo)
which containsf. Then we have the exact sequence

1—> H —> Gal(Mi/koo) —> Gal(L (koo)/koo) —> 1

of pro-p groups. Since GéM; /k) is a free prop group of rank 2, GalMy/ k) is a free
pro-p I'-operator group of rank 1. By the Hochschild-Serre spectral sequence, we have the
following exact sequence

0— Ha(Gal(L' (koo)/ koo), Zp) = H/IH, Gal(My [ koo)] — A — Gal(L' (keo)/ koo)2— 0.
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Also, since GalL'(kx)/keo)2® is a freeZ ,-module, there is a distinguished polynomial
f(T) € Z,[T] such that Ga(li’(koo)/km)ab ~ A/(f(T)) asA-modules. This shows that

H/IH, GallMy/koo)] = A @ Ha(GallL' (koo) / koc), Zp)
asA-modules.
Since H is the decomposition group of a prime lying abgwveand H is a free prop
group of rank 2,H is a free prop I'-operator group of rank 1. Hence there is a surjective
mapping

H¥®~ A — H/[H, Gal(My/koo)] =~ A ® Ha(Gal(L' (koo)/koo)s Z ) -

Therefore H(Gal(L' (koo)/ ko), Zp) = 0. Since GalL' (keo)/ ko) is Z ,-torsion free, this
shows that G&L (ks )/ keo) is @ free prop group. By the exact sequence

1—> D —> Gal(L(koo)/koo) —> Gal(L' (koo)/koo) —> 1,
we have the exact sequence
0 —> D/[D, Gal(L (koo)/koo)] —> Gal(L (koo)/ koo)2® —> Gal(L (koo)/koo)2® —> 0.

Since GalL (koo)/koo)®® =~ Gal(L'(koo)/koo)?®, We see thath = 1, we conclude that
Gal(L (ko) / koo) = Gal(L' (kso)/ koo) is @ free prop group. O

Note that Proposition 5.1 is not contained in the theorems of Kuz’min [12] and
Mukhamedov [16]. It is still an open problem whether (}_aYkp) — Gal(My/k) is al-
ways injective or not. Also, by using the lwasawa main conjecture, we have many examples
of imaginary quadratic fields such that Galks, )/ koo) is NOt a free prop group (see [18]).

REMARK. After the submission, the referee remarked that Gidl.) / ko) = 1 under
the assumption of Proposition Sflthe generalized Greenberg’s conjecture is truekfand

P
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