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Abstract. We discuss the asymptotic behavior of the largest amount of winnings in the generalized St. Pe-
tersburg games and show that the results on the random variables associated with the amount of winnings can be
applied to the random variables associated with the dedrise @olynomial digits of the continued fraction and the
Oppenheim expansions of formal Laurent series.

1. Introduction

The Generalized St. Petersburg game idbed as follows: consider tossing a coin,
which needs not be fair; supposattheads’ occur with probability, 0 < p < 1 so that the
probability that ‘tails’ occur isj1 = 1 — p, see [3]. For a single game, a coin is repeatedly
tossed until a head appears. If the head occurs for the first time dntth®oss, the player
wins ql‘k dollars. LetX, be the amount of winning in the-th game. Then the winnings
{X»}n>1 become a sequence of independent and identically distributed random variables with

P{X, =q1 ")} = pgl*t, k=>1.

In this paper, we are interested in the asymptotic behavior of the sequence of random
variables{X,}. Suppose that the player pays the entranceifgéor the opportunity to play
in then-th game. For the first games, the sun, = }"/_; X; represents the total amount
of winning andM,, = }_!_; m; represents the total or accumulated entrance fees 1. In
order that the game will be fair, it is necessary that~ M,,. For several results concerning
S, andM,, we refer to [2], [3], [6] and [12]. The main result of this paper concerns with the
largest value of;—which corresponds to the largest win of the player.

We note that the classical St. Petersburg game is obtained whenl/2. In other
words, if X represents the amount of winning in a single classical St. Petersburg game,
P(X = 2K = 27k, for each integek > 1. The expectation oX is infinite and since there
is no ‘fair’ entry fee exists, this was consigera paradox—a self contradictory statement.
However, ifn independent games are considered, Feller showed that the weak law of large
numbers holdss, /(n log, n) converges to 1 in probability. In other wordslog,n seems

Received August 16, 2005; revised May 16, 2006



160 EVEYTH P. DELIGERO

to be a fair entry fee for the first games. In [19], Vardi emphasized that the partial sums
of the continued fraction digits of a random real number also satisfy the same law, thus one
might consider the-th term of continued fraction digit of a real number as the entry fees for
n games in the classical St. Petersburg game. Furthermore, Vardi showed that known results
for continued fraction can be obtained for tHassical St. Petersburg game by using the same
proofs. His results focused on how the player is favored even with a fair entry fee. More
precisely, he showed that for the firsgamesy log, n should be the accumulated fair entry
fee even if the largest amount of winnings is neglected.

Our main result (Theorem 1) is the following: Ligt,, } represent the amount of winnings
in the generalized St. Petersburg game. Then

. maX <<y Xi
liminf ———— =1, a.s.

N—oco N/loglogN

This explains how the player is favored in the generalized St. Petersburg game even with a
fair entry fee. We formally state Theorem 1 in Section 2 together with its proof. It is based
on the proof of Vardi [19] for the classical St. Petersburg game and the proof of Philipp [18]
for the continued fraction expansion of real numbers. The first and second Borel-Cantelli
lemmas play a very significant role in the proof. We note that in the first part of the proof,
we don’t use the result of Barndorff-Nielsen [5] on the generalization of the convergence part
of Borel-Cantelli lemma because it is hard to find a sequence of real nuifahérsatisfying

P({X, < a,})" in our case. Furthermore, we can not apply the similar theorem of Nakada-
Natsui [16] since there exists no const&ht> 0 such thaP{X, > j} = H/j + o(1/j) as

j — oo. However, the conditions of the results on the theory of trimmed sums of Aaronson-
Nakada [1] are satisfied byX,} as a special case, in which the result for the generalized
St. Petersburg game is stated in Remark 1 (iii). Other known results for this game are also
mentioned in Remark 1 at the end of Section 2. We apply these results to continued fraction
and Oppenheim expansions for formal Laurent series over a finite base field in Section 3. It
begins with the basic definition and concepts of the formal Laurent series, then the application
of the results to the continued fraction and Oppenheim expansions of Laurent series. We refer
to [5] and [8] for the general theory of these expansions.

2. TheTheorem and Its Proof
Takeq = 1/41, for 0 < g1 < 1. We consider an independent and identically distributed

sequence of random variablgs,, n > 1} on the probability spac&?, B, P) with

qg—1

Plwe 2 : Xy(0) =q"} = 7=,
q

k>1,

foranyn > 1.
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THEOREM 1. Wehave

L maXi<i<n X;
lim inf ——=(=N 27 _
N—oco N/loglogN

First note that since

1
llog(1 — x) — (—x)| < x? if Il <3,

which follows easily from the Taylor expansion of legwe have

1
(1-2)" = explklog(1 - 2)} > expi—kz —k2?} if || < 5. @)
Clearly, we also have
(1-2)F < exp(—kz) if z=0.
PrROOF. For eaclk, let ji be the positive integer for which
qjk < K2k~ qjk+1
and letd (k) be the real number satisfying
) "
S A——
loglogd (k)
Thend (k) is strictly increasing ik, and furthermore both
1
k% < dk) < k% 2)
q
and
dk —1) q
= 3
Ak K2 ®

hold for all sufficiently largek.
Let

d (k)
Bk = max Xn < — .
d(k—1)<n<d (k) log logd (k)

Then{By} is an independent sequence of events. Since forkeaBh > Ci, where
d(k)
Cr = max Xy < ———— ¢,
1<n<[d(k)]+1 log logd (k)

we have

B log Iogd(k))d(k)

P(By) = P(Cy) > (1 a0
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log| log| 2
> exp[ _ d<k>.{ oglogd(®) | ( %9 Ogd(k)) H (by(1)

d(k) d(k)

= Qf,

- log logd (k)}?
whereg;, = (logd(k))~! - exp[—%] _
2
Since lim- o0 exp[—“"g';’%] = 1, convergence and divergence of the infinite se-

ries) ", ay is the same as that of the serje§ (log d(k))~1, but from (2) it follows that

Y (ogd(k) ™t = > (aklogh)™t = oo.
k k

Thus, we obtain thap ", P(By) = oo, and therefore, we conclude from the Borel-Cantelli
Lemma thaP(B; occurs for infinitely many) = 1. On the other hand, if we define

d(k)
Fy = max X, > ———¢.
1<n<d(k—1) loglogd (k)

then
d(k)
2P < ) dik- DP(X > i iod )

_ Zd(k N loglogd (k)
- d(k)

1
<gq E Iog{4k|ogk}ﬁ < oo bhy(2)and (3)
k

Therefore, by the convergence part of the Borel-Cantelli Lemma, the &yemtcurs for at
most finitely manyk with probability 1. Putting together with the result we established above,

we conclude that with probability 1, the eveBt — F, = [maxlf,,fd(k) X, < %}
occurs for finitely many, from which it follows that
. . max <; X
p (liminf MPsi=y Xi(@) <1)=1.
N—oo  N/loglogN
On the other hand, to show the reverse inequality, choose a real numbgrPut

rk+l

Gy = {Xn(a))f 15n5[r"]}.

r2loglogrk+1’

Then fort (k) the greatest integer satisfyigg®) < %, we have

k k
1 [r ] 1 rf—1
P(Gy) = <1— —qt(k)) < (1— —qt(k))
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k+l} - e 1

. —rlogl . .
< e -expl—rloglogr fogry G+ 1y

Since we choose > 1, Y 2, k=" < oo, again by the convergence part of the Borel-Cantelli
Lemma, the eventgG,} occur for at most finitely mang. Hence, for almost every € 2,
there exists integédty = ko(w) such that for alk > kg

P+l
max X; > —————.
1=i=ph] | r2loglogri+t
Forrk < N < rkt1 andk > ko, since
rk+l N
max X; > max X; and > ,
1<i<N 1<i<[rh] r2loglogrk+l = r2loglogN
consequently, we have
X N
12?1&/ P r2loglogN
By lettingr | 1, we obtain
L. maXi<i<y X;
liminf — ===V S 9 3.
N—oo N/loglogN
This completes the proof of the theorem. O

We state in the following remark some of the results connected with the generalized St.
Petersburg game. We apply these results in the next section.

REMARK 1. We have
(i) ([3], Theorem 4) For alk > 0,

N
N X
lim P{ Zl;l—(q—l) >8}:O.
N—o0 Nlog, N
(i) ([2], Example 4)
N
N X
lim inf LimXi _ (-1, as.
N—co Nlog, N
and
YL Xi

limsup =00,
N—o0 Nlqu N

(i) ([1], Theorem 1.1 (ii))

im Yty Xi —max<i=w X — -1 as
N—oo N|qu N i ’ o
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PROOF oOF(iii). From [1], it is sufficient to show that

asT — oo. Forgt < T < g1, for some integerk, then it is easy to see that
E(min(X1, T)) = (¢ — Dk + O(1/4%) which implies the desired result. O

3. Application to Formal Laurent Series

Consider the field of formal Laurent seriEg((X—l)) over a finite base field, of ¢
elementsg > 1, that s,

F (X)) =(f:f=a, X"+ +ao+a1X 1+ 1a; €F,}.
Let f be inF,((X~1)) of the form
f=anX"+an1 X" 4 tagta Xt ra X2+,

We define thelegree of f and thevaluation of f by deq f) = n and|f| = 99/ = 4»
if a, # 0. 1f f = 0, we put de¢0) = —oco and|0] = 0. Then we can define a metriton
Fy(X~h) byd(f. 9) = |f —glfor £, g € Fy((X~h).

Denote byF,[X] the ring oflF, -coefficients polynomials and [&t = {f € ]F,,((X—l)) :
deq f) < 0}. L is a compact abelian group with addition and the metritVe denote byn
the unigue normalized Haar measurelon

3.1. Continued Fraction. For f € L, one has the following continued fraction ex-
pansion:

f= 1 i=lag,az,...,ap-1,an,...1, n=>1.

1

an + -
We call the sequende;} = {a;(f)} € F,[X] the polynomial digits of the continued fraction
expansion of a Laurent serigs We put

Xi(f) = lai(f)] = q®% .
Itis well-known that(X;);>1 is an independent and identically distributed sequence of random
variables on the probability spa¢e, m) with
qg—1
g~
We refer to [5] for the general theory dfi¢ continued fraction expansion fgr € L. We

apply the results in Section 2 for continued fraction of Laurent series in the next theorem with
Theorem 1 for (i) and Remarks for (ii)—(iv).

m(X; = ¢) =
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THEOREM 2. For the sequence of polynomial digits {a;(f)} of the continued fraction
expansion of Laurent series f, we have the following:

(i)
. dega;(f)
. maX<i< i
lim inf —o=i=N 4 =1, mae
N—oo N/loglogN
(i) Foralle >0,
N - dega;(f)
im m]| 2= sl o
N—oo N |qu N
(iii)
N dega;(f)
liminf Lim g0 =(¢ -1, m-ae
N—co  Nlog, N
and
N - dega;(f)
lim supZ’:L =00, m-ae
N—o0 N Iqu N
(iv)

im Zz]y:lqdegai(f) —maXi<j<n qdegai(f)
N—o0 N|qu N

=g—-1, m-ae

3.2. Oppenheim Expansion. Let {r,},>1, {sn}»>1 be sequences of nonzero polyno-
mials over the field", satisfying

degs, —degr, <2, Vn>1. (H)

In[13], Theorem 2.1, it was shown that evefye L has a finite or infinite convergent (relative
to d) expansion of the form

1 i ri(b1) - -ra(by) 1

L= 50 T 2 510 - snbn) st

n+1
whereb, € F,[X], degh; > 1 and forany: > 1
degb,+1 > 2 degh, + 1 — degs, (b,) + degr, (b,) .

The expansion is unique under the preceding conditions on the polynomial bigits
b (f) € F4[X] of the Laurent serieg.
Special cases of the Oppenheim Expansion of Laurent Series include:
Laroth-type expansions, (¢) = g(¢ — 1), ru(g) = 1;
Engel-type expansion; (g) = g, r,(g9) = 1;
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Sylvester-type expansion; (¢) = 1, r,(g) = 1;

Cantor-type Infinite Produck;, (g) = ¢, m(g9) = g+ 1;

DKB-type expansions,(¢) = 1, r,(9) = ¢;

Consider the following random variables on the probability space for the polynomial
digits of the Oppenheim expansion @& (L, m),

Ao(g) := degba(yg) ,
An(g) = degb,1(g9) — 2degh,(g9) — degr, (b, (g)) + degs,(b,(g9)), forn>1.

Fan and Wu [8] showed th&tA,},>0 is an independent and identically distributed se-
quence of random variables. In particular, for 0 andk > 1, they computed

qg—1
migeL: Au(g) =k} = o
We put

Xn - |An_1(f)| = qAn—l(f)

for n > 1. It follows that{X,},>1 is a sequence of independent and identically distributed
random variables with infinite expectations.

THEOREM 3. For a sequence of random variables {¢g#"(/)},¢ associated with the
polynomial digits {b;(f)} of the Oppenheim expansion of a Laurent series f, the following
hold:

(i)

ma)@gigN—lqA"(f)

liminf =1 m-ae
N—oo N/loglogN
(i) Foralle >0,
N-=1 _Ai(f)
lim m X:':L—(q—l) >ey=0.
N—o0 N |qu N
(iii)
N-1 _Ai(f)
lim inf Lizo 47 =(@-1, m-ae
N—>oo N |qu N
and
N=1 _Ai(f)
lim supz’:L =00, m-ae
N—o0 N logq N
(iv)

lim Yiro g — mavgsicn-1g4)
N—oo N|qu N

=g—1, m-ae
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We note that in [8] Theorem 2.4, Fan and Wu proved Theorem 3 (ii) following the idea
in [14] for LUroth case. However, this result follows easily from Remark (i) in 8§2.

REMARK 2. The same results also hold for p-adic Oppenheim expansions. We refer
to [20] for the definition ofA,, and some properties gf* for the p-adic case.
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