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1. Introduction

In this article we study about the solution of three-dimensional Boussinesq equations.
The Boussinesg equations is studied in the field of the fluid dynamics of Earth and Planets
fluidssystems. Thefluid ontheplanetislaidin athinlayer, so that we consider the Boussinesqg
equationsin thin domains.

Let 2. be athin domain defined by

Qe = {(x1, x2,x3) € R3; (x1,x2) €w, 0 < x3 < ¢}, (1.1)

where w isan €2 bounded domainin R% and 0 < ¢ < 1. We denote the boundary of £2. by
082, = I, UTI}, U I}, where
Ii=wx{e}, Iy=wx{0)and I = 0w x (0,5). (1.2

We are concerned in this article with the following initial boundary value problem in a
thin domain:

o+ (u-Vu—vAu+Vp+2fk xu = g6 in 2, x(0,7T), (1.3
divu =0 in 2. x(0,7T), 1.4
90+ w-V)0 —kAb = Q in 2, x(0,7), (1.5)
uz=0, d3uy =0, «a =1,2 and 930 =0 on (I;Url,) x(0,T), (1.6)
u=0,6=0 on I7x(0,T), (1.7
u(-,0) = ug, 6(-,0) = 6o in 2, (1.8)
where u = (u1,u2,u3) is the fluid velocity, p is the pressure, 6 is the temperature,

g = (0,0, go) is the gravitational vector (go is a constant), Q is the heat source func-
tion, v (kinematic viscosity) and « (thermal diffusivity) are positive constants, fk =
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f (0, cosl(xp), sinl(x2)) is the earth rotation angular speed (f a constant and I(x2) the lat-
itude) and 2k x u representsthe Coriolis acceleration. ug (resp. 6p) isavector (resp. scalar)
function defined on £2;.

The system of eguations (1.3)—(1.5) describes the large scale motion in the ocean (the
Boussinesq approximation). For not only a three-dimensional (3D) case but an arbitrary di-
mension, the existence and uniqueness of the weak solution of the Boussinesq equations (1.3)—
(1.8) has been studied (see [4], [7])- Moreover, the planetary geostrophic (PG) equations are
derived from the Boussinesq equations using standard scale analysis and the existance of the
weak solutions of the PG equations also has been studied (see [12]).

The solutions of the Navier-Stokes equations (NSE) in thin domains (flat, curved, and
with various boundary conditions) has been extensively studied; see[1, 2, 8, 10, 11]. Azérad
and Guillen derived, by making use of anisotropic eddy viscosities, a3D limit nonlinear model
in [1]. While, by averaging along the vertical direction and using the uniqueness of solutions
of two-dimensional (2D) NSE, Temam and Ziane obtained 2D limit models, together with
existence and global regularity resultsin[10, 11].

Our purpose in this paper is to prove that the averages in the vertica direction of the
weak solution of the 3D Boussinesq equations (1.3)—(1.8) converge asthe thicknesse — 0to
the weak solution of the following 2D initial boundary value problem:

dit 4 (it - Vit —vA' i +V'p+b(i) =0 in ®x(0,7), (1.9)
div i=0 in wx(0,7), (1.10)
30+ @i -V —kA6=0 in wx(0,7T), (1.11)
i=06=0 on dw x (0,T), (1.12)
a(x’,0) =g, 6(x',0) = b in o, (1.13)

whereu = (i1, tip, 0) and b(ir) = 2f sinl(x2) (—i2, i1, 0). We denote, here and henceforth,
the 2D operators with a prime, for example

V' = (01,02,0) and x" = (x1, x2).
In order to explain iig and o, we introduce some Hilbert spaces.
For 2 = 2. or w, We denote by H*(£2), s € R, the Sobolev space constructed as
subspacein L2(£2) and define

HY($2)

H}(2) = CF(2) ={ve H(2); v=00n94R},

where C3°(£2) = {¢ € C*®(£2); ¢ = 0insome neighborhood of 352}. We also define the
following:

lQS
H®) _ 1) e HY(2.): v=00nT})

H}N82:) = C7°(82)
(Where C°(£2:) = {¢ € C*®(£2,); ¢ = 0insome neighborhood of I7}),

Ve = (v e HY(2:) x HY(2:) x HF(2¢); dive =0in 2.},
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. : (L?(52:))3
He = {p € C°(82:) x C°(82:) x C3°(82¢); divp =0in 2.} ,

V = {v e (H}(w))? div'v=0inw}, and

5 L2(w))2
H={pe (CSw)% divy=0inw} @

Here and henceforth, X* denotes the dual space of X. The scalar product in L2(£2,)¢ is
denoted by (-, -) and in H1(£2,)? is denoted by ((-, -)), d € N, and the associated norms are
denoted by | - | and || - || respectively.

From the definition mentioned above, we assume that iip and g are the functions such
that the following equations are satisfied:

Y .~
|In'g)— / uo(-, x3) dx3z = iip weakly inH , (1.19)
—0¢& 0

&

and

1 [f -
Iin?) - / Oo(-, x3) dx3 = 6p weakly in Lz(a)) . (1.15)
—-0¢& Jo

&

Our main result is the following theorem.

THEOREM 1.1. Let T bea finite positive constant, and let {u, 6} be the weak solution
of Boussinesq equations (1.3)~(1.8). We assume that O e L2(0, T; H}($2,)), uo € V. and
fo € H(2:) and set g = 1| Q1 ;20 7. Hi20) % = luollv., Be = N0l p1(e,)- 1T (ge)eo,
(ae)e=0 and (Be)e=0 are bounded and there exist iip € H and 6y € L?(w) such that

1 [e B Lo~
lim — / uo(x’, x3) dx3z = iip weaklyinH , (1.16)
e=>0¢ Jo

1 /¢ -
Iirrg)— / 0o(x’, x3) dx3 = 6o weaklyin L3(w), (2.17)
e—=0¢& Jo

then there exist &z and 6 such that
1 (¢ - -
lim g/ u(-, x3)dxz =u stronglyinC([0, T]; V)N L0, T; H), (1.18)
0

lim %fse(-,xs) dxz =6 stronglyinC([0, T]; H Y(w)) N L0, T; L?(w)), (1.19)
0

where {ii, §} are the weak solution of (1.9)—(1.13).
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2. Preliminaries
For ascalar function ¢ € L?(£2,), we defineits average in the thin direction as follows:
l &
(M @)(x1, x2) = g/o @(x1, X2, x3) dx3 (2.1)
and set
Nep =9 —M:9. (22
We also define the average operator M, asfollows:
Mou = (Mpu1, Meuo,0)  for u = (uq, up, uz) € L2(.Qg)3 (2.3)

and set
New=u— M,u. (2.9

For the boundary conditions under consideration, M.u;, Nou;,i = 1,2, 3, M0 and N.0
satisfy following conditions:

Moui = Mgup = M6 =0 ondw, (2.5)
&
Neu-ii=0o0nT,UT>}, / Ngui(x1, x2,x3,t)dxz3=0fori =1,2 (2.6)
0
and
£
/ NeO(x1, x2, x3,1) dx3 =0, (2.7)
0

where i is the outward unit normal vector to 9£2,. All these operators are projectors; i.e.,
M? = M,, N> = N,, M?=M,, N> =N, . (2.8)

Furthermore, we have the following properties which are obvious:

(i) M, isan orthogonal projector from L2(£2,) onto L2(w),

(i) M.N, =0,and M,N, =0,

(iiiy M,V =V'M,, N,V =V'N, and M;V' = V'M,, N,V = V'N,,

(iv) ¢ e H*(2:) = M,p € H"(w) and N,¢ € H*(£2,), k > O.

In the following lemma, we give the basic properties of the operators M, and M,.

LEMMA 2.1. Forall u,v e HY(£2,), we have

/ VN:u -VM,vdx =0, (2.9
£2¢

u|? = |Meul? + |Neu? and |u]|® = | Mcu||® + | Nou|? . (2.10)

If veV,, then M,veVandN.v e V,. (2.12)
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(2.9) and (2.10) are proved from calculating directly. For (2.11), we have
div' M.v =0,

&
by (iii) of the properities and / d3vzdx3z = 0.
0
Now, we prepare some propositions and its corollaries.

PrROPOSITION 2.1 (Poincaré’sinequality). For u € H(£2,) satisfying one of the fol-
lowing conditions:
i) u=0 onrly,
@iy u=0 onrly,

(iii) /su(xl,xz,xg)dxgzO ae inow,
we have ’
lu| < e|d3u| . (2.12)
For the proof, see[10], Proposition 2.1. Thanksto Proposition 2.1 and (2.6), we have the
following:
COROLLARY 2.1. Foru e H(£2,),
INeu| < €93Nsul . (2.13)

PROPOSITION 2.2 (Anisotropic Ladyzhenskaya'sinequality). For u e HY(2,),
there exists a constant co(w), depending on w, such that

1
1 3 2
lul 162,y = co(w) (glul + |33M|) (lu| + 101u] + [doul)3 . (2.14)
For the proof, see [10], Remark 2.1. Thanks to Proposition 2.2 and Corollary 2.1, we
obtain

COROLLARY 2.2. There exists a positive constant ¢, independent of &, such that
INew|76 ) < col Neul®. (2.15)
By Corollary 2.1, 2.2 and Holder’s inequality, we get
INew|25q,, < coell Neul)? (2.16)

for Vu € HY(82,).
Finally, we quote the following theorem.

compact

THEOREM 2.1 ([1]). LetT > O, and let the Banach spacesX < B < Y. Let
(fe)e=0 be a family of functions of L?(0, T; X), 1 < p < oo, with the extra condition
(fe)eso C C(O, T; Y) if p = 0o, such that
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(H1) (fe)esoisboundedin L?(0, T; X),
(H2)  [fe(x,t+h) = fe(x,D)lLr.7-n; ) < (h) + ¥ (e) with
)’l_f]g)w(h) =0,
limy(e) = 0.
e—0
Then the family (f:)e-0 possesses a cluster point in L?(0, T; B) and also in C(0, T'; B) if
p =o00,ase — 0.

For the proof, see [1], Theorem 5.1.

3. Weak formulation and a priori estimates

In this section we derive some a priori estimates for M,u, Nou, M6 and N.6. The weak
formulations of (1.3)—«1.7) are then asfollows.

%(u, v) + (- Vu, v) +v(Vu, Vo) + 2f (k x u,v) = (g6, v), 3.1

%(9, w) + ((u- V)0, w) +k(V0, Vw) = (Q, w) (32

foral v = (v, v2,v3) e Ve, and w € Hll(.Qg).
Now we define the weak solution of (1.3)—(1.8).

DEerNITION 3.1. A pair of functions {u, 6} is called aweak solution of (1.3)—(1.8) if
1. {u, 0} sdtisfies(3.1) and (3.2) forany v € V. and w € H(£2,),
2. {u, 0} aso satisfies energy inequalities

t
6@+« /0 IVOI?ds < c (160 + 1011220 7. 122, ))) (33

where ¢ is a constant, independent of ¢, and

t 1 t
|u(t)|2+v/ |Vul?dt < |uo|2+—/ lgo|%ds . (3.4)
0 vJo
From (3.3), we have
0 e L0, T; L3(£2,)) N L3O, T; HY($2,)) (3.5)
because of the assumption of Theorem 1.1. We also obtain
90 € L™®(0, T; L3($2:)*) N L%(0, T; HY(2.)3). (3.6)

Furthermore, from (2.10), (3.3), Proposition 2.1 and the assumption of Theorem 1.1, we
have

t
£(|Mg9(t)|i2(w) + /0 V' M1, ds)
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2 2
=< ce(IMebol7 2, + INOON™ + 1121l 20,7, H&(Qs)))
< Cos,

where Cy isindependent of ¢. Then (3.7) amounts to saying that

{M.6):-0 isabounded sequence in L®(0, T; L?(w)) N L?(0, T; Hi(w)).

Similarly, from (2.10) and (3.3), we have
t
IN.O ()2 +K/ |VN:0|%ds < Cye,
0

where C; isindependent of e. Therefore we see that

{”Ng@ ”LOC(O,T; L2(Qg))}g>0 and { ||N59||L2(0,T; Hl(ﬂg)) }€>0 are bounded .

Next, from (3.4), we obtain
ueL®0,T; H)NL%0,T; V,).

because of ug € V. and (3.6).

63

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Moreover, from (2.10), (3.4), (3.6), Proposition 2.1 and the assumption of Theorem 1.1,

we also obtain

13
£(|Mgu(t)|i2(w) +v/0 |V,M€”|i2(w) ds)
< e(|Meuol? 5, + [Neuoll® + ¢l 901l 20,7 mi(2,)%)
< Cie,
where C1 isindependent of . Then (3.12) implies that
{M.u}s~0isboundedin L=, T; H) N L3O, T; V).

Similarly, from (2.10) and (3.4), we obtain
13
|Neu(1)|? + V/ IVN.ul?ds < Cie,
0

where C] isindependent of . Then we see that

{INulloo0,7: Ho Ye=0 and {|Neull 20,7 v, }e=0 e bounded.

(3.12)

(3.13)

(3.14)

(3.15)

By the above estimates and interpolation between L°°(0,T; L?(£2.)) and

L2(0, T; L5(£2,)), we have
Msu € L*O, T; L3(w)®), Nau € L*0, T; L3(£2.)%).

(3.16)



64 SATOSHI KAIZU AND JUN-ICHI SAITO

for 0 < Ve < 1. weobtain similar
M0 € YO, T; L3(w)), Ns6 € L*0, T; L3(2,)), (3.17)
for0 < Ve < 1.

REMARK. Because of (3.9), we can see that the estimate of the norm of
L>®(0, T; L?(£2:)) and L?(0, T; H(£2,)) for the difference between the temperature in the
thin domain £2, and the average temperature in the vertical direction islessthan Cés. For the
velocity, we can obtain the similar estimate from (3.14).

Let

~ H2(w)?
W =1{g e (CP@) dvg=0inw)

Then, from the Sobolev-Rellich embeddings, one deduces easily that
W V< H=H" < V" W*, (3.18)

where all are dence and compact embeddings. We also define
———H? w
Hi(w) = C&@) " = {v € H?():; v =0and g—” —0ondw }
n

and denote
H™(w) = (Hy(w))*

fors =1, 2.
Now, we have the following lemma.

LEMMA 3.1. For 0 < Vh < T, there exist positive constants co and c¢1, independent
of h and &, such that

MO (X", t + ) — MO (X, )l oo 0.7 —h: H-2(w0)) = C’O(h% + 8%) (3.19)
and
- - 12
IMeu(x', 1+ h) = Meu(xX', Dl poo 0.7 Wywy < €2(h2 +€3). (3.20)
ProOF. From (2.2) and (3.2), we obtain
d d
E(MSQ, w) + E(Ns& w) + ((u- V)0, w) +k(Vo, Vw) = (Q, w) (3.21)
for Vw € HZ(w). Integrate (3.21) froms tot + h, t € [0, T — h], we have
1+h
(MO (x,t +h) — M0 (x, 1), w) + (Neb(x, t +h) — NeO(x, 1), w) = / go(t)ds ,
t

(3.22)

where
g6 = —((u- V)8, w) —«(VO, Vw) + (Q, w) . (3.23)
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For thefirst term of g§, sinceu = M,u + Nu, we have
(- V)0, w) = (Meu - VIM:0, w) + (Meu - VINO, w)
+((Nstt - VIMO, w) + (Neu - VINO, w) .

Thanksto (2.6) and (2.7), we obtain ((M,u - V)N:0, w) = ((Neu - V)M:0, w) = 0.
Moreover, we have

|(Meu - VYM:0, w)| = [(Mc0, (Meu - V)w)|
<|Meb| 130, | Meu| |V'w] 1500,

1 ~
5683|M89|L3(w)|M8u| ||w||H2(_Q£) (324)
and

|(Nett - VINO, w)| = |(Ne, (Neut - Vyw)|
= |N£9|L3(Qé\)|[\7£u| |V/w|L5(_QS)

l ~
<ce? |NO) | Neul llwll gz ) (325)

because of (2.16). Thus, since [Meu| = e Mqul 2, and [|wll y2(q,) = el y2(0), We
obtain

1 ~ 1 <
|((w - V)0, w)| < c(e3| M]3, | Meu| + €2 || NeO|| [ Neuul) w2,
; ~ ~
<ce(e3 |M39|L3(w)|MaM|L2(w) + [INO|| |N8M|)||w||H2(a)) . (3.26)

Next, we consider the second term of gg. Thanks to the properties of N,, we have

&
(VN.6, V) =/ <f N.V'6 dx3> Vwdx' = 0. (3.27)
1) 0

Therefore, we obtain the following estimate:

(V0. V)| <& |(V'MeB. V') 20| + |(TN:6, V)|
< e [IMeO|l g1 Wl g2 () - (3.28)

Finally, the estimate for the third term of g is
[(Q, w)| = el Qll w2 - (3.29)

by Proposition 2.1.
On the other hand,

(NO(x,t +h) — NOB(x,1), w) = / (/ Ne(O(x,t+h) —0(x, t))dxg) wdx' =0
w 0

by the properties of N..
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From the estimations mentioned above, we have

t+h
(MO (x, £ + ) — MoO(x, 1), w)| 5/ 195()] ds
t

t+h 1 5 5
< / ¢ £(63|Me0] 30y | Mett] 2y + N6 | N
t

+ MOl g1y + 121D ds - [wll g2
< (with Hélder’sinequality)

31 -
<ceh2e3||MeO1 1407, L3y IMettll L0, T; 12(w))
1 ~
+ h2|[NeOllL2(0,7: a1 INetll Lo 0.7: L2(2,))
1 1
+h2 MOl L20,7; miwy 12 121l L20.7; H2 20 W] H2(w) -

and, taking into account Q € L%(0,T; Hj(w)) and0 < h < T, according to (3.7), (3.8),
(3.13), (3.15) and (3.17), we obtain

1 2
|(MeB(x, 1+ h) — MO (x, 1), )| < coe (hZ +&5) w2, -

Hence, since (M0 (x, t +h) — MO (x, 1), w) = & (MO (x', t +h) — MO (x', 1), w) 2, We
obtain

for Vw € HZ(w). Hence we have the estimation of (3.19).
Similarly, from (2.4) and (3.1), we have

%(Mgu, v) + %(1\7814, v) + ((u - Vu, v) + v(Vu, Vo) = (g6, v), (3.31)

for Vv € W. Hence, integrating (3.31) from to ¢ + h, r € [0, T — h], we obtain
t+h

(Meu(x,t +h) — Meu(x, 1), v) + (Neu(x, t + h) — Neuu(x, 1), v) = / g1 (t)dt,
’ (3.32)
where
g1 (1) = —((u - Vyu,v) —v(Vu, Vv) + 2f (k x u, v) + (g0, v).
The following estimationsis obtained in the same way as (3.26)—(3.28):
(G- Vi, )] < c83(|Myut] 13, | Mett] + &2 | Neull [NeuD 1]l
< c e(e3|Matt| 300y | Mett| 20y + INeull NouD vl . (333)

|(Vu, V)| < & [|Meull i) 0]l - (3.34)
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For the Coriolisterm, we obtain
~ ~ ~ l ~
[(k x u, v)| < |Meul [v] + |Neul| [v] < ce(|Meulp2,) + &2[|NeulDllvllyy - (3.35)

And, since M, g6 = 0, we have
[(gf,v)] =0. (3.36)

Hence, since (Nou(x,t + h) — New(x,0),v) = 2 (Jo NeGui(x,1 + h) —
u;i(x, 1)) dx3)v; dx’ = 0, we have

|(Meu(x, t +h) — Mgu(x, 1), v)|

t+h
- / 165 ()] ds
t

< /tHhce(e%|Msu|Ls(w)|Msu|Lz(w) + | Neul) | Neul
Mol 20y + 62 I Neull + | Mett | 1) ds - 0]l

< (with Hélder's inequality)

< co(hie3 | Mol oo 1. 130y IMett | 10,7 12(0)
+h2 | Nettl 20,7 o, 1 Vel .7 L2
el oo 0.7 120y + €202 | Netll 200 7 11y

l ~
+h2[[Meullp20,7: H1@)3) IV Iy

and, according to (3.13), (3.15) and (3.16), we obtain
|(Meu(x, 1 +h) — Meu(x, 1), v)| < cre(h? +e3) vy - (3.37)

Therefore, since (Mou(x, t + h) — Meu(x, 1), v) = & (Meu(x', t +h) — Meu(x', 1), v) 12,
we obtain

(M, t 4+ h) — Mau(x', 1), 0) 2| < c1(h2 +3)|[vly (3.38)

for Vv € W. The proof is complete. O

4. Proof of Theorem

The space-time weak formulations of (1.9)—(1.13) isthe following:

t
(@, v) = (1o, v) — / [((@ - Vi, v) +v(V'i, V'v) + (b(@), v)]ds, (4.2)
0

t
0, w) = (fo, w) — / [((@ - V)8, w) +x(V'0,V'w)ds, (4.2)
0
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foralveVandw e H(w).

DEFINITION 4.1. A pair of functions {i, 6} is called a weak solution of (1.9)—(1.13)
if {i1, 0} satisfies (4.1) and (4.2) forany v € V and w € Hi (o).

The purpose of the following is that M,u and M6 converge, as e — 0, to the weak
solution of {ii, 6} in C(0, T; V*) N L2(0, T; H) and C(0, T; H Y(w)) N L%(0, T; L%(w))
respectively.

Thanksto Lemma3.1 and (3.8), we can apply Theorem 2.1 for p = co and L% (o) coaneet
H ™ Y(w) < H™?(w). Therefore, there exists a subsequence, still denoted by M,6, and a

funchtion @ such that
M¢6 — 6 stronglyinC(0, T; H Y(w)). (4.3)

Similarly, combining Lemma 3.1 and (3.13), we can apply Theorem 2.1 for p = oo and

~ CO’npaCt ~
H —

V* < W*. Therefore, there exists a subsequence, still denoted by M.u, and a
function # such that

Mou — @i strongly inC(0, T; V*). (4.4)
Moreover, we also apply Theorem 2.1for p = 2 and H}(w) I 12(w) > H2(w).
then, since Lemma 3.1, (3.8) and L>°(0, T — h; H %(w)) C L%(0, T — h; H %(w)), there
exists a subsequence, still denoted by M6, such that

M.6 — 6 strongly in L2(0, T; L?(w)). (4.5)

~ compact ~

Similarly, we apply Theorem2.1for p =2andV <— H — W*. By Lemma 3.1, (3.13)
and L0, T — h; W*) C L2(0, T — h; W*), there exists a subsequence, still denoted by
M_u, such that

Mqu — i strongly in L2(0, T; H). (4.6)
Now we will provethat {ii, 8} is the weak solution of (1.9)—(1.13).

First, because of (3.8) and (3.13), there exists the subsequences, still denoted by M, u
and M.6, such that

Mou — ii weakly in L (0, T; H), (4.7)
and
M.0 — 6 weakly in L®(0, T; L?(w)). (4.8)
Moreover, by the assumption of Theorem 1.1, we have

4(x’,0) = iig and O(x’,0) = 6.
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Integrating (3.2) between 0 and ¢, we have

(MSG, w)LZ(w)
t 1 _
= (Mbo, w)Lz(w) +./(; |:E(Q, w) — (Mgu - VYM,0, w)Lz(w)
1 -
— Z((Neu - VINgO, w) — (V' M0, V/w)] ds, (4.9
&

foral w € C3°(w) and ¢ € [0, T]. For the second term of the right-hand side in (4.9),
Proposition 2.1 yields

‘ E
/ ~(Q, w)ds
o ¢

Then we obtain

T
_1 1
= /0 e~ 2|Q| |w|L2(w)ds <ceg2 ||Q||L2(0,T; H&(Qs))lwk(&)) . (410

-0

‘ E
/ —(Q,w)ds
0o ¢

ase — 0. For the third term, we have the following:

t 13
’/ ((Msu . V/)Mse, 'LU)LZ(w) ds — / ((ﬁ . V/)g, 'LU)LZ(w) ds
0 0
T ~
< / |((M8M — I:\l) . V,MSG, U))LZ(w)l ds
0

T
b [ @0 =)z ds
0
=< IMeue = ill 2o 7, 7y IMeOll 200 7; o W@

+ IMe6 — Ol 20,7: L2y 1l 1200, 7. 0| W@

— 0,

ase — 0, because of (3.8), (4.5), (4.6) and ii € L2(0, T; V). For the fourth term, from the
Cauchy-Schwarz inequality and Corollary 2.1, we obtain

1 - 1.
‘g((Neu - VINgO, w)| < gleul INOIIV'wle@)

< el Neull INO| IV wle ) -

Then, ase — 0, we have

— 0,

t

1 .

V Z((Neu - VYN0, w) ds
o ¢




70 SATOSHI KAIZU AND JUN-ICHI SAITO

since (3.10) and (3.15). And, from (4.8), we have
t 13 R
/ (M0, Aw)ds — / ©®, Aw)ds
0 0
ase — 0. Hence, for the last term, we get
t t N
/(V’Mse,v’w)ds—>/(V’G,V’w)ds,
0 0

as ¢ tendsto zero.
Therefore the right-hand side in (4.9) converges, ase — 0 (¢ isfixed), to

t

(B, W) 12(4) — /O [((@ - V0, w) 2 + K (V'E, VW), 2,1 ds,

which is equal to 6(), w) L2(w) DY (4.8). Hence, since Hol(a)) is the completion of C3°(w)
under the Hg (w) norm, we obtain

t
@, w) = (bo, w) — / (G- V), w) +k(V'E, V'w)ds, (4.11)
0

for Vw € H}(w).
Similarly, we integrate (3.1) between 0 and ¢, we have

(]\;Isu, U)LZ(w)
- rr1 . ~
= (Mguo, 'U)LZ((D) - / [g((Ngu . V)Ngu, U)
0
+ (Meu - V'Y Meut, v) 2, + v(V' Meu, V'v) 12,

~ 2 ~
+2f(k x Mgu,v) 12, + —f(k X Neu, v):| ds, (4.12)
3

fordlv e {p e Cg"(a))z; divg =0inw}andr € [0, T]. O We caculate such as the case
of M.0, and obtain

t t
/((Mgu-V/)Mgu,v)ds—)/((ﬁ-V’)ﬁ,v)ds,
0 0
t . t
/(V/Mgu,V/v)ds—>/(V/ﬁ,V'v)ds
0 0
and

rq . 5
V Z((Neu - V)Neu, v)ds| — 0
0o ¢
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ase — 0. For the Coriolisterm, by (4.7) and Proposition 2.1, we have
t B t B t
/ 2f(k x Mgu,v)ds = / (b(Mgu),v)ds — / (b@),v)ds,
0 0 0
and

tzf ~ 1~
/0 T(k X Neu,v)ds| < cs2||N8u||Lz(0,T; Hl(gs))|U|C(£)) — 0,

ase — 0.
Then the right-hand side in (4.12) convergesto

t

(ﬂo, U)LZ(w) - /0 [((ﬁ . V,)ﬁ, 'U)LZ(w) + U(V/ﬁ, V,U)Lz(a)) + (b(ﬁ), U)LZ(w)] dS ,

whichisequal to (i, v) 2, by (4.7), ase — 0 (¢ isfixed). Hence we obtain
t
(@1, v) = (1o, v) —/ [((@ - V)i, v) +v(V'i, Vv) + (b®@), v)]ds, (4.13)
0

for Yv € V, because V is the completion of the space {¢ € C§°(w)?; div ¢ = 0inw} under
the H1(w)2 norm.

Hence, because of (4.11) and (4.13), we can see that {ii, 8} is the weak solution of (1.9)—
(1.13).

Finally, from (4.3) and (4.4), we obtain the weak time-continuity 6 € C(0, T; H (w))
andii € C(0, T; V*), so that theinitial conditions make sense. |
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