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Abstract:

In this paper, we find all Weierstrass points on the hyperelliptic modular curves

Xo(N) whose hyperelliptic involutions are non-exceptional, i.e., induced by matrices in GLy(R).

Key words:

1. Introduction. Let X be a nonsingular
algebraic curve of genus g > 2. A point P on X is
called a Weierstrass point if there is a non-constant
meromorphic function on X that has a pole of order
less than or equal to g at P and is regular elsewhere.
The set of Weierstrass points is an invariant of X
which is useful in the study of arithmetic and
geometric properties of X.

Let H be the complex upper half plane and I" be
a congruence subgroup of the full modular group
SLy(Z). We consider the modular curve X(I')
obtained from compactification of the quotient
space T\H by adding finitely many points called
cusps. For any integer IV > 1, we have subgroups
I'(N),T'1(N),To(N) of SLy(Z) defined by matrices
(¢ Z) congruent modulo N to ((1) ?),(é DG
respectively. We let X(N), X1(N), Xo(N) be the
modular curves defined over Q associated to
['(N),T1(N),To(N), respectively. The X’s are com-
pact Riemann surfaces.

The Weierstrass points of X;(N) and X,(N)
have been investigated by Atkin [A], Choi [C],
Kilger [K], Kohnen [K1,K2], Lehner and Newman
[LN], Ogg [02], Ono [On], Rohrlich [R], and
Schoneberg [S].

In particular, the author [J] computed all
Weierstrass points on the hyperelliptic curves
X1(N). Note that a curve is said to be hyperelliptic
if its genus is greater than or equal to 2 and it
admits a map of degree 2 to P'. Mestre [M]
determined that X;(N) is hyperelliptic if and only
if N =13,16,18 (See [Me]). Indeed, the Weierstrass
points on a hyperelliptic curve X are the same as
the fixed points on X by the hyperelliptic involution
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v which is unique, and hence it is Q-rational
(See [J]).

Ogg [01] classified all the hyperelliptic curves
Xo(N), and he determined all the hyperelliptic
involutions which are the Atkin-Lehner involutions
Wy except for N = 37,40,48. Note that for each
divisor d|N with ged(d, N/d) = 1, Wy is induced by
the matrices of the form

(dx y)
Nz dw

with z,y, 2z, w € Z and determinant d. In particular,
if d= N, then Wy is called the full Atkin-Lehner
involution. We also denote by W; a matrix of the
above form. The hyperelliptic involutions, say u
and g/, on X((40) and X,(48), respectively, are
induced by the matrices

/=100 1N, (=6 1
F=\ 2120 10) " =\ 248 6)

respectively. However, the hyperelliptic involution
on X(37) is an exceptional automorphism which is
not expressed by a matrix in GLy(R).

In this paper, we find all Weierstrass points on
the hyperelliptic modular curves Xy(N), except for
N =37.

2. Quadratic forms. In this section we
explain the result on quadratic forms by Gross,
Kohnen and Zagier [GKZ] which will be used for
computing the fixed points on Xy(N) by W;. For a
negative integer D congruent to 0 or 1 modulo 4, we
denote by Qp the set of positive definite integral
binary quadratic forms

Q(z,y) = [a,b,d = aa® + bxy + cy’

with discriminant D = b? — 4ac. Then I'(1) acts on
Qp by
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Q o+(z,) = Qpz + qu, rz + sy) satisfying a=0 (mod Ny),b=0 (mod 2N),
» g ¢c=0 (mod Ns) and < q) eI'(1).
where v = ( ) A primitive positive definite ro.s
ros (iii) We have the following I'o(N)-invariant decom-

form [a, b, ] is said to be a reduced form if
|b] <a<e¢, and b > 0 if either |b| =a or a =c.

Let Q7 C Op be the subset of primitive forms.
Then I'(1) also acts on Qj,. As is well known, there
is a 1-1 correspondence between the set of classes
I'(1)\Q7, and the set of reduced primitive definite
forms.

For each 8 € Z/2NZ, we define

Qpws={[aN,b,c] € Qp | B=b (mod 2N)}.

Gross, Kohnen and Zagier [GKZ] obtained
I'y(N)-invariant decomposition as follows:
Proposition 2.1 ([GKZ]). For each fe€

Z/2NZ, we define
QOD,N.ﬂ = {[(J,NJ), C] €Qp|B=0b (mod 2N),
ged(a,b,c) = 1}

Then we have the following ,

(i) Define m = ged(N, ﬂ,ﬁjt;ND) and fix a decom-
position m = mimg with my,mo >0 and
ged(my,me) = 1. Let

QOD,N,/B,ml,mg = {[CLN7 b7 C] € QOD,N,ﬁ |

ng(N7 b7 (1) =my, ng(Na ba C)
Then T'o(N) acts on Qp y 5., .m, and there is a
1-1 correspondence between

QOD,Nﬂle,mz /FU(N) - QOD/F(l)
[aN, b, c] — [aNy,b, cNo]

where N1Ny is any decomposition of N into
coprime  factors such that ged(my, No) =

ged(mg, N1) = 1. Moreover we have a
Do(N)-invariant decomposition as follows:

(1) QOD,N.ﬂ = U QOD,N,ﬁ,m.,mZ'

m=mimy
my,my>0
ged(my ms)=1

= mz}.

(ii) The inverse image [aN9,b,c/Ns] of any prim-
itive form [a,b,¢] of discriminant D under the
1-1 correspondence in (i) is obtained by solving
the following equations:
a= dp2 + 5pr + er?
b = 2apq + b(ps + qr) + 2¢rs
c= dq2 + l;qs + és?

position:

(2) QD,N-ﬂ:U U EQE}/zZ,N,,\-

>0 A(2N)
1D (A=3(2N)
N2=D/2 (4N)

3. Weierstrass points. In this section we
explain a method to compute the fixed points on
Xo(N) of W, for d >4 by using Proposition 2.1.
Using this method, we obtain the Weierstrass
points on the hyperelliptic curves Xy(N) except
for N = 37. According to [O1, Theorem 2], if W, on
Xo(N) is a hyperelliptic involution, then d > 4.
Also, if d # 4, then W; does not fix any cusps by
[O1, Proposition 3]. Thus, it will suffice to find non-
cuspidal fixed points of W, on Xy (N).

Delaunay [D] suggested an algorithm to find all
the fixed points on H by some matrices Wy;. They
are infinitely many, and one should find inequiva-
lent points modulo I'g(N) among them. However, he
did not explain how to explicitly choose such points.
Later, the author, Kim, and Schweizer [JKS] de-
veloped a method to obtain inequivalent points
[y(N) by using the quadratic forms. We explain
their methods in more detail. Suppose d > 4. Since
W, has a non-cuspidal fixed point on Xo(N), Wy can
be represented by an elliptic element, i.e.

( dx y )
W, = .
Nz —dx

Then one can easily check that

2dr + v/ —4d

3) TT T Nz

is a fixed point of Wj;. Conversely, every fixed point
has the form (3).

Note that each fixed point in (3) can be
considered as the Heegner point of a quadratic
form [Nz, —2dxz, —y]. Thus, if we can find inequiva-
lent quadratic forms [Nz, —2dz,—y] mod T'o(NV),
then they produce inequivalent points modulo
I'y(N) among the fixed points in (3).

Now we explain how to use Proposition 2.1 to
find inequivalent quadratic forms [Nz, —2dx,—y]
mod I'y(N). Since the discriminant of the quadratic
form of [Nz, —2dx, —y| is —4d, take D = —4d. Then
we can follow the subsequent steps:

(i) We search 3 (mod 2N) such that
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#* = —4d (mod 4N)

(4) .
with 8 = —2dz (mod 2N)

where z € Z.

(ii) We search ¢ and X as described in Proposi-

tion 2.1-(iii).

For each ¢ and \ obtained in (2), we set the

decomposition of Qp ey, as in Proposi-

tion 2.1-(ii).

(iv) For each factor in the decomposition of (3), we
find the quadratic form representations and
taking the inverse image of reduced forms
under the map which is described in Proposi-
tion 2.1-(ii).

(v) After multiplying ¢ by each quadratic form in
(4), we find their Heegner points.

For example, consider X(28). According to
[O1, Theorem 2], W5 is the hyperelliptic involution
on X(28). Since X(28) is of genus 2, W7 has 6 fixed
points on X((28). Let D=-28 then (=
+14 (mod 56). First consider the case of = 14.
Then we have £ =1 or 2. If =1, then A = 14, and
we have the following decomposition:

Qo814 = Los 281421 U Q% s.28,14,1.2-
If =2, then A =35, and we have the following
decomposition:
Qi7,28,35 - QO—7,28.35,1,1'
By using the BCMATH program by Matthews [M],
we obtain the following reduced forms:

Q%5s/T(1) =A{[1,0,7]} and Q°7/T'(1) = {[1, 1, 2]}.
By taking the inverse image of reduced forms under
the map which is described in Proposition 2.1-(ii),
we obtain the following forms:

QO—2828,14,2.1/F0(28) = {[28, 1472]}a
Qo—2828,14,1,2/r0(28) - {[56, 14, 1]},
Q% 9835.1.1/T0(28) = {[28, 21, 4]}.

Hence 2Q°%;,535,,/T0(28) = {[56,—42,8]}. Next
consider the case of = —14. By the exact same
method as in the case of § =14, we have the
following forms:

Qi28,287—1472,1/F0(28) - {[2& —14, 2]}7
Qi28,287—1471,2/1—‘0(28) - {[56, —14, 1]}7
QO—7.28,2171,1/F0(28) - {[2& 21, 4]}
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Hence 2Q°; 555, 1,1/T0(28) = {[56,42,8]}. From the
above forms, we obtain their Heegner points as
follows:

1 V=7 1 V=T
+ +

56

4+28’8

VT s
56 8
They are indeed all the Weierstrass points on
X0(28). By the same method, we obtain all the
Weierstrass points on the hyperelliptic curves
Xo(N), except for N = 37,40,48, which are listed
in Table I.
Using this method, we have the following
result:
Theorem 3.1. Let N be a positive integer,
and d > 4 a divisor of N with gcd(d, N/d) = 1. Then
the number of fixed points on Xo(N) by Wy is equal to

> #Q uans

3 satisfis (4)

Now we consider the curve X;(40). As stated in
the introduction, its hyperelliptic involution is

_(-10 1>
F=\ 2120 10

which is not of Atkin-Lehner type. Consider the

matrices
10
v=( " Y
40z —10x

with det(U) = 20. Then det(U) = —1002? — 40yz =
20, and we have —52° — 2yz = 1. Thus, z should be
odd. If either y or z is even, then —5z? —2yz=
—22=1 (mod 4),i.e., 2> = —1 (mod 4), which is a

contradiction. Thus, y and z are odd, and

pflU _ br — 2z %
203z — 2) 6y+ 5z

is contained in I'((40), hence U define the same
involution on Xy(40) as pu. Then one can easily
check that

202+ /=80

5) i 802

is a fixed point of u. Since X((40) is of genus 3, it is
sufficient to find 8 inequivalent points modulo
I'y(40) among the fixed points in (5). In this case,
the fixed points in (5) can be viewed as Heegner
points of the quadratic forms [40z, —20z, —y|. Sim-
ilar to the fixed points of Atkin-Lehner involu-
tions, by finding inequivalent quadratic forms
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Table I.

List of all Weierstrass points on the hyperelliptic
curves Xo(N) with N # 37

D. JEON

Xo(N) genus Weierstrass points
Xo(22) 2 —3 YL £
4+ Y5t —
X0(23) 2 2’3237:|:(—1).+%7
+l B L B
(20 2 G+ 8,
£+~
X(28) 2 = SR
Xo(29) 2 e R
24+ 58, —fy+ P
X0(30) 3 ,é+\/3—t)_157i%+ (;015*
e
R, -+ 4
sy : 8, 41
s40GT by T
Xo(33) 3 e a S e
4240 Vo
Xo0(35) 3 ;Sﬂii-r‘{?,
_%J'_ 2Igs’ill_2+ 4;357
~ 5+ ki
Xo(39) 3 B 41y VB
e i R
—h T
X((40) 3 i%+@7iﬁ+ﬁv
+5 48 1+ 5 5
Xo(41) 3 %7 7%+%7
£lp 01y ol
2+
Xo(46) 5 _%+J;6‘_237i%+%,
i+ i+
£3 4B 41 B
~ 5+
Xo(47) 4 ;—;W:I:%-i—%,
i+ 5 4+
3+ Y50 — 3+ Yo
X0(48) 3 i%+§ i%-&-%,
G T
Xo(50) 2 \/1?7 i% + @7
L B
Xo(59) 5 IT;597 ,%Jr 1;;97
3+ 02, £1+ e
i+ vt i+
4+
Xo(71) 6 A
T =1
3+ Ve G+ Y
T Rt Rl

[Vol. 95(A),

[40z, —20z, —y] modulo I'x(40), we can obtain in-
equivalent points modulo I';(40) among the fixed
points in (5). We apply this method to obtain the
Weierstrass points on X((40) which are listed in
Table I. Compared with the case of Atkin-Lehner
involutions Wy, the discriminant is not —4d but —8d
if we regard d as 10. By the same method as X(40),
we obtain the Weierstrass points on X(48) which
are listed in Table I as well.
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