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Abstract: In [S1], we showed that the growth function PMðtÞ for an Artin monoid associ-
ated with a Coxeter matrix M of �nite type is a rational function of the form 1=ð1� tÞNMðtÞ,
where NMðtÞ is a polynomial determined by the Coxeter-Dynkin graph for M, and is called the de-

nominator polynomial of type M. We formulated three conjectures on the zeros of the denominator
polynomial. In the present note, we prove that the same denominator formula holds for an arbi-

trary Artin monoid, and formulate slightly modi�ed conjectures on the zeros of the denominator

polynomials of af�ne types. The new conjectures are veri�ed for types ~A2; � � � ; ~A8; ~C2; � � � ;
~C8; ~D4; ~E7; ~E8; ~F4; ~G2 among others. In Appendix, we de�ne the elliptic denominator polynomials

by formally applying the denominator polynomial formula to the elliptic diagrams for elliptic root

systems [S2]. Then, the new conjectures are veri�ed also for elliptic denominator polynomials of

types A
ð1;1Þ
2 ; � � � ; Að1;1Þ7 ; D

ð1;1Þ
4 ; E

ð1;1Þ
6 ; E

ð1;1Þ
7 ; E

ð1;1Þ
8 and G

ð1;1Þ
2 .
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1. Growth function for an Artin monoid.

In the present section we recall the de�nition (1.3)

of the spherical growth function for an Artin monoid,

and show that it is the quotient of 1 divided by the
denominator polynomial given by a formula (1.6).

Let M ¼ ðmijÞi; j2I be a Coxeter matrix [B]. The

Artin monoid GþM [B-S, §1.2] associated with M (or,

of type M) is a monoid generated by the letters

ai, i 2 I which are subordinate to the relation gen-
erated by

aiajai � � � ¼ ajaiaj � � � i; j 2 I;ð1:1Þ
where both hand sides of (1.1) are words of alternat-
ing sequences of letters ai and aj of the same length

mij ¼ mji with the initials ai and aj, respectively.

More precisely, GþM is the quotient of the free monoid

generated by the letters ai (i 2 I) by the equivalence

relation: two words U and V in the letters are equiv-
alent, if there exists a sequence U0 :¼ U;U1; � � � ;
Um :¼ V such that the word Uk (k ¼ 1; � � � ;m) is ob-

tained by replacing a phrase in Uk�1 of the form on
left hand side of (1.1) by right hand side of (1.1) for

some i; j 2 I. We write by U¼� V if U and V are

equivalent. The equivalence class (i.e. an element of

GþM) of a word W is denoted by the same notation

W . By the de�nition, equivalent words have the
same length. Hence, we de�ne the degree homomor-

phism:

deg : GþM ! Z�0ð1:2Þ
by assigning to each equivalence class of words the

length of the words.
The growth function PGþ

M
;IðtÞ for the Artin

monoid GþM is de�ned by

PGþ
M
; IðtÞ :¼

X

n2Z�0

#fW 2GþM j degðW Þ� ngtn:ð1:3Þ

The spherical growth function of the monoid GþM of

type M is de�ned by

_PGþ
M
; IðtÞ :¼

X

n2Z�0

#ðdeg�1ðnÞÞtn;ð1:4Þ

so that one has the obvious relation: PGþ
M
; IðtÞ ¼

_PGþ
M
; IðtÞ=ð1� tÞ.
Theorem. Let GþM be the Artin monoid of any

type M. Then the spherical growth function of the

monoid is given by the Taylor expansion of the ratio-

nal function of the form

_PGþ
M
; IðtÞ ¼

1

NMðtÞ
:ð1:5Þ2000 Mathematics Subject Classi�cation. Primary 16G10; Sec-

ondary 16G20, 16G21.
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Here, NM ðtÞ is called the denominator polynomial
and is given by

NMðtÞ :¼
X

J�I
ð�1Þ#ðJÞtdegð�J Þ;ð1:6Þ

where the summation index J runs over subsets of I

such that the restricted Coxeter matrix M jJ is of

�nite type,*) and �J is the fundamental element in

GþM associated with J ([B-S, §5 De�nition]. See also

Lemma-De�nition 2 and Remark 1.2 of the present

note).

Proof. The proof is achieved by the recursion

formula (1.12) on the coef�cients of the growth func-
tion. For the proof of the formula, we use the method

used to solve the word problem for the Artin monoid

[B-S, §6.1], which we recall below. We �rst recall the
fact that an Artin monoid satis�es the cancellation

condition in the following sense [B-S, Prop. 2.3].

Lemma 1.1. Let A;B;X ;Y 2GþM . If AXB ¼�
AYB. Then X¼� Y .

A word U is said to be divisible (from the left)

by a word V , and denoted by V jU , if there exists a
word W such that U¼� V W . Since U¼� V

0, U¼� U
0

and V jU implies V 0jU 0, we use the notation ‘‘j’’ of

divisibility also between elements of the monoid GþM .

We have the following basic concepts [B-S, §5
De�nition and §6.1].

Lemma-De�nition. (a) Let M¼ðmijÞi; j 2I be

any Coxeter matrix, and let J � I be a subset of

I such that M jJ is of �nite type (which may not

necessarily be indecomposable). Then, there exists a

unique element �J 2 GþM , called the fundamental ele-

ment, such that i) aij�J for all i 2 J, and ii) if

W 2 GþM and aijW for all i 2 J, then �J jW .

(b) To an element W 2 GþM , we associate the

subset of I :

IðWÞ :¼ fi 2 I j aijWg:ð1:7Þ

The restricted Coxeter matrix M jI ðW Þ is of �nite type

for any W 2 GþM .

Proof. (a) and (b) These follow from the fact
that the existence of �J is achieved under a weaker

assumption than MJ is of �nite type, rather that

there exists a common multiple of aj for j 2 J in GþM
(see [B-S, Prop. (4.1)]). r

By the de�nition (1.7), one has �IðW ÞjW , and
�J jW implies J � IðWÞ.

We return to the Proof of Theorem.
For n 2 Z�0 and for any subset J � I, put

Gþn :¼ fW 2 GþM j degðW Þ ¼ ngð1:8Þ

Gþn;J :¼ fW 2 Gþn j IðW Þ ¼ Jg:ð1:9Þ

We note that Gþn;J ¼ ; if MjJ is not of �nite type.

By the de�nition, we have the disjoint decom-
position:

Gþn ¼ qJ�I Gþn;J ;ð1:10Þ

where J runs over all subsets of I. Note that Gþ
n;; ¼ ;

if n > 0 but Gþ
0;; ¼ f;g 6¼ ;. For any subset J of I,

the union qJ�K�IGþn;K , where the index K runs over

all subsets of I containing J , is equal to the subset of

Gþn consisting of elements divisible by aj for j 2 J .

That is, one has

qJ�K�I Gþn;K

¼ �J �Gþn�degð�J Þ if MjJ is of finite type,

; if MjJ is not of finite type.

�

Thus, if MjJ is of �nite type, due to the cancellation

condition Lemma 1.1, the multiplication map of �J

is injective and we obtain a bijection: Gþn�degð�J Þ ’
qJ�K�I Gþn;K: This implies a numerical relation:

#ðGþn�degð�J ÞÞ ¼
P

J�K�I #ðGþn;KÞ:ð1:11Þ

If MjJ is not of �nite type, still the formula (1.11)

holds formally, by putting degð�JÞ :¼ 1 and

Gþ�1 :¼ ;, i.e. #ðGþn�degð�J ÞÞ :¼ 0. Then, for n > 0,

using (1.11), we get the recursion relation:
X

J�I
ð�1Þ#ðJÞ#ðGþn�degð�J ÞÞ ¼ 0;ð1:12Þ

where the index J may run either over all subsets of

I, or, over only subset J such that the restricted
Coxeter matrix MjJ is of �nite type. Together with

#ðGþ0 Þ ¼ 1 for n ¼ 0, the recursion formula is equi-
valent to the formula:

_PGþ
M
;IðtÞNMðtÞ ¼ 1:ð1:13Þ

This completes the Proof of Theorem. r
Remark 1.2. Recently, Albenque and Na-

deau [A-N, (1.2)] have shown a generalization of

*) For a Coxeter matrix M ¼ ðmijÞi; j2 I and a subset J of I, we
de�ne the restricted Coxeter matrix by MjJ :¼ ðmijÞi; j2J , which,

obviously, is again a Coxeter matrix.
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present Theorem that the growth function of a can-
cellative monoid is a quotient of 1 divided by a poly-

nomial if a subset of atomic generators has common
multiple then it admits a least common multiple.

Actually, an Artin monoid has the required proper-

ties [B-S, 2.3, §5].
Remark 1.3. We have the equality [B-S,

§5.7]: degð�JÞ ¼ #fre�ections in GMjJg ¼ the length

of the longest element of GMjJ , where GM is the Cox-

eter group associated with the Coxeter matrix M.
By the de�nition (1.6) of the denominator poly-

nomial, one has

NMð1Þ ¼
P

J � I;MjJ is
of finite type

ð�1Þ#J :

This, in particular, implies

i) NMðtÞ has the factor 1� t if the graph of M

contains a component of �nite type, and
ii) NMð1Þ ¼ ð�1Þl if M is of indecomposable

af�ne type of rank l (i.e. M is indecomposable and

af�ne such that #ðIÞ ¼ lþ 1).**)

We refer to [S1] for examples of the denominator

polynomials of �nite type. Here, we give a few exam-

ples of af�ne type.
Example. There are three types of indecom-

posable af�ne Coxeter matrices of rank 2. In the fol-

lowing, for each type, we associate the Coxeter dia-
gram �M and the denominator polynomial NMðtÞ.

� ~A2
¼
�
������
= n N ~A2

ðtÞ ¼ 1� 3tþ 3t3;1: ~A2

� ~C2
¼

4
�����

4
������ N ~C2

ðtÞ ¼ 1� 3tþ t2 þ 2t4;2: ~C2

� ~G2
¼ �����

6
������ N ~G2

ðtÞ ¼ 1� 3tþ t2 þ t3 þ t6:3: ~G2

2. A bound on the zeros of the denomina-

tor polynomial NMðtÞ of af�ne type. Motivated

by a study of the author on certain limit partition
functions associated with �nitely generated monoids

or groups (see [S4, §11 and 12]), we are interested in

the distribution of the zero-loci of the denominator
polynomials. The following lemma gives a numerical

bound on the zeros of the denominator polynomials
for indecomposable af�ne type.

Lemma 2.1. Let M be a Coxeter matrix of

indecomposable af�ne type of rank l. Then, all the

roots of NM ðtÞ ¼ 0 are contained in the open disc of

radius r centered at the origin, where r is give by

r :¼
� 2lþ1 � s� 1

s

�1=ðdegð�MjInfvg Þ�dÞ
;ð2:1Þ

where degð�M jInfvg Þ; d; s are invariants of M explained

in the proof.

Proof. In the af�ne Coxeter graph �M (whose

vertex set is identi�ed with I, and hence #ð�MÞ ¼
#ðIÞ ¼ lþ 1), there is a vertex v, called special [B,
p. 87] such that �M n fvg is the Coxeter graph of

the �nite Coxeter group isomorphic to the radical

quotient of the af�ne Coxeter group GM . Let s be
the number of special vertexes in �M . For types
~Al; ~Bl; ~Cl; ~Dl; ~E6; ~E7; ~E8; ~F4; ~G2, the number s is

given by lþ 1, 2, 2, 4, 3, 2, 1, 1, 1, respectively.
Noting the fact that the type of �Mnfvg (and,

hence, degð�MjInfvg Þ) does not depend on the choice

of a special vertex v, we see that the monomial

NðtÞ :¼ ð�1Þls � tdegð�MjInfvg Þ (v a special vertex) is the
leading term of NMðtÞ. One has jNMðtÞ �NðtÞj �
ð2lþ1 � s� 1Þjtjd for t 2 C with jtj > 1 (strict in-

equality holds except for the type ~A1), where we
put

d :¼ maxfdegð�JÞ j J � I such that I n J is not a

single special vertexg:

Hence

jNMðtÞ �NðtÞj=jNðtÞj �
2lþ1 � s� 1

s
jtjd�degð�MjInfvg Þ:

If r 2 R>1 satis�es an inequality

2lþ1 � s� 1

s
r
d�degð�MjInfvg Þ � 1;

then, due to Rouche’s theorem, the number of

zeros of NMðtÞ ¼ 0 in the disc of radius r is equal to
that of NðtÞ ¼ 0, which has zeros only at 0 of multi-

plicity degðNðtÞÞ ¼ degðNMðtÞÞ. That is, all roots

of NMðtÞ ¼ 0 are in the disc fjtj < rg for r given
in (2.1). r

3. Conjectures on the zeros of the denomi-

nator polynomial NMðtÞ of af�ne type. Some
discussions and examples at the end of §1 lead us to

the following three conjectures on the distribution of

**) The discrepancy between the rank l and the number

#ðIÞ ¼ lþ 1 for a Coxeter matrix M of indecomposable af�ne

type comes from the fact that the associated af�ne Coxeter group

acts on a positive semi-de�nite R-vector space of with corank 1.
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the zeros of the denominator polynomial NMðtÞ of in-
decomposable �nite or af�ne type.***)

Conjecture 1. i) The polynomial ~NMðtÞ :¼
NMðtÞ=ð1� tÞ is irreducible over Z for any inde-

composable �nite type M. ii) The polynomial NMðtÞ
is irreducible over Z for any indecomposable af�ne

type M.

Conjecture 2. There are l mutually distinct
roots of NMðtÞ ¼ 0 on the interval ð0; 1	 where l is

the number of positive eigenvalues of BM .
Conjecture 3. Let rM be the smallest among

the roots on the interval ð0; 1	. Then, the absolute

values of the other roots of NMðtÞ ¼ 0 are strictly
larger than rW .

Conjectures on the denominator polynomials of

�nite type were already stated in [S1] and veri�ed
by computer calculations for the types Al;Bl; Cl;Dl

(l � 30Þ, E6, E7, E8, F4, G2, H3, H4 and I2ðpÞ
(p 2 Z�3) by M. Fuchiwaki, S. Tsuchioka and others.
Some theoretical approach on the conjectures is in

progress by S. Yasuda.

Conjectures on the af�ne denominator poly-
nomial are positively con�rmed directly for the three

types ~A2, ~C2 and ~G2 of rank 2 from the explicit ex-

pressions in §2 Example. S. Tsuchioka con�rmed the
conjectures for further cases, including ~A3; � � � ; ~A8;
~C3; � � � ; ~C8; ~D4; ~E7, ~E8 and ~F4, by use of computer.

Remark 3.1. As we conjectured, a denomi-
nator polynomial NMðtÞ of �nite type has zeros of or-

der 1 at t ¼ 1, and that of af�ne type does not vanish

at t ¼ 1. In Appendix, we observe that a denomina-
tor polynomial of elliptic type does not vanish there

either. Among 14 denominator polynomial of hyper-

bolic type (see Remark 3.3.), types (2,3,7), (2,4,5),
(3,3,4), (2,3,8), (3,3,5), (2,5,5), (2,3,9), (2,4,7), (2,5,6),

(3,4,5) or (4,4,4) has zeros at t ¼ 1 but types (2,4,6),

(3,3,6) or (3,4,4) does not. It is interesting to �nd a for-
mula of the order d of zeros at t ¼ 1 and to ask precise

question than Conjecture 1: whether or when is NMðtÞ=
ð1� tÞd irreducible (see [S4, §12, Problem 3. iii)])?

Remark 3.2. In Conjecture 3, the fact that
rM is less than or equal to the absolute values of any

other roots of NMðtÞ ¼ 0 is trivially true, since rM is
equal to the radius of convergence of the power series

PMðtÞ of non-negative real coef�cients due to Pring-

sheim Theorem (see [H, Theore 5.7.1.]). Therefore,
the true question here is that there are no other roots

of NMðtÞ ¼ 0 whose absolute value is equal to rW .

This question is motivated from a study of the au-
thor on certain limit functions associated with the

monoid GþM (see [S1, §5] and [S4, §11]).

Appendix. Pursuing formal analogy (i.e.
without an explicit relation with the growth func-

tions of any monoid****)), let us introduce the de-

nominator polynomial NXðtÞ of elliptic type: let
ðR;GÞ be an irreducible marked elliptic root system

of type X and let �X :¼ �ðR;GÞ be the associated

elliptic Dynkin diagram [S2, I, §8]. Then, similar to
(1.6), we de�ne the elliptic denominator polynomial

of type X by

NXðtÞ :¼
X

J��X

ð�1Þ#ðJÞtdegð�J Þ;ð3:1Þ

where the summation index J runs over all subdia-
grams of �X (not necessarily connected) which is of

�nite type. For these polynomials, we ask again:

Conjecture 4. Conjecture 1.ii) (replacing the
phrase ‘‘indecomposable af�ne type’’ by the phrase

‘‘irreducible marked elliptic type’’), Conjecture 2.

(replacing BM by the Killing form of an elliptic root
system) and Conjecture 3. in section 3 hold also for

elliptic denominator polynomials.

Using computer, S. Tsuchioka has veri�ed that
Conjecture 4. hold for the types A

ð1;1Þ
2 ; � � � ; Að1;1Þ7 ;

D
ð1;1Þ
4 ; E

ð1;1Þ
6 ; E

ð1;1Þ
7 ; E

ð1;1Þ
8 and G

ð1;1Þ
2 among others.

Remark 3.3. Recall that there are 14 regular
systems of weights with " ¼ �1, which are associated

with the 14 exceptional singularities by Arnold, and

that two diagrams are associated with each of them,
one: the basis of vanishing cycles, called the Gabrie-

lov diagram, and the other: the basis of Picard lattice

of the K3 surface of the Pinkham compacti�cation of
the Milnor �bers [S3, §13 and §18]. It is interesting

to de�ne, formally similar to the formula (3.1), the

denominator polynomials associated with the two
diagrams and to compare them.

Example (S. Tsuchioka). We illustrate the

zero loci of the denominator polynomials of �nite
type E8, af�ne type ~E8 and elliptic type E

ð1;1Þ
8 . In

the following �gures, zero-loci are indicated by

crosses ‘‘+’’.

***) As we shall observe in Appendix, these conjectures are (for-

mally) valid also for elliptic root systems [S2]. After a suitable
modi�cation, the conjectures seem to be valid also for some Artin

monoids of hyperbolic type (see Remark 3.1). It is interesting to

clarify how far the conjectures are valid, and to develop a uni�ed

understanding of them (hopefully, in connection with the original
motivation to study the limit functions associated with monoids).

****) Associated with an elliptic root system, there are concepts

of an elliptic Weyl group, elliptic Lie alebra and group, elliptic

Hecke algebra; . . . etc. However, at present, there is no clear
de�nition of elliptic Artin monoid (since they are not associated

with Coxeter matrices).
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Type E8

NE8
ðtÞ ¼ 1� 8tþ 21t2 � 14t3 � 21t4 þ 28t5 � 7t6 þ 12t7 � 8t8�

10t9 þ 10t10 � 12t11 þ 7t12 þ 2t13 � t14 � 3t15 þ 2t16 � 2t20þ
6t21 � t22 � t23 � t28 þ t30 þ t36 � t37 � t42 � t63þ t120:

Type E
ð1;1Þ
8

N
E
ð1;1Þ
8

ðtÞ ¼ 1� 10tþ 33t2 � 32t3 � 35t4 þ 73t5 � 23t6 þ 21t7 �
30t8 � 28t9 þ 36t10 � 38t11 þ 34t12 þ 12t13 � 8t14 � 5t15 þ 5t16�
4t17 � 5t18 þ t19 � 2t20 þ 18t21 � 8t22 � 6t23 þ 2t26 � 6t28þ
2t29 þ 2t30 � 2t31 þ 4t36 � 4t37 þ 2t39 � 2t42 þ 2t56 � 2t63þ
2t64 þ 2t120:

Type ~E8

N ~E8
ðtÞ ¼ 1� 9tþ 28t2 � 28t3 � 22t4 þ 54t5 � 20t6 þ 10t7�

17t8 � 13t9 þ 21t10 � 23t11 þ 19t12 þ 7t13 � 5t14 � 3t15 þ 4t16 �
3t17 � 3t18 þ t19 � t20 þ 9t21 � 4t22 � 3t23 þ t26 � 3t28 þ t29þ
t30 � t31 þ 2t36 � 2t37 þ t39 � t42 þ t56 � t63þ t64 þ t120:
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