83. Variations of Pseudoconvex Domains

By Hiroshi Yamaguchi
Faculty of Educations, University of Shiga
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1983)

1. Let \boldsymbol{R}^{m} be the real euclidean space of dimension $m(\geqq 2)$ with norm $\|x\|^{2}=\left|x_{1}\right|^{2}+\cdots+\left|x_{m}\right|^{2}$, where $x=\left(x_{1}, \cdots, x_{m}\right)$ is the standard coordinate system. By an unramified covering domain over the space \boldsymbol{R}^{m} or, more simply, a domain over \boldsymbol{R}^{m}, we mean a connected Hausdorff space E together with a locally homeomorphic map p of E to \boldsymbol{R}^{m}. If there is no ambiguity, we use the notation $x \in E$, which means precisely that x is a point of E such that $p(x)=x\left(\in \boldsymbol{R}^{m}\right)$. Now consider a domain D over R^{m} and fix a point x^{o} in D. We take a sequence of relatively compact subdomains $D_{p}(p=1,2, \cdots)$ of D such that $x^{0} \in D_{1}$, $D_{p} \subset D_{p+1}, \cup_{p=1}^{\infty} D_{p}=D$ and the boundaries ∂D_{p} of D_{p} in D are real analytic. According to the potential theory, every D_{p} carries the Green function $g_{p}(x)$ with pole x^{0}, which is uniquely determined by the following three conditions: $\Delta g_{p}=\partial^{2} g_{p} / \partial x_{1}^{2}+\cdots+\partial^{2} g_{p} / \partial x_{m}^{2}=0$ on $D_{p}-\left\{x^{0}\right\}, g_{p}(x)=0$ on ∂D_{p}, and on a neighborhood of x^{0} in $D_{p}, g_{p}(x)$ is expanded in the form

$$
g_{p}(x)=\log \frac{1}{\left\|x-x^{0}\right\|}\left(\text { resp. } \frac{1}{\left\|x-x^{0}\right\|^{m-2}}\right)+\lambda_{p}+h_{p}(x)
$$

for $m=2$ (resp. $m \geqq 3$), where λ_{p} is a constant, $h_{p}(x)$ is harmonic and $h_{p}\left(x^{0}\right)=0$. Since the functions $g_{p}(x)$ and the constants λ_{p} increase with p, the limits $g(x)=\lim _{p \rightarrow \infty} g_{p}(x)$ and $\lambda=\lim _{p \rightarrow \infty} \lambda_{p}$ exist. It is clear that $0<g(x) \leqq+\infty$ on $D,-\infty<\lambda \leqq+\infty$ (resp. $\leqq 0$) for $m=2$ (resp. $m \geqq 3$) and that $g(x) \equiv+\infty$ on D if and only if $\lambda=+\infty$ for $m=2$. This $g(x)$ is the Green function of D with pole x^{o}, and the constant term λ is called the Robin constant of D with respect to x^{0}. B. Robin [3] originally dealt with the case of $m=3$. When $m=2$, as is well known, the Robin constant plays an interesting role in the theory of Riemann surfaces.

Let C^{n} be the n-dimensional complex plane with the standard coordinate system $z=\left(z_{1}, \cdots, z_{n}\right)$, and Δ a unit disc with center at origin in the 1-dimensional complex plane C. Consider a domain \mathscr{D} over $\Delta \times C^{n}$, precisely speaking, \mathscr{D} is an unramified covering domain over the product space $\Delta \times C^{n}\left(\subset C^{n+1}\right)$. We set $\mathscr{D}(t)=\mathscr{D} \cap\left(\{t\} \times C^{n}\right)$ for $t \in \Delta$, which is called the fiber of \mathscr{D} at $t \in \Delta$. We regard the domain \mathscr{D} of dimension $n+1$ as a variation of domains $\mathscr{D}(t)$ of dimension n with parameter $t \in \Delta$, and write it $\mathscr{D}: t \rightarrow \mathscr{D}(t)$ where $t \in \Delta$. Let α be
a holomorphic section of \mathscr{D} on Δ, that is, α is a holomorphic map of Δ into \mathscr{D} such that $\alpha(t) \in \mathscr{D}(t)$ for all $t \in \Delta$. Putting $z_{i}=x_{2 i-1}+\sqrt{-1} x_{2 i}$ ($i=1, \cdots, n$) with $x_{2 i-1}$ and $x_{2 i}$ real, we consider $\mathscr{D}(t)$ as a domain over the space $\boldsymbol{R}^{2 n}$ with coordinate system $\left(x_{1}, x_{2}, \cdots, x_{2 n-1}, x_{2 n}\right)$. Then we have the Green function $g(t, z)$ of $\mathscr{D}(t)$ with pole $\alpha(t)$ (by definition, we set $g(t, z)=0$ on each connected component of $\mathscr{D}(t)$ except for that containing $\alpha(t)$) and the Robin constant $\lambda(t)$ of $\mathscr{D}(t)$ with respect to $\alpha(t)$. Thus $\lambda(t)$ defines a real valued function on Δ. Our main result is the following

Theorem. If \mathscr{D} is a pseudoconvex domain of dimension $n+1$, then $\lambda(t)$ is superharmonic on Δ. Moreover, $\log (-\lambda(t))$ is subharmonic on Δ in the case of $n \geqq 2$.

In the case of $n=1$, a proof of Theorem was given in [5] and in this case T. Nishino [1] made clear what amounts to. In the present note, we give a sketch of the proof of Theorem for $n \geqq 2$.
2. It suffices to consider the case in which all $\mathscr{D}(t)(t \in \Delta)$ contain the origin $z=O$ of C^{n} and $\alpha(t)=O$ on all $t \in \Delta$.

Step 1. Suppose that there exists another domain $\tilde{\mathscr{D}}$ over $\Delta \times C^{n}$ and a real valued analytic function ψ defined on \mathscr{D} such that (i) ψ is plurisubharmonic on \widetilde{D}, (ii) $\mathscr{D} \subset \widetilde{D}$ and $\mathscr{D}(t)$ are relatively compact in $\widetilde{D}(t)$ for all $t \in \Delta$, (iii) $\mathscr{D}=\{(t, z) \in \widetilde{D} \mid \psi(t, z)<0\}$ and

$$
\partial \mathscr{D}=\{(t, z) \in \tilde{\mathscr{D}} \mid \psi(t, z)=0\},
$$

where $\partial \mathscr{D}$ denotes the boundary of \mathscr{D} in $\widetilde{\mathscr{D}}$, (iv) each $\partial \mathscr{D}(t)(t \in \Delta)$ are non-singular, that is, $\left(\partial \psi / \partial z_{i}\right)_{1 \leqq i \leqq n} \neq O$ on $\partial \mathscr{D}(t)$. The last condition (iv) implies that the variation $\mathscr{D}: t \rightarrow \mathscr{D}(t)$ where $t \in \Delta$ is diffeomorphically trivial, and that $g(t, z)$ (resp. $\lambda(t)$) is of class C^{2} on $\mathscr{D} \cup \partial \mathscr{D}$ (resp. 4). Then we obtain the following

Lemma. We have the inequality

$$
\frac{\partial^{2} \lambda(t)}{\partial t \partial \bar{t}} \leqq-\frac{2 \Gamma(n-1)}{\pi^{n}} \iint_{\mathscr{D}(t)}\left\{\sum_{i=1}^{n}\left|\frac{\partial^{2} g(t, z)}{\partial t \partial \bar{z}_{i}}\right|^{2}\right\} d V,
$$

where $d V=d x_{1} d x_{2} \cdots d x_{2 n-1} d x_{2 n}$ is the volume element of $\boldsymbol{R}^{2 n}$.
It follows from Lemma that $\lambda(t)$ is superharmonic on Δ, provided that the above conditions (i)-(iv) are satisfied.

Step 2. We suppose that \mathscr{D} satisfies the above conditions (i), (ii), (iii) except for (iv). Then we do not know if $\lambda(t)$ is of class C^{2} on Δ. However, using the fact that $g(t, z)$ is continuous on $\mathscr{D} \cup \partial \mathscr{D}$ and for any fixed $t \in \Delta$, the function $\psi(t, z)-g(t, z)$ is subharmonic on $\mathscr{D}(t)$, we find that $\lambda(t)$ is of class C^{1} on Δ. Since the set of points t of Δ such that $\partial \mathscr{D}(t)$ fails to satisfy the condition (iv), consists of real 1-dimensional curves, we infer from Step 1 that $\lambda(t)$ is superharmonic on Δ.

Step 3. Suppose that \mathscr{D} satisfies the conditions (i), (ii) and (iii). Let $\varphi(t)$ be an arbitrary holomorphic function on Δ such that $\varphi(t) \neq 0$
at any $t \in \Delta$. We consider the Hartogs transformation T of the form, $(t, z) \mapsto(t, Z)=\left(t,{ }^{2 n-2} \sqrt{\varphi(t)} z\right)$. Set $\mathscr{D}^{*}=T(\mathscr{D})$ and $\mathscr{D}^{*}(t)=T(\mathscr{D}(t))$ for $t \in \Delta$, and let $g^{*}(t, Z)$ and $\lambda^{*}(t)$ denote respectively the Green function on $\mathscr{D}^{*}(t)$ with pole O and the Robin constant of $\mathscr{D}^{*}(t)$ with respect to O. Then we get $g^{*}(t, Z)=g(t, z) /|\varphi(t)|$ and $\lambda^{*}(t)=\lambda(t) /|\varphi(t)|$. Since \mathscr{D}^{*} satisfies the conditions (i), (ii) and (iii), it follows from Step 2 that $\lambda^{*}(t)$ is superharmonic on Δ. Consequently, $\log (-\lambda(t))$ is subharmonic on Δ.

Step 4. Let \mathscr{D} be a general pseudoconvex domain over $\Delta \times C^{n}$. By Oka's theorem ([2], p. 143), there exists a sequence of subdomains $\mathscr{D}_{p}(p=1,2, \cdots)$ of \mathscr{D} such that $\Delta_{p} \subset \Delta_{p+1}, \cup_{p=1}^{\infty} \Delta_{p}=\Delta, \mathscr{D}_{p} \subset \mathscr{D}_{p+1}$, $\bigcup_{p=1}^{\infty} \mathscr{D}_{p}=\mathscr{D}$, and that each \mathscr{D}_{p} is a domain over $\Delta_{p} \times C^{n}$ which satisfies the conditions (i), (ii) and (iii). Denoting by $\lambda_{p}(t)$ the Robin constant of $\mathscr{D}_{p}(t)$ with respect to O, we have that $\lambda_{p}(t) \leqq \lambda_{p+1}(t)$ and $\lim _{p \rightarrow \infty} \lambda_{p}(t)$ $=\lambda(t)$ for $t \in \Delta$. It follows from Step 3 that $\log (-\lambda(t))$ is subharmonic on Δ. Thus the proof is completed.
3. We give some applications of Theorem for $n \geqq 2$ and compare them with those for $n=1$.
(a) (Fiber uniformity). A domain D over $C^{n}(n \geqq 1)$ is said to be parabolic, if the Robin constant λ of D with respect to some (hence any) point z^{o} of D is $+\infty$ (resp. $=0$) for $n=1$ (resp. $n \geqq 2$). Let \mathscr{D} be a pseudoconvex domain over $\Delta \times C^{n}$ and set $K=\{t \in \Delta \mid \mathscr{D}(t)$ is parabolic $\}$. Then, if the logarithmic capacity of K on the complex plane C is positive, we have $K=\Delta$.
(b) (Trivial variations). Let \mathscr{D} be a pseudoconvex domain over $\Delta \times C^{n}(n \geqq 1)$. In the case of $n \geqq 2$, if there exists a holomorphic section α of \mathscr{D} on Δ such that $\lambda(t)$ is harmonic on Δ, then \mathscr{D} is identical with the trivial variation : $t \rightarrow \mathscr{D}(0)+\alpha(t)$ where $t \in \Delta$. Let $n=1$ and χ denote the Euler characteristic number of $\mathscr{D}(0)$. If there exist at least $\chi+1$ holomorphic sections $\alpha_{i}(i=1, \cdots, \chi+1)$ of \mathscr{D} on Δ such that each $\lambda_{i}(t)$ is harmonic on Δ, then \mathscr{D} is holomorphically isomorphic to the trivial variation : $t \rightarrow \mathscr{D}(0)$ where $t \in \Delta$ ([6], p. 344).
(c) (Metric induced by the Robin constant). Let D be a domain over $C^{n}(n \geqq 2)$ with non-singular analytic boundary. For a point $z \in D$, we denote by $\lambda(z)$ the Robin constant of D with respect to z. Then $\lambda(z)$ defines a real negatively valued function on D such that $\lambda(z) \cdot d(z, \partial D)^{2 n-2}$ is bounded for $z \in D$ near ∂D, where $d(z, \partial D)$ is the euclidean distance from z to ∂D. We infer from Lemma that, if D is pseudoconvex, then $\log (-\lambda(z))$ is strongly plurisubharmonic on D. Thus, $d s^{2}=\sum_{i, j=1}^{n}\left(\partial^{2} \log \left(-\lambda(z) / \partial z_{i} \partial \bar{z}_{j}\right) d z_{i} d \bar{z}_{j}\right.$ defines a complete metric on D. In the case of $n=1, \mathrm{~N}$. Suita [4] showed that it is identical, apart from a constant factor, with the Bergman metric on any hyperbolic Riemann surface.
4. We study variations of domains in \boldsymbol{R}^{m} with $m \geqq 3$. Let I be an open interval of the real line \boldsymbol{R}. Consider a univalent domain \mathscr{D} of the product space $I \times \boldsymbol{R}^{m}\left(\subset \boldsymbol{R}^{m+1}\right)$ and set $\mathscr{D}(t)=\mathscr{D} \cap\left(\{t\} \times \boldsymbol{R}^{m}\right)$ for $t \in I$. Let α be a section of \mathscr{D} on I of the form $\alpha(t)=a t+b$ for $t \in I$, where $a, b \in \boldsymbol{R}^{m}$. For each $t \in I$, we denote respectively by $g(t, x)$ and $\lambda(t)$ the Green function on $\mathscr{D}(t)$ with pole $\alpha(t)$ and the Robin constant of $\mathscr{D}(t)$ with respect to $\alpha(t)$. Then, by similar arguments to those of §§ 2 and 3 , we have the following results:
(1) If \mathscr{D} is a convex domain of \boldsymbol{R}^{m+1} with real analytic boundary in $I \times \boldsymbol{R}^{m}$, then we have the inequality

$$
\frac{\partial^{2} \lambda(t)}{\partial t^{2}} \leqq-\frac{\Gamma(m / 2-1)}{2 \pi^{m / 2}} \iint_{\mathscr{Q}(t)}\left\{\sum_{i=1}^{m}\left(\frac{\partial^{2} g(t, x)}{\partial t \partial x_{i}}\right)^{2}\right\} d V,
$$

where $d V=d x_{1} \cdots d x_{m}$ denotes the volume element of \boldsymbol{R}^{m}. Moreover, $\log (-\lambda(t))$ is a convex function on I.
(2) Let D be a convex domain in \boldsymbol{R}^{m} with real analytic boundary. Let $\lambda(x)$ denote the Robin constant of D with respect to $x \in D$. Then $d s^{2}=\sum_{i, j=1}^{m} \partial^{2} \log \left(-\lambda(x) / \partial x_{i} \partial x_{j}\right) d x_{i} d x_{j}$ defines a complete metric on D.

References

[1] T. Nishino: On value distributions of analytic functions of two complex variables. Sugaku, 32, 230-246 (1980) (in Japanese).
[2] K. Oka: Sur les fonctions analytiques de plusieurs variables. IX-Domaines. finis sans point critique intérieur. Japan. J. Math., 27, 97-155 (1953).
[3] B. Robin: Sur la distribution de l'électricité à la surface des conducteurs fermés et des conducteurs ouverts. Ann. Scient. Ec. Norm. Sup., III, 3, 3-58 (1886).
[4] N. Suita: Capacities and kernels on Riemann surfaces. Arch. Rational Mech. Anal., 46, 212-217 (1972).
[5] H. Yamaguchi: Parabolicité d'une fonction entière. J. Math. Kyoto Univ., 16, 71-92 (1976).
[6] -: Calcul des variations analytiques. Japan. J. Math. (New series), 7, 319-377 (1981).

