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1. Let R be the real euclidean space of dimension m (:>2) with
norm x !1= [x ]+... +[x , where x- (x, ..., x) is the standard co-
ordinate system. By an unramified covering domain over the space
R or, more simply, a domain over R, we mean a connected Hausdorff
space E together with a locally homeomorphic map p of E to R. If
there is no ambiguity, we use the notation x e E, which means pre-
cisely that x is a point of E such that p(x)- ( e R). Now consider
a domain D over R and fix a point x in D. We. take a sequence of
relatively compact subdomains D (p-1, 2, ...) of D such that x e D,
DcD/, [_J= D-D and the boundaries 3D of D in D are real
analytic. According to the potential theory, every D carries the
Green function g(x) with pole x, which is uniquely determined by
the following three conditions" g-g/x-t-...g/x-O on

D--{x}, g(x)-O on D, and on a neighborhood of x in D, g,(x) is
expanded in the form

1 (resp. 1g(x)-----log
x-- x x-- x

for m=2 (resp. m__>3), where 2 is a constant, h(x) is harmonic and
h(x)=O. Since the functions g(x) and the constants , increase
with p, the limits g(x)=lim_ g(x) and 2 lim, 2 exist. It is clear
that Og(x)<_+o on D,-o2<:_+o (resp. <:0) or m=2 (resp.

m3) and that g(x)= + o on D if and only if 2 + c for m=2. This,

g(x) is the Green function of D with pole x, and the constant term
is called the Robin constant of D with respect to x. B. Robin [3]
originally dealt with the case of m=3. When m=2, as is well known,
the Robin constant plays an interesting role in the theory of Riemann
surfaces.

Let C be the n-dimensional complex plane with the standard co-
ordinate system z=(z, ..., z), and A a unit disc with center at origin
in the l-dimensional complex plane C. Consider a domain .q) over
z/ C, precisely speaking, .q) is an unramified covering domain over
the product space /C (C+). We set _q)(t)=_q) ({t} C) for
t e z/, which is called the fiber of

_
at t e I. We regard the domain

_q) of dimension n+ 1 as a variation of domains _(t) of dimension n
with parameter t e /, and write it .q)" t-+.(t) where t e z/. Let a be
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a holomorphic section of ) on A, that is, c is a holomorphic map of
A into _q) such that cKt) e _q)(t) for all t e A. Putting z=x_+J- 1x
(i= 1, ..., n) with x_ and x. real, we consider _q)(t) as a domain over
the space R with coordinate system (x, x, ..., Xn-, X). Then we
have the Green unction g(t, z) of (t) with pole c(t) (by definition, we
set g(t, z)--0 on each connected component of (t) except or that
containing cKt)) and the Robin constant 2(t) of _q)(t) with respect to
a(t). Thus 2(t) defines a real valued function on z]. Our main result
is the following

Theorem. If D is a pseudoconvex domain of dimension n-F1,
then 2(t) is superharmonic on . Moreover, log (--2(t)) is subharmonic
on z] in the cas,e of

In the case of n-l, a proof of Theorem was given in [5] and in
this case T. Nishino [1] made clear what amounts to. In the present
note, we give a sketch of the proof of Theorem for n>=2.

2. It suffices to consider the case in which all _q)(t) (t e /) contain
the origin z-O of C and a(t)=O on all t e A.

Step 1. Suppose that there exists another domain _q) over z/ C
and a real valued analytic function defined on ) such that (i) is
plurisubharmonic on , (ii) _q) and .q)(t) are relatively compact in
_q)(t) or all t e A, (iii) _q)= {(t, z) e (t, z)0} and={(t, z) e ) (t, z)=0},
where 3 denotes the boundary of in , (iv) each 3_q)(t) (t e A) are
non-singular, that is, (q/Z)__n#-O on _q)(t). The last condition
(iv) implies that the variation _q)" t(t) where t e A is diffeomorphi-
cally trivial, and that g(t, z) (resp. 2(t)) is of class C" on _q)LJ 3_q) (resp.
A). Then we obtain the following

Lemma. We have the inequality

where dV=dxdx...dx.n_dx.n is the volume element of R.
It ollows from Lemma that (t) is superharmonic on /, provided

that the above conditions (i)-(iv) are satisfied.
Step 2. We suppose that _q) satisfies the above conditions (i), (ii),

(iii) except for (iv). Then we do not know if 2(t) is of class
However, using the fact that g(t, z) is continuous on _q)U 3_q) and for
any fixed t e 1, the function (t, z)-g(t, z) is subharmonic on _q)(t), we
find that (t) is of class C’ on . Since the set of points t of / such
that 3.q)(t) fails to satisfy the condition (iv), consists of real l-dimen-
sional curves, we infer from Step 1 that (t) is superharmonic on 1.

Step 3. Suppose that _q) satisfies the conditions (i), (ii) and (iii).
Let (t) be an arbitrary holomorphic function on 1 such that (t)4:0
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at any t e A. We consider the Hartogs transformation T of the orm,
(t, z)(t, Z)=(t, -/(t)z). Set _q)*= T(_q)) and *(t)= T((t)) o.r
t e , and let g*(t, Z) and 2*(t) denote respectively the Green function
on _*(t) with pole O and the Robin cnsta.nt of _*(t) with respect to
O. Then we get g*(t, Z)--g(t, z)/l(t)l and ,*(t)=(t)/l(t)l. Since
satisfies the conditions (i), (ii) and (iii), it 2ollows from Step 2 that
2*(t) is superharmonic on A. Consequently, log (-2(t)) is subharmonic
on A.

Step 4. Let .q) be a general pseudoconvex domain over AXC.
By Oka’s theorem ([2], p. 143), there exists a sequence of subdomains
_q) (p 1, 2, .) of _q) such that A A+,, U;=, A A, @c_q)+,,
;__ =, and that each -q)v is a domain over A; X C which satisfies
the conditions (i), (ii) and (iii). Denoting by 2;(t) the Robin constant
of (t) with respect to O, we have that 2(t)<_2p+(t) and lim; 2v(t)
=2(t) for t e A. It follows from Step 3 that log (-2(t)) is subharmonie
on A. Thus the proof is completed.

3. We give some applications of Theorem for n>__2 and compare
them with those for n= 1.

(a) (Fiber uniformity). A domain D over C (n>l) is said to be
parabolic, if the Robin constant 2 of D with respect to some (hence
any) point z of D is + o (resp. =0) for n=l (resp. n>2). Let be
a pseudoconvex domain over A C and set K {t e A ]_q)(t) is parabolic}.
Then, if the logarithmic capacity of K on the complex plane C is
positive, we hav.e K=A.

(b) (Trivial variations). Let be a pseudoconvex domain over
A C (n=>l). In the case of n>=2, if there exists a holomorphic sec-
ton of on such that 2(t) is harmonic on , then $9 is identical
with the trivial variation" t-+(0)+a(t) where t e . Let n=l and
denote the Euler characteristic number of _q)(0). If there exist at least
z+ 1 holomorphic sections a (i= 1, ..., Z+ 1) of

_
on such that each

(t) is harmonic on , then _q) is holomorphically isomorphic to the
trivial variation" t--_(0) where t e A ([6], p. 344).

(c) (Metric induced by the Robin constant). Let D be a domain
over C (n2) with non-singular analytic boundary. For a point
z e D, we denote by 2(z) the Robin constant of D with respect t z.
Then (z) defines a real negatively valuecl function on D such that
(z).d(z, 3D)- is boundecl for z e D near D, where d(z, D) is the
euclidean distance from z to D. We infer from Lemma that, if D is
pseudoconvex, then log (-(z)) is strongly plurisubharnonic on D.
Thus, ds=,,= ( log (-2(z)/3z3)dzd defines a complete metric
on D. In the case of n=l, N. Suita [4] showecl that it is identical,
apart from a constant factor, with the Bergman metric on any
hyperbolic Riemann surface.
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4. We study variations of domains in R with m=> 3. Let I be
an open interval of the real line R. Consider a univalent domain
of the product space IR (cR/) and set (t)--((t}R) or
teI. Let be a section of on I of the form (t)=atb for teI,
where a, b e R. For each t e I, we denote respectively by g(t, x) and
(t) the Green function on (t) with pole (t) and the Robin constant
of () with respect to (t). Then, by similar arguments to those of

2 and 3, we have the following results"
(1) If is a convex domain of R+ with real analytic boundary

in IR, then we have the inequality
(t)
_

(m/2--1) ;It {= (’ g(’ x)
at 2=/

where dV=dx...dx denotes the volume element of R. Moreover,.
log (--2(t)) is a convex function on I.

(2) Let D be a convex domain in R with real analytic boundary.
Let 2(x) denote the Robin constant of D with respect to x e D. Then
ds=,= log (-2(x)/xx)dxdx defines a complete metric on D.
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