No. 7]

83. Variations of Pseudoconvex Domains

By Hiroshi YAMAGUCHI

Faculty of Educations, University of Shiga

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1983)

1. Let \mathbb{R}^m be the real euclidean space of dimension $m (\geq 2)$ with norm $||x||^2 = |x_1|^2 + \cdots + |x_m|^2$, where $x = (x_1, \dots, x_m)$ is the standard coordinate system. By an unramified covering domain over the space \mathbb{R}^m or, more simply, a domain over \mathbb{R}^m , we mean a connected Hausdorff space E together with a locally homeomorphic map p of E to \mathbb{R}^m . If there is no ambiguity, we use the notation $x \in E$, which means precisely that x is a point of E such that $p(x) = x \ (\in \mathbb{R}^m)$. Now consider a domain D over \mathbb{R}^m and fix a point x^o in D. We take a sequence of relatively compact subdomains $D_p \ (p=1, 2, \cdots)$ of D such that $x^o \in D_1$, $D_p \subset D_{p+1}, \ \bigcup_{p=1}^{\infty} D_p = D$ and the boundaries ∂D_p of D_p in D are real analytic. According to the potential theory, every D_p carries the Green function $g_p(x)$ with pole x^o , which is uniquely determined by the following three conditions: $\Delta g_p = \partial^2 g_p / \partial x_1^2 + \cdots + \partial^2 g_p / \partial x_m^2 = 0$ on $D_p - \{x^o\}, \ g_p(x) = 0$ on ∂D_p , and on a neighborhood of x^o in $D_p, \ g_p(x)$ is expanded in the form

$$g_{p}(x) = \log \frac{1}{\|x - x^{o}\|} \left(\operatorname{resp.} \frac{1}{\|x - x^{o}\|^{m-2}} \right) + \lambda_{p} + h_{p}(x)$$

for m=2 (resp. $m\geq 3$), where λ_p is a constant, $h_p(x)$ is harmonic and $h_p(x^o)=0$. Since the functions $g_p(x)$ and the constants λ_p increase with p, the limits $g(x)=\lim_{p\to\infty}g_p(x)$ and $\lambda=\lim_{p\to\infty}\lambda_p$ exist. It is clear that $0 < g(x) \le +\infty$ on D, $-\infty < \lambda \le +\infty$ (resp. ≤ 0) for m=2 (resp. $m\geq 3$) and that $g(x)\equiv +\infty$ on D if and only if $\lambda=+\infty$ for m=2. This g(x) is the Green function of D with pole x^o , and the constant term λ is called the *Robin constant of* D with respect to x^o . B. Robin [3] originally dealt with the case of m=3. When m=2, as is well known, the Robin constant plays an interesting role in the theory of Riemann surfaces.

Let C^n be the *n*-dimensional complex plane with the standard coordinate system $z = (z_1, \dots, z_n)$, and Δ a unit disc with center at origin in the 1-dimensional complex plane C. Consider a domain \mathcal{D} over $\Delta \times C^n$, precisely speaking, \mathcal{D} is an unramified covering domain over the product space $\Delta \times C^n$ ($\subset C^{n+1}$). We set $\mathcal{D}(t) = \mathcal{D} \cap (\{t\} \times C^n)$ for $t \in \Delta$, which is called the *fiber of* \mathcal{D} at $t \in \Delta$. We regard the domain \mathcal{D} of dimension n+1 as a variation of domains $\mathcal{D}(t)$ of dimension nwith parameter $t \in \Delta$, and write it $\mathcal{D}: t \rightarrow \mathcal{D}(t)$ where $t \in \Delta$. Let α be a holomorphic section of \mathcal{D} on \mathcal{A} , that is, α is a holomorphic map of \mathcal{A} into \mathcal{D} such that $\alpha(t) \in \mathcal{D}(t)$ for all $t \in \mathcal{A}$. Putting $z_i = x_{2i-1} + \sqrt{-1} x_{2i}$ $(i=1, \dots, n)$ with x_{2i-1} and x_{2i} real, we consider $\mathcal{D}(t)$ as a domain over the space \mathbb{R}^{2n} with coordinate system $(x_1, x_2, \dots, x_{2n-1}, x_{2n})$. Then we have the Green function g(t, z) of $\mathcal{D}(t)$ with pole $\alpha(t)$ (by definition, we set g(t, z) = 0 on each connected component of $\mathcal{D}(t)$ except for that containing $\alpha(t)$) and the Robin constant $\lambda(t)$ of $\mathcal{D}(t)$ with respect to $\alpha(t)$. Thus $\lambda(t)$ defines a real valued function on \mathcal{A} . Our main result is the following

Theorem. If \mathcal{D} is a pseudoconvex domain of dimension n+1, then $\lambda(t)$ is superharmonic on Δ . Moreover, $\log(-\lambda(t))$ is subharmonic on Δ in the case of $n \geq 2$.

In the case of n=1, a proof of Theorem was given in [5] and in this case T. Nishino [1] made clear what amounts to. In the present note, we give a sketch of the proof of Theorem for $n \ge 2$.

2. It suffices to consider the case in which all $\mathcal{D}(t)$ $(t \in \Delta)$ contain the origin z=0 of \mathbb{C}^n and $\alpha(t)=0$ on all $t \in \Delta$.

Step 1. Suppose that there exists another domain $\tilde{\mathscr{D}}$ over $\mathscr{\Delta} \times \mathbb{C}^n$ and a real valued analytic function ψ defined on $\tilde{\mathscr{D}}$ such that (i) ψ is plurisubharmonic on $\tilde{\mathscr{D}}$, (ii) $\mathscr{D} \subset \tilde{\mathscr{D}}$ and $\mathscr{D}(t)$ are relatively compact in $\tilde{\mathscr{D}}(t)$ for all $t \in \mathscr{A}$, (iii) $\mathscr{D} = \{(t, z) \in \tilde{\mathscr{D}} | \psi(t, z) < 0\}$ and

$$\partial \mathcal{D} = \{(t, z) \in \tilde{\mathcal{D}} \mid \psi(t, z) = 0\},\$$

where $\partial \mathcal{D}$ denotes the boundary of \mathcal{D} in $\tilde{\mathcal{D}}$, (iv) each $\partial \mathcal{D}(t)$ $(t \in \Delta)$ are non-singular, that is, $(\partial \psi / \partial z_i)_{1 \leq i \leq n} \neq O$ on $\partial \mathcal{D}(t)$. The last condition (iv) implies that the variation $\mathcal{D}: t \to \mathcal{D}(t)$ where $t \in \Delta$ is diffeomorphically trivial, and that g(t, z) (resp. $\lambda(t)$) is of class C^2 on $\mathcal{D} \cup \partial \mathcal{D}$ (resp. Δ). Then we obtain the following

Lemma. We have the inequality

$$rac{\partial^2 \lambda(t)}{\partial t \partial ar t} \! \leq \! - rac{2 \Gamma(n\!-\!1)}{\pi^n} \! \iint_{\mathscr{D}(t)} \left\{ \sum_{i=1}^n \left| rac{\partial^2 g(t,z)}{\partial t \partial ar z_i}
ight|^2 \!
ight\} \! dV,$$

where $dV = dx_1 dx_2 \cdots dx_{2n-1} dx_{2n}$ is the volume element of \mathbf{R}^{2n} .

It follows from Lemma that $\lambda(t)$ is superharmonic on Δ , provided that the above conditions (i)-(iv) are satisfied.

Step 2. We suppose that \mathcal{D} satisfies the above conditions (i), (ii), (iii) except for (iv). Then we do not know if $\lambda(t)$ is of class C^2 on \mathcal{A} . However, using the fact that g(t, z) is continuous on $\mathcal{D} \cup \partial \mathcal{D}$ and for any fixed $t \in \mathcal{A}$, the function $\psi(t, z) - g(t, z)$ is subharmonic on $\mathcal{D}(t)$, we find that $\lambda(t)$ is of class C^1 on \mathcal{A} . Since the set of points t of \mathcal{A} such that $\partial \mathcal{D}(t)$ fails to satisfy the condition (iv), consists of real 1-dimensional curves, we infer from Step 1 that $\lambda(t)$ is superharmonic on \mathcal{A} .

Step 3. Suppose that \mathcal{D} satisfies the conditions (i), (ii) and (iii). Let $\varphi(t)$ be an arbitrary holomorphic function on \mathcal{A} such that $\varphi(t) \neq 0$ at any $t \in \Delta$. We consider the Hartogs transformation T of the form, $(t, z) \mapsto (t, Z) = (t, {}^{2n-2}\sqrt{\varphi(t)}z)$. Set $\mathcal{D}^* = T(\mathcal{D})$ and $\mathcal{D}^*(t) = T(\mathcal{D}(t))$ for $t \in \Delta$, and let $g^*(t, Z)$ and $\lambda^*(t)$ denote respectively the Green function on $\mathcal{D}^*(t)$ with pole O and the Robin constant of $\mathcal{D}^*(t)$ with respect to O. Then we get $g^*(t, Z) = g(t, z)/|\varphi(t)|$ and $\lambda^*(t) = \lambda(t)/|\varphi(t)|$. Since \mathcal{D}^* satisfies the conditions (i), (ii) and (iii), it follows from Step 2 that $\lambda^*(t)$ is superharmonic on Δ . Consequently, $\log(-\lambda(t))$ is subharmonic on Δ .

Step 4. Let \mathcal{D} be a general pseudoconvex domain over $\mathcal{A} \times \mathbb{C}^n$. By Oka's theorem ([2], p. 143), there exists a sequence of subdomains \mathcal{D}_p $(p = 1, 2, \cdots)$ of \mathcal{D} such that $\mathcal{A}_p \subset \mathcal{A}_{p+1}$, $\bigcup_{p=1}^{\infty} \mathcal{A}_p = \mathcal{A}$, $\mathcal{D}_p \subset \mathcal{D}_{p+1}$, $\bigcup_{p=1}^{\infty} \mathcal{D}_p = \mathcal{D}$, and that each \mathcal{D}_p is a domain over $\mathcal{A}_p \times \mathbb{C}^n$ which satisfies the conditions (i), (ii) and (iii). Denoting by $\lambda_p(t)$ the Robin constant of $\mathcal{D}_p(t)$ with respect to O, we have that $\lambda_p(t) \leq \lambda_{p+1}(t)$ and $\lim_{p \to \infty} \lambda_p(t) = \lambda(t)$ for $t \in \mathcal{A}$. It follows from Step 3 that $\log(-\lambda(t))$ is subharmonic on \mathcal{A} . Thus the proof is completed.

3. We give some applications of Theorem for $n \ge 2$ and compare them with those for n=1.

(a) (Fiber uniformity). A domain D over C^n $(n \ge 1)$ is said to be parabolic, if the Robin constant λ of D with respect to some (hence any) point z^o of D is $+\infty$ (resp. =0) for n=1 (resp. $n\ge 2$). Let \mathcal{D} be a pseudoconvex domain over $\Delta \times C^n$ and set $K = \{t \in \Delta | \mathcal{D}(t) \text{ is parabolic}\}$. Then, if the logarithmic capacity of K on the complex plane C is positive, we have $K=\Delta$.

(b) (Trivial variations). Let \mathcal{D} be a pseudoconvex domain over $\Delta \times \mathbb{C}^n$ $(n \geq 1)$. In the case of $n \geq 2$, if there exists a holomorphic section α of \mathcal{D} on Δ such that $\lambda(t)$ is harmonic on Δ , then \mathcal{D} is identical with the trivial variation: $t \to \mathcal{D}(0) + \alpha(t)$ where $t \in \Delta$. Let n = 1 and χ denote the Euler characteristic number of $\mathcal{D}(0)$. If there exist at least $\chi + 1$ holomorphic sections α_i $(i=1, \dots, \chi+1)$ of \mathcal{D} on Δ such that each $\lambda_i(t)$ is harmonic on Δ , then \mathcal{D} is holomorphically isomorphic to the trivial variation: $t \to \mathcal{D}(0)$ where $t \in \Delta$ ([6], p. 344).

(c) (Metric induced by the Robin constant). Let D be a domain over C^n $(n \ge 2)$ with non-singular analytic boundary. For a point $z \in D$, we denote by $\lambda(z)$ the Robin constant of D with respect to z. Then $\lambda(z)$ defines a real negatively valued function on D such that $\lambda(z) \cdot d(z, \partial D)^{2n-2}$ is bounded for $z \in D$ near ∂D , where $d(z, \partial D)$ is the euclidean distance from z to ∂D . We infer from Lemma that, if D is pseudoconvex, then $\log(-\lambda(z))$ is strongly plurisubharmonic on D. Thus, $ds^2 = \sum_{i,j=1}^{n} (\partial^2 \log(-\lambda(z)/\partial z_i \partial \bar{z}_j) dz_i d\bar{z}_j$ defines a complete metric on D. In the case of n=1, N. Suita [4] showed that it is identical, apart from a constant factor, with the Bergman metric on any hyperbolic Riemann surface. 4. We study variations of domains in \mathbb{R}^m with $m \ge 3$. Let I be an open interval of the real line \mathbb{R} . Consider a univalent domain \mathcal{D} of the product space $I \times \mathbb{R}^m$ ($\subset \mathbb{R}^{m+1}$) and set $\mathcal{D}(t) = \mathcal{D} \cap (\{t\} \times \mathbb{R}^m)$ for $t \in I$. Let α be a section of \mathcal{D} on I of the form $\alpha(t) = at + b$ for $t \in I$, where $a, b \in \mathbb{R}^m$. For each $t \in I$, we denote respectively by g(t, x) and $\lambda(t)$ the Green function on $\mathcal{D}(t)$ with pole $\alpha(t)$ and the Robin constant of $\mathcal{D}(t)$ with respect to $\alpha(t)$. Then, by similar arguments to those of §§ 2 and 3, we have the following results:

(1) If \mathcal{D} is a convex domain of \mathbf{R}^{m+1} with real analytic boundary in $\mathbf{I} \times \mathbf{R}^m$, then we have the inequality

$$rac{\partial^2 \lambda(t)}{\partial t^2} = \leq -rac{\Gamma(m/2-1)}{2\pi^{m/2}} \iint_{\mathscr{D}(t)} \left\{ \sum_{i=1}^m \left(rac{\partial^2 g(t,\,x)}{\partial t \partial x_i}
ight)^2
ight\} dV_{i}$$

where $dV = dx_1 \cdots dx_m$ denotes the volume element of \mathbb{R}^m . Moreover, $\log(-\lambda(t))$ is a convex function on I.

(2) Let D be a convex domain in \mathbb{R}^m with real analytic boundary. Let $\lambda(x)$ denote the Robin constant of D with respect to $x \in D$. Then $ds^2 = \sum_{i,j=1}^m \partial^2 \log (-\lambda(x)/\partial x_i \partial x_j) dx_i dx_j$ defines a complete metric on D.

References

- [1] T. Nishino: On value distributions of analytic functions of two complex variables. Sugaku, 32, 230-246 (1980) (in Japanese).
- [2] K. Oka: Sur les fonctions analytiques de plusieurs variables. IX-Domainesfinis sans point critique intérieur. Japan. J. Math., 27, 97-155 (1953).
- [3] B. Robin: Sur la distribution de l'électricité à la surface des conducteurs fermés et des conducteurs ouverts. Ann. Scient. Ec. Norm. Sup., III, 3, 3-58 (1886).
- [4] N. Suita: Capacities and kernels on Riemann surfaces. Arch. Rational Mech. Anal., 46, 212-217 (1972).
- [5] H. Yamaguchi: Parabolicité d'une fonction entière. J. Math. Kyoto Univ., 16, 71-92 (1976).
- [6] ——: Calcul des variations analytiques. Japan. J. Math. (New series), 7, 319-377 (1981).