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83. Variations of Pseudoconvex Domains

By Hiroshi YAMAGUCHI
Faculty of Educations, University of Shiga

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1983)

1. Let R™ be the real euclidean space of dimension m (=2) with
norm || z|*=|x,f+ - - - +|®, [, where x=(z,, - - -, x,,) is the standard co-
ordinate system. By an unramified covering domain over the space
R™ or, more simply, a domain over R™, we mean a connected Hausdorff
space E together with a locally homeomorphic map p of F to R™. If
there is no ambiguity, we use the notation x ¢ E, which means pre-
cisely that x is a point of F such that p(x)=x (¢ R™). Now consider
a domain D over R™ and fix a point x#° in D. We take a sequence of
relatively compact subdomains D, (p=1,2, ---) of D such thatz°¢ D,,
D,cD,.,, Up-1D,=D and the boundaries 6D, of D, in D are real
analytic. According to the potential theory, every D, carries the
Green function g,(x) with pole z°, which is uniquely determined by
the following three conditions: 4g,=d¢,/d2}+ - .- +d°g,/02%,=0 on
D,—{x°}, 9,()=0 on 3D, and on a neighborhood of z°in D,, g,(x) is
expanded in the form

1 1

g (w)=log———(resp. ——“—«)—1—2 +h,(x)
’ o=’ fo—arrs) T

for m=2 (resp. m=3), where 2, is a constant, %,(x) is harmonic and
h,(x°)=0. Since the functions g,(x) and the constants 2, increase
with p, the limits g(x)=1im,_.. g,(x) and 2=lim,_.. 2, exist. It is clear
that 0<g(®)< 400 on D, —c0 <A< 400 (resp. <0) for m=2 (resp.
m=3) and that g(x)= + o0 on D if and only if 2= 4o for m=2. This
g(x) is the Green function of D with pole 2°, and the constant term 2
is called the Robin constant of D with respect to x°. B. Robin [3]
originally dealt with the case of m=38. When m=2, as is well known,
the Robin constant plays an interesting role in the theory of Riemann
surfaces.

Let C* be the n-dimensional complex plane with the standard co-
ordinate system z=(z,, - - -, 2,), and 4 a unit disc with center at origin
in the 1-dimensional complex plane C. Consider a domain 9 over
4X C", precisely speaking, 9 is an unramified covering domain over
the product space 4xC* (cC*+'). We set Dt)=DN{t}xC") for
t € 4, which is called the fiber of @ at te 4. We regard the domain
9 of dimension n--1 as a variation of domains 9(t) of dimension n
with parameter ¢t e 4, and write it 9:t—9(t) where te 4. Let « be
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a holomorphic section of 9 on 4, that is, « is a holomorphic map of
4 into 9 such that a(t) € D(t) for all te 4. Putting z,=x,,_,++ — 12,
(i=1, - - -, n) with «x,,_, and x,, real, we consider 9(¢) as a domain over
the space R* with coordinate system (x,, 2,, - -, ®3,_1, %2,). Then we
have the Green function g(¢, z) of 9(t) with pole a(t) (by definition, we
set g(t,2)=0 on each connected component of 9(t) except for that
containing «(t)) and the Robin constant A(¢) of 9(t) with respect to
a(t). Thus A(t) defines a real valued function on 4. Our main result
is the following

Theorem. If 9 is a pseudoconvex domain of dimension n4+1,
then A(t) is superharmonic on 4. Moreover, log (— A(t)) is subharmonic
on 4 in the case of n=2.

In the case of n=1, a proof of Theorem was given in [5] and in
this case T. Nishino [1] made clear what amounts to. In the present
note, we give a sketch of the proof of Theorem for n>2.

2. It suffices to consider the case in which all 9(¢) (¢ € 4) contain
the origin 2=0 of C" and a(t)=0 on all ¢t € 4.

Step 1. Suppose that there exists another domain 9 over 4x C*
and a real valued analytic function + defined on 9 such that (i) v is
plurisubharmonic on 9, (ii) D P and 9D(¢) are relatively compact in
D) for all t e 4, (iii) D={(t, 2) € D|¥(t, 2)<0} and

0D={(t, 2) € P|¥(t, 2)=0},
where 99 denotes the boundary of 9 in ), (iv) each D) (t € 4) are
non-singular, that is, (0y/82,),<.<.>x0 on 09(t). The last condition
(iv) implies that the variation 9 : t—9(t) where t ¢ 4 is diffeomorphi-
cally trivial, and that g(¢, 2) (resp. A(t)) is of class C? on 9UI9 (resp.
4). Then we obtain the following
Lemma. We have the inequality

) . _2In—1 j I {i d*g(t, 2)

otot " o \iZ1]  0toz,
where AV =dx,dx,- - - dx,,_,dx,, is the volume element of R*".

It follows from Lemma that A(t) is superharmonic on 4, provided
that the above conditions (i)-(iv) are satisfied.

Step 2. We suppose that 9 satisfies the above conditions (i), (ii),
(iii) except for (iv). Then we do not know if A(f) is of class C* on 4.
However, using the fact that g(¢, 2) is continuous on 9UdD and for
any fixed ¢ € 4, the function (¢, 2)— g(¢, 2) is subharmonic on 9(t), we
find that () is of class C' on 4. Since the set of points ¢ of 4 such
that 09)(t) fails to satisfy the condition (iv), consists of real 1-dimen-
sional curves, we infer from Step 1 that i(¢) is superharmonic on 4.

Step 3. Suppose that 9 satisfies the conditions (i), (ii) and (iii).
Let ¢(t) be an arbitrary holomorphic function on 4 such that ¢(t)20

2}dV,
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at any t e 4. We consider the Hartogs transformation 7T of the form,
(t, 2)—(t, Z)=(t, " Vo(t)z). Set D*=T(D) and D*{t)=T(ID(t)) for
te 4, and let g*(t, Z) and 1*(t) denote respectively the Green function
on 9D*(t) with pole O and the Robin constant of 9*(t) with respect to
O. Then we get g*(t, Z)=9(t, 2)/|o(t)| and 2¥(t)=2(t)/|p(t)|. Since D*
satisfies the conditions (i), (ii) and (iii), it follows from Step 2 that
2*(t) is superharmonic on 4. Consequently, log (— A(¢)) is subharmonic
on 4.

Step 4. Let 9 be a general pseudoconvex domain over 43X C”.
By Oka’s theorem ([2], p. 143), there exists a sequence of subdomains
D, =1,2,-..) of 9 such that 4,C4,., Up..4,=4, D,CD,.,,
Usp-1 9,=9, and that each 9, is a domain over 4, X C" which satisfies
the conditions (i), (ii) and (iii). Denoting by 4,(¢) the Robin constant
of 9,(t) with respect to O, we have that 1,()<2,.,(t) and lim,_., 2,(¢)
=2A(t) for te 4. It follows from Step 3 that log (— A(%)) is subharmonic
on 4. Thus the proof is completed.

3. We give some applications of Theorem for »n>2 and compare
them with those for n=1.

(a) (Fiber uniformity). A domain D over C" (n=1) is said to be
parabolic, if the Robin constant 1 of D with respect to some (hence
any) point 2° of D is + oo (resp. =0) for n=1 (resp. n=>2). Let 9 be
a pseudoconvex domain over AX C" and set K={t € 4| D(t) is parabolic}.
Then, if the logarithmic capacity of K on the complex plane C is
positive, we have K=A4.

(b) (Trivial variations). Let 9 be a pseudoconvexr domain over
AXC" (n=1). In the case of n=2, if there exists a holomorphic sec-
tion a of 9 on 4 such that A(t) is harmonic on 4, then 9 is identical
with the trivial variation : t— D)+ a(t) where te 4. Let n=1 and X
denote the Euler characteristic number of 9(0). If there exist at least
X1 holomorphic sections «, (¢=1, - - -, X+1) of 9 on 4 such that each
2,(t) is harmonic on 4, then 9 is holomorphically isomorphic to the
trivial variation: t— 9(0) where t € 4 ([6], p. 344).

(¢) (Metric induced by the Robin constant). Let D be a domain
over C" (n=>2) with non-singular analytic boundary. For a point
2 e D, we denote by A(z) the Robin constant of D with respect to z.
Then 2A(z) defines a real negatively valued function on D such that
A(2)-d(z,0D)*™-* is bounded for ze D near 9D, where d(z, D) is the
euclidean distance from z to dD. We infer from Lemma that, ¢f D is
pseudoconvex, then log (—A(2)) is strongly plurisubharmonic on D.
Thus, ds*=2% ., (8" log (—A(2)/02,02,)dz,dZ; defines a complete metric
on D. In the case of n=1, N. Suita [4] showed that it is identical,
apart from a constant factor, with the Bergman metric on any
hyperbolic Riemann surface.
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4. We study variations of domains in R™ with m>3. Let I be
an open interval of the real line R. Consider a univalent domain g
of the product space IXR™ (CR™*!) and set DE)=DN({t}xR™) for
tel. Let « be a section of 9 on I of the form a(t)=at+b for tel,
where a, b ¢ R”. For each t € I, we denote respectively by g(¢, ) and
A(t) the Green function on 9(¢) with pole a(t) and the Robin constant
of 9(t) with respect to a(t). Then, by similar arguments to those of
§§ 2 and 3, we have the following results:

Q) If D is a convexr domarn of R™+! with real analytic boundary
in IXR™, then we have the inequality

622(t)_>§_ I'(m/2—1) “’ { (azg(t x) )}dV,
ot* 2g™/? o) =i\ 9tde,

where AV =dx,- - -dx,, denotes the volume element of R™. Moreover,
log (—A(t)) is & convex function on I.

(@) Let D be a convex domain in R™ with real analytic boundary.
Let 2(x) denote the Robin constant of D with respect to x e D. Then
ds’=3m,_, 9" log (—A(x)/0x,0x,)dx,dx, defines a complete metric on D.
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