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Let X be a C-manifold and F(X) be the ring of all the C-functions on X, or let X be a Q-space ) and C(X) be the ring of all
the real-valued continuous functions on X. Then for a non-trivial
homomorphism (i.e. (f)=0) of the function ring F(X) or C(X)
into the real number field R, there exists one and only one point p
of X such that q(f)=f(p) for any f of the respective function ring.
Hence it follows that C-manifolds X and Y are differentiably homeo-
morphic if F(X) and F(Y) are isomorphic,) and that Q-spaces X and
Y are homeomorphic if C(X) and C(Y) are isomorphic.) In this paper
we shall study the generalizations of these results. For brevity we
use the word homomorphism’ in place of the word ’non-trivial homo-
morphism ’.

Let X be a completely regular space and let C(X, R) be the ring
of all the real-valued continuous functions on X. We denote by g a
subring of C(X, R) satisfying the following conditions:

(1) R,
(2) for a closed set F of X and a point p.F, there exists a

function f of such that f(p):> sup f(x),

(3) if f(x)>a>O and f(x)e, then f-(x)eg.
The conditions (2) and (3) are weaker than the following conditions (2’)
and (3’) respectively:

(2’) for a closed set F of X and a point pCF, there exists a
function f of such that 0f(x)l, f(p)--l, and f(x)=0 if x eF,

(3’) if f(x) ::> 0 and f(x) , then f-l(x) .
It is obvious that the conditions (1), (2’) and (3’) are all fulfilled, if
=F(X) or C(X).

We now define a uniform structure gX of X by the following
uniform neighborhoods:

Uxl,..., x;(x) {Yl f{(Y)-f{(x)! < e, i 1, 2,..., hi, where f, e E
(i=l, 2,...,n) and e is an arbitrary positive number. Then it is
easily seen that gX agrees with the topology of X by virtue of (2).

1) By a C-manifold we mean a separable Coo-manifold. For the definition of a
Q-space see [3, 4, 7].

2) See [1].
3) See [3, Theorem 57].
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Theorem 1. For any homomorphism of the ring into R
there exists one and only one point p of X such that (f)--f(p) for
any f of 6, if and only if gX is complete.

IZroof. If we put ’--[fi(f)-0}, then , is a maximal ideal
of . In fact, if (g)=a0, g e, then we have 1--g(x)/ae, since
(c)-c for any real number c and (g/a)=(g)/a-1.4 Hence we have
f/g/a=l for some fe. This shows that an ideal generated by
and g contains 1, that is, is a maximal ideal. Now let F(,i)--
{r./n(f) f, n--l, 2,...}, where F/n(f)--[xi if(x)ll/n}. Then
it is trivial that F(,ff) does not contain the void set by virtue of (3).
Further F(,) has the finite intersection property. In fact, if F/,(f)
F() (i--l, 2,...,n) and F1/n(f)--, then we have

i--I --I

min(1/nJ20 and fe. Hence S contains l=ff-1, since f-le by

(3). This contradicts the maximality of the ideal . Now let s be
an arbitrary positive number and let k be a positive integer such

that 2]k<s. Then for any point x of F/(f), we have F/(f)

UI,... (), where f . On the other hand, for any uniform
neighborhood U,...,; we can assume that f e for every i without
losing the generality, since Uxi,,..,;- U_,..., -n;’ where a--(f).
Thus all the finite intersections of sets of F() form a Cauchy filter
base, which converges to a point pX by the hypothesis. Then we
have peZ(f)={xlf(x)-O} for any fe, and (f)--f(p) for any
feg. It is obvious that p is the unique point such that (f)=f(p)
for any f e. To prove the converse, let gX be the completion of
gX. Since every f e is uniformly continuous on gX, every f e is

extended uniformly continuously over gX. Now assume that gXgX.
Then for any x e gX--gX, there is a homomorphism x of into R
such that x(f)--f(x), where f is an extension of f over gX. Then
there is no point y of X such that x(f)=f(y)for any f e. In fact,
for any y of X, there exists a uniform neighborhood U* of gX such
that U*(x) U*(y)-, since gX is separated. Moreover, if we put
U(y)= U*(y)X, there exists a function f of ff such that sup f(z)
< f(y). From this it follows that f(x) sup f(z)< f(y). Thus we

complete the proof.
By the mapping a:a(x)= {f(x)]f }, X is homeomorphically

mapped into the Cartesian product space II R by virture of (2), where

R is the space R of the real numbers for any fe. Let Ybe the
4) Every homomorphism of the ring R of the real numbers into R is the

identity mapping.
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image of X by the mapping a. If gX is complete, then Y is a closed
subspace of II Rf. Hence X is the Q-space by 7, Theorem 1].

Now let X and Y be completely regular spaces, and let x and
gr be the subrings of C(X, R) and C(Y, R) respectively, each of which
satisfies the conditions (1), (2) and (3). Then we have the following

Theorem 2. If the uniform spaces gX and g Y, which are deter-
mined by x and , are complete, and the rings x and are iso-
morphic, then X and Y are homeomorphic. Moreover, if is the
homeomorphic mapping from X to Y, then we have f-le(, for any
f egx and f’yegx for any fl er, where fv-(p’)-- f(v-p’) and f’y(p)

f’(TP).
Proof. For any point p of X, let be a ring-homomorphism

of g into R such that dp(f)-f(p) for any f ex. If we denote
by the isomorphic mapping from gr onto x, then , is a ring-
homomorphism of r into R. Therefore by Theorem 1, there exists
one and only one point p’ of Y such that ,(f’)-f’(p’) for any

f’ r. If we denote by the mapping: p- p’, then v is obviously
a 1-1 mapping from X to Y, and we have (fl)_f,v for any f’ e.
and -(f)-f- for any fe. Let U(p’) be any neighborhood of
p’e Y, and let f’ be a function of (St such that f’(p’) sup f’(x).

xU(pp)

Then we have V(p’)- {q’! f1(q,) f,(p,)_e} U(p’) for some positive
number e, and v-’V(p’) is open in X, since v-IV(p’)-{q]f’(q)
f’(p)--e}. Thus v is a continuous mapping, v- is also a continuous
mapping from Y to X. This completes the proof.

Corollary. Let X and Y be the Q-spaces. If the rings C(X, R)
and C(Y, R) are isomorphic, then X and Y are homeomorphic.

Proof. The uniform spaces gX and g Y, which are determined
by C(X, R) and C(Y, R) respectively, are both complete. Hence by
Theorem 2, X and Y are homeomorphic.

We shall state a sufficient condition, under which gX is complete.
Theorem 3. Let X be a locally compact Hausdorff space such

that X--J Bn, where each of B i8 compact, and let be a subring

of C(X, R) which satisfies the following condition (4) besides (1) and
(2’)"

( 4 for a sequence of non-negative functions {f,,} of such that

{P (f.)} is locally finite, we have , fn(X) , where P(fn)-- IX fn(X) 0}.

Then the uniform space gX determined by . is complete.

Proof. Let I-[Aie A} be the Cauchy filter in gX. We show
that some A of ?I is contained in a certain compact set. Now let

U(p) be a neighborhood of a point p of X such that U(p)is compact.
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Then the open covering U(p) lp X} has a locally finite open refine-
ment {V, li-1, 2,...}, since X is paracompact. Furthermore it can
be easily seen by the mathematical induction that there exists an

open refinement {W,.li-1, 2,...} of {V,} such that WV, by virtue
of normality of X. Then { W,} is also locally finite. We note that for
any positive integer i, there exists a non-negative function f e such

that f(x)-0 if x V and a-min fi(x)> 0. Now let f()- (i/a)f(x).
i i=l

Then we have f()eg by virtue of (4). On the other hand, for any
positive number e, there exists an A e such that A U/;() for
any e A, since 0/ is the Cauchy filter in gX. This means that f()
is bounded on Ax. Thus A must be contained in [ W for some

positive integer n, since f(x)>=m if x e [J W. From this it follows

that the Cauchy filter I converges to a point of X.
Corollary 1. If X is a C-manifold and F(X) is the ring of

all the Coo-functions on X, then for any homomorphism of F(X)
in$o R, Shere exists one and only one poin$ p of X such Sha$ $(f)- f(p)
for any f e F(X).

Proof. Since F(X) satisfies the conditions (1), (2’) and (4)in
Theorem 3, the uniform space gX determined by F(X) is complete.
Hence by Theorem 1 we have the desired result.

Corollary 2. If X is a Coo-manifold and D(X) is the ring of
all the C-functions with compact carriers on X, then for any homo-
morphism of D(X) into R, there exists one and only one point p

of X such that (f)-f(p) for any f D(X).
This can be shown by using Corollary 1 and the partition of unity.,
Corollar), 3. The ring F(X) (D(X)) characterizes the Coo-struc-

ture of the C%manifold X. 7)

For a particular homomorphism $ of the ring g satisfying the
conditions (1), (2’) and (3) into R, we have the following

Theorem 4. There exists one and only one point p of X such
that $(f)--f(p) for any f, if and only if b is weakly continuous
on with its weak topology.

The proof is omitted, since it can be carried by the similar way
as in [5, Theorem 3.

In the case when X is a locally compact (but not compact)
Hausdorff space and is the ring of all the real-valued continuous

5) cf. [1, p. 17, Lemma 2].
6) This idea of the proof was communicated to the author by Mr. K. Shiga. It

is also possible to prove it directly.
7) Shanks’s result [6J asserting that the ring D(X)of functions of C-class

with compact carriers on a manifold X of C-class characterizes the structure of the
manifold X can be proved similarly.
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functions with compact carriers, g does not satisfy the conditions (1)
and (3). But we have the following

Theorem 5. For any homomorphism of the ring into R,
there exists one and only one point pX such that (f)--f(p) for
any f e.

Proof. We note that (af)=a(f) for any feg and any real

number . In fact, if we put K={x]f(x)0}, there exists a function
g of such that g(x)=a if x eK. Hence we have cf(x)=g(x)f(x)
for every x eX. From this it follows that (af)=0 if (f)=0. If
(f)0, then the mapping *(cO-(af)/(f) is the identity mapping
from R onto itself, which shows that (af)--(f). By using this
fact, it can be easily seen that ---1(0) is a maximal ideal of . On
the other hand, an ideal ( in g is maximal if and only if
where p e X and p-{f f(p) =0, f e }, as shown by 2, Theorem 3.
Hence we have 9=3 for a point p of X. Now let f e and f(p)= 1,
and assume that (f)-2. Then we have (f2)=2, since f(p)--l.
On the other hand it holds that (f)--(f)=. Hence we have
2=1, since 20. For any f of g such that f(p)=a0, we have
(f/a)----1, that is, (f)-a, since f/&(p)=l. This completes the proof.

The following corollary is due to Shanks 6.
Corollary. The ring characterizes the topology of the locally

compact Hausdorff space X.
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