Further results on the exponent of convergence
of zeros of solutions of certain higher order
linear differential equations *
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Abstract

In this paper, we further investigate the exponent of convergence of the
zero-sequence of solutions of the differential equation

fO a1 @f Y+ m@)f +pz)f =0,

where ¥(z) = Y4 Q]-(z)epf(z)(t > 3,1 € Ny), Pi(z) are polynomials of de-
green > 1, Qi(z),an(z)(A = 1,2,--- ,k—1;j = 1,2,...,1) are entire func-
tions of order less than #n, and k > 2.

1 Introduction and Results

Complex oscillation theory of solutions of linear differential equations in the com-
plex plane C was started by Bank and Laine [1, 2]. After their well-known work,
many important results have been obtained see [3, 12, 13].

We will use the notation o (f) to denote the order of growth of a meromorphic
function f(z), A(f) to denote the exponent of convergence of the zero-sequence
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of f(z)(see [9, 13]). Throughout our paper, we are always interested in non-trivial
solutions f only, thatis, f # 0.

In 1987, Bank and Langley investigated the oscillation of solutions of certain
linear differential equations and obtained

Theorem A (see [4]) Suppose that k > 2 and that A(z) = I1(z)e"® # 0 where
the entire function 11(z) and the polynomial P(z) = a,z" + - - - + ag satisfy:

(i) o(IT) < n;

(ii) there exists 6y € R with 6(P,6p) = Re(a,e™) = 0 and a positive e such that
I1(z) has only finitely many zeros in | argz — 6| < «.

Then if n > 2 and Q is a polynomial whose degree dg satisfies dg + k < kn, all
non-trivial solutions f of

y® + (A(z) + Q2))y =0

satisfy A(f) = oo. The same conclusion holds if n = 1 and Q is identically zero.
In 1997, Ishizaki and Tohge [10, 11] have studied the exponent of convergence
of the zero-sequence of solutions of the equation

M) £+ (M) 4 e+ Qo(2))f =0,
where Pj(z), P>(z) are non-constant polynomials
Pi(z) =0C1z"+--, P(z)=02"+---, 0102 #0 (n,meN).

and Qo(z) is an entire function of order less than max{n, m}, and e"1(2) and e"2(?)
are linearly independent. They have obtained the following results:

Theorem B (see [11]). Suppose that n = m, and that {y # (p in (1). If% is
non-real, then for any non-trivial solution f of (1), we have A(f) = oo.

Theorem C (see [10]). Suppose that n = m, and that % =p>0in (). If
0<p<itorQo(z) =03 < p <1, then for any non-trivial solution f of (1), we have

A(f) > n.

In 2007, Tu and Chen [15] studied the exponent of convergence of the zero-
sequence of solutions of

) '+ (Ql(z)epl(z) + Qa(z)e®) 4 Q3(Z)€P3(Z)) f=0,

and obtain the following results.
Theorem D (see [15]). Let Q1(z), Q2(z), Q3(z) be entire functions of order less
than n, and Py (z), P2(z), P3(z) be polynomials of degree n > 1,

Pl(Z)Iglz”_l_...l PZ(Z)=€22n+"'/ P3(Z):C3Zn—|—---,

where {1, (2, (3 are complex numbers.

(i) If % is non-real, 0 < A = % < %, then for any non-trivial solution f of (2), we
have A(f) = oo.

(ii) If 0< % < }I, 0<A= % < 1, then for any non-trivial solution f of (2), we
have A(f) > n.
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Recently, Tu and Yang [16] investigated the exponent of convergence of the
zero-sequence of solutions of the differential equation

@) 4 Q@R + Qo)) + -+ Q)R ) £ =0,

and obtained the following result which extended Theorem D:

Theorem E (see [16]). Let Q1(z)(# 0),Qa(z), -+, Qi(z)(I > 3) be entire func-
tions of order less than n, and Py(z), P>(z),--- , P(z)(I > 3) be polynomials of degree
n>1,

Pi(z) = 012"+, Paz)=02" 4+, -, Pi(z) =02+,

where (1,0, -+, () are complex numbers.

(i) If % is non-real, 0 < A; = % < 1 (j=3,--+,1), then any non-trivial solution
f of (2') satisfies A(f) = oo.

(i)) If 0 <p = g—’j < 4, Aj % > 0 and Z§:3 Aj < 1, then any non-trivial
solution f of (2') satisfies A(f) > n

It is natural to ask: what results can we get when we investigate the expo-
nent of convergence of the zero-sequence of solutions of the higher order linear
differential equation

3) 0 4 ak_l(z)f(k_l) +- a2 f +yiz)f =
where ¥(z) = Yi_; Q;(z)e z)el] (z > 3 L € Ny), Pi(z) are polynomials of degree
n >1,Q(z),a ( A = 1,2, —1;j = 1,2,...,1) are entire functions of

order less than n, and k > 2.
In the present paper we shall investigate the above problem and obtain the
following result which improve all the previous theorems mentioned earlier.

Theorem 1.1. Let P]'(z),Q]'(z)(j = 1,2,...,4(> 3)) be defined in Theorem D and
apn(z) (A=1,2,--- ,k—1) be entire functions of order less than n,k > 2.

W) If & & s non-real, 0 < Aj g 1(j = 3,4,...,1), then for any non-trivial
solutzonfof( ), we have A(f) = oo.

(i) If 0 < % < %, 0<Aj = %and 2;23 Aj <1, then for any non-trivial solution

f of (3), we have A(f) > n.

2 Notation and Some Lemmas

To prove the theorem, we need some notations and a series of lemmas. Let
Pi(z)(j = 1,2,...,1) be polynomials of degree n > 1, Pi(z) = (aj + if;)z" +

-, B €R. Defme

o(P;,0) = 6;(0) = ajcosnd — Bsinno, 6e02m)(j=1,2,...,1),

s].+ = {0]6;(9) > 0}, S, =1016;(0) <0}  (j=12...,0).
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Let f(z),a(z) be meromorphic functions in the complex plane C and satisfy

T(r,a) = o{T(r, f)},
except possibly for a set of r having finite linear measure, we say that a(z) is a

small function with respect to f(z).

Lemma 2.1. (see [8]). Let f(z) be a transcendental meromorphic function with o(f) =
o < oo, k,j be two integers which satisfy k > j > 0. And let ¢ > 0 be a given
constant, then there exists a set E C [0,27t) which has linear measure zero, such that
if € [0,2m)\E, there is a constant Ry = Ry(¢) > 1, such that for all z satisfying
argz = @ and |z| = r > Ry, we have

fH(z)
F0(2)
Lemma 2.2. (see [5, 14]). Suppose that P(z) = (a+ Bi)z" + - - - (a, B are real numbers,
la| + |B| # 0) is a polynomial with degree n > 1, that A(z)(# 0) is an entire function
with o(A) < n. Set g(z) = A(z)e’®,z = re?,5(P,0) = acosnh — Bsinnb. Then
for any given € > 0, there exists a set Hy C [0,27r) that has the linear measure zero, such
that for any 0 € [0,27)\ (Hy U Hy), there is R > 0 such that for |z| = r > R, we have:
(i) If6(P,0) > 0, then
exp{(1—€)d(P,0)r"} < |g(re’®)| < exp{(1+¢)d(P,0)r"};
(i) If 6(P,0) < 0, then
exp{(1+¢)d(P,0)r"} < |g(re’®)| < exp{(1—¢)d(P,0)r"},
where Hy = {6 € [0,27);6(P,0) = 0} is a finite set.

Lemma 2.3. (see [5]). Supposes 7t(z) is the canonical product formed with the zeros
{zo :n =1,2,...,}(zn # 0) of an entire function f(z). Set O, = {z : |z —z,| <
|zn| 7%} (a(> A(f)) is a constant). Then for any given ¢ > 0,

7(2)] = exp{—|z|*/)*7}

< |Z|(k—j)(a—1+s)‘

holds for z ¢ Ej On.
n=1

Lemma 2.4. (see [7]). Let f(z) be an entire function of order o(f) = a < +o0. Then
for any given € > 0, there is a set E C [1,00) that has finite linear measure and finite
logarithmic measure such that for all z satisfying |z| ¢ [0, 1] U E, we have

exp{—r""} < |f(2)] < exp{r"™}.
Lemma 2.5. (see [16]). Let P;(z)(j =1, - - , 1) be polynomials of degree n > 1,
Pi(z) = G2" + Bi(2), Pa(z) = 282" + Ba(2), -+, Piz) = p.L2" + Bi(2),

where = a+Bi, o, ER, |af +[B] #0,0 < p; <1,j=2,---,1, By(z), -, Bi(2)
are polynomials of degree at most n — 1. Let Q1(z) # 0,Qa(2), -+, Q.(z) be entire
functions of order less than n, then for any given € > 0, there exist a set E with finite
linear measure and a constant {(n — 1 < ¢ < n) such that

m(r, QieM + Qpe2 4+ -+ - + Q,epl) >(1- s)m(r,epl) + O(rg), r—oo, (r¢eE).
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Lemma 2.6. (see [9, 17]). Let f(z) be an entire function and write f(z) = re’. Then
we have

()

IO ey kT 1 Dy + ), (k> 2),

f T

where Hy_o (1) isa diﬁ‘erential polynomial of degree no more than k — 2 in I', its coeffi-

k .
cients are terms of the type c(7- ) (X )S2 -( 7(1) )5k, where c is a constant, s1,Sp, -+ + , Sk
are non-negative integers.
(ii)

f(];jl) ffj; KOO+ H () (k> 1),

where Hy_1(h') is a differential polynomial of degree no more than k — 1 in I, its coef-
(k)
(7T_

us

ficients are terms of the type c(%/)s1 (”7”)52 e )5k (@)Skﬂ, where c is a constant,

$1,82,°** ,Sk+1 are non—negative integers.
Lemma 2.7. (see [17]). Let Uy(z),h(z), Q1(z), P1(z) be entire functions and satisfy
= Qih" — F(Q} + Q1 P))I. Then
Q™ = Ayyua(Uy, Q1) + Buoa(QUK, (1 22),
where Aq - Z(Ul, Q1) is an algebraic expression in the terms Uy ), ng ), Pl(j )
(j =0,1,...,1), such as addition, subtraction and multiplication, where the degree of

U(] ) is no more than 1 and the degree of Q ) is no more than | ; B4(Qq) is a differential
polynomzal of degree no more than d in Ql, its coefficients are algebraic expressions in

terms Pl(i) (i=1,2,...,d)and %, such as addition,subtraction and multiplication.

Lemma 2.8. Let h(z),cj(z)(j = 0,1,...,k — 1) be meromorphic functions and satisfy

co1(2) (W) 4 e (2) (W2 + -+ c1(2)h + co(z) = 0.
Then we have

(r,h") Z r,ci(z)) +O(1).

Lemma 2.9. Let h is a meromorphic function of finite order, Ex_1(h') is a differen-
tial polynomial of degree no more than k — 1, its coefficients are meromorphic functions
aj(z)(j =0,1,...,k — 1) satisfying o(a;) < n. Then for sufficiently large r,

m(r, (W 4+ Ex_1 (1)) < km(r, 1) +O(r°),
where 0 < max{c(a;)[j=0,1,...,k=1} <{ <n.

Remark 2.1. Lemma 2.8 and 2.9 are immediate consequences of the Valiron-Mohon'ko
theorem (see [11]) and/or Clunie technique.
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3 Proof of Theorem 1.1(i)

Since J; = Ajl2,Aj > 0(j =3,4,...,1),wehave S =S =-.- =5f,5, =5, =
--- = 5. We see that SJTL and Sj_ have n components S].; and S]._g respectively
(Gj=1,2,...,5¢0=1,2,...,n). Hence we write

n n
S;r:gL_J1S]'?’ Sj_:gL_{Si_f G=12....0.

(i) Let f # 0 be a solution of (3). Suppose that A(f) < co. Write f = me,
where 7 is the canonical product from the zeros of f, and & is an entire function.
From our hypothesis, we have o(71) = A(7r) < oo. From (3), we get

f(k) f(k—l) /
4) T+ak—1 7 +---+a17+¢(z)=0,
By Lemma 2.6(i), we get
5) (h/)k =Eq (1) - Ql(z)epl(z) - Qz(Z)€P2(Z) — = Ql(z)epl(z),

where E;_1 (1) is a differential polynomial of degree no more than k — 1 in /’,

. . . / k .
its coefficients are terms of type ca;.j (z)(%/)sl (”7/)52 c (#)Sk G=12,...,k—1),
where c is a constant, sq, s, - - - , 5, are non-negative integers and p is 0 or 1.

Eliminating e/ from (4), we have

( ) (k) 1 (k) (k=1) ¢ 1" !l
Ql(ka _ﬁf—>+ak_1Q1<ji_fk1L>—|—~~'+a1Q1<f——LL)

f ff f fof fofrf

, N Fl=) f p.>
—(QU+ Qi) [ +a a4 ) Qe
(Q] 11)<f g1 7 “1f = jé

(k=1) / t
afc_lf 7 + - —i—aﬁf7 + Q1 22 (Q; + Q]'Pj/> e’ = 0.

j=

+0Q1

By Lemma 2.6(ii), we can write this as

6) kU () = FL () + 1 [Qi(Q) + QiP)) - Qu(Q) + Qi) €,

j=2

where
1
7) Uy = Q1" — E(Qi + Q1 P,

and F! | (I') is a differential polynomial of degree no more than k — 1 in 1/, its
coefficients are terms of the type c(a; (z))P(a;. (z))”’(Ql)Z(Qi)t(P{)”(%’)Sl (Z)s2. ..

7T
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k . . .
(#)Sk, where c is a constant, sy, s, - - - , ¢ are non-negative integers and each of
p,q,1,t,uis 0 or 1. Similarly, eliminating ez from (4), we obtain

®) k(W) '=F,W)+ Y [Q] Q)+ QoPy) — Qz(Q§+Q]‘Pf')] eF
j=1j#2

where
1
) Uy = Qoh" — E(Qé + Qo)

and F? | (') is a differential polynomial of degree no more than k — 1 in I/, its

coefficients are terms of the type c(a; (z))p(a;(z))q(QZ)I(Q’Z)t(Pé)”(%/)Sl (%”)S2 e

(k) . . .
(%)Sk, where c is a constant, s1, s, - - - , 5¢ are non-negative integers and each of

p,q,1,t,uis0or1.

From the assumptions of Theorem 1.1, there exists three positive real numbers
81,82, 83 such that max{c(Q;),c(an),j = 1,2,...,5A = 1,2,...,k—1} < & <
¢r» < ¢3 < n, from Lemma 2.4 we get

|Qj(rei9)| < exp(rgl), (G=1,2,...,1); |aA(rei9)| < exp(r’gl), (A=1,2,...,k—1),

for sufficiently large r and for any 6 € [0,277). Applying the Clunie Lemma [9,
Lemma 3.3] to (5), for any given e > 0,

T(r,i') = m(r,h') < m(r,Qie™ + Qae™ + - + Qi)

k o) k=l /
+O0 | Y m(r,—)+ Y m(r,apn) | +5(r, 1)
=1 T A=1
< O(r"™8) +S(r, 1),

which implies o(h’) < n. It follows from (7) and (9) that c(U;) < n and o(U,) <
n respectively.

In the following, we will show that there exists a set Ey C [0,27), m(Ey) = 0
such that if € S, \Eo, then

(10) Uy (re?)| < O(exp{r?}), r — oo.

If |1/ (re'®)| < 1, from Lemmas 2.1,2.2 and 2.4 and (7), we have
(11)
101 e) + FPL o) 101 )] +

< O(exp{r®?}), r — oo.

1]Q3(re)]

i0
el = £1Q1(re?)

Q1 (re”)]

If [W (re’®)| > 1. Since F! | (1) is the sum of a finite number of terms of the
type

! " (k)

H(z) = C(aj(z))p(ﬂ;(Z))q(Q1)Z(Q£)t(P{)”(;)51(%)52 o
< (W)o(n" )l ... (h@)lo-1,
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where [y, 1, -+ ,1,-1 are non-negative integers and lp + 11 +--- + 1,1 < k-1,
from Lemma 2.1 we can get

1 [H(re")]| < i@V (P (i [0 V11O (7o) [E[P! (roi®) |1
02) ol < el re) Pl re )71 ) 5 1) )
% |7T/(i’€i9)’51.”’7'[(k)(1’€ )|sk|h”(relg)’ll . ’h(v)(reié‘”lv_l
7t (rel?) 7t (rel?) |W! (ret?)| |W! (ret?)|
< O(exp{ré2}).
Thus
. FLy ()

W < O(exp{rgz}).
From (6),(13) and Lemma 2.2, we get

[Fe_q (re®)]

(19 KUy (re)] < et + z P | (Q(re®) + Qu (re) P (1)
xQj(re®) Ql(rele)((Qj(Vele) + Qj(re) P (re))|
< O(exp{rf?}), r— oo.

From (11) and (14), we obtain (10).
We note that there exist 6;(j = 1,2,...,:) satisfying §;(#) = 0 on the rays

argz = G_j + %, where v = 0,...,2n — 1, which form 2n sectors of opening
Z respectively, thus we may assume that 6; € [0,%). Since {; = A;l2,Aj > 0

(j = 3,4,...,1), we have 0; = 6(j = 3,4,...,1). Write 0, = 0;+1%,j =
1,2, if there are some integers 77 and 1, such that 6;,, = 6,,, then 6; — 0, +
(71 — 72) % = 0, we have that tan nG_]- = g—;,] = 1,2. This gives

x1B2 — a2

0 = tan(nf; —nb + (y1 — 12)70) = a0 + B1Po

This contradicts the assumption that gl is non-real. Hence we see that each com-

ponent of 5] and S, contains a component of S N'S;. The boundaries of the
components of S N'SJ are some of the rays argz = 9]7, we fix a component of

Sy NSy, say S*. We may write
S*={0€S NSy 6] <6<65,6(07) =6(05) =0}

or
S =1{0e€S NS 605 <86 <6;,6(6]) =d(05) =0}
We define

k(A +1
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A+1
Dy = {GGS;—QS;—(b(Q) > ;\i_ (51(9)}’

where A = max{A; : j = 3,4,...,1} < }. Since every component of 5] and S
is a sector of opening Z, the rays argz = 6} and argz = 605 are contained in S5
and S{ respectively. We treat the first case, the proof of the second case can be
obtained similarly. Hence there exist 77; > 0,7, > 0 such that

{0:0] <6< 6]+n1} C Dy, {0:05 — 1 <6 <63} C Dy
Hence there existsa 6 € (SE} N D1p)\Ep forany k =1,2,...,n. Set0 < k(kA_+11)52 <

k-1 k-1
(72<(71<51,0<€1<1—0—1,0<82<%—1,...,0<81<%—1. By

Lemma 2.2, we have

(15) |Q16P1(7’ei9) + Qzepz(reie) bt Qlepl(rei9)|

> }Qlepl(rem) )1— Q2 py(ref®) Py (rei®) | _
Q1

> exp{(1 - e1)d1r"}(1 — 0(1))
> exp{or"}(1 —o(1)), r — oo,

oo | B Pt i)

Q1

We assume that there exists an unbounded sequence {r,}2° ; such that 0 <
W (ree®)| < 1. From (5) and (15) and Lemma 2.1, we get
exp{oir}(1—0o(1)) < [N (rce®)[* + [Ex_1 (W (re”))]

v 70 (1¢e') 710 (ret?)
< 14Y oy p T (rxe”) 5y T (ree”)
> + |C||61A(1’K€ )| | 7T(1’K619) | | 7T(1’K616)

X ()10 1) (el o

|

. 1y b ) (7,ce?)
< 1 0y p| I sy T
< +Z]c]|a1\(7’x€ )P 77(reei®) | | 7t (re’?) |
|M’ll .. ’MVv—l
h’(r,(eig) h’(r,(eig)

< O(exp{r?}),  (x— ),

which is not true. Hence we may assume that |/ (re’®)| > 1 for all r sufficiently
large. From (5),(15) and Lemma 2.2, we get

exp{orr} (1 —o(1)) < [W(re)[* + |Exq (' (r¢?))|

, : 7' (re? (k) (rel®
< O+ K lellanre) P15 o )
X|h”(1”€i9) |l1 - ’h(v)(reie) ’1%1]
' (ret?) W (ret?)

< W (re®)[F(1+O(exp{r2})),  (r— o),

i.e.

I (1)K > 1—o(1)

Z T Olexp /&) exp{o1r"}, (r — o).
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Then we obtain for all r large enough

(16) ' (re®®)| > exp {%021’”} :
From Lemma 2.1,(6) and (16), we get
17)
' EL if ! Pi(re'?)
k|U1(1’619)’ < ’ k—1(re )’ ’e / ’

|h’(rei9) ’k—l = |h’(rei9) ’k—l
; reie . . )

, Q’
+|Qu ()| x (:QE 19;:|Q]( ’9)|+IQ](Velg)IIP’(V€19)|>]

Ofexp(r#:}) + (1-+o(1)) exp { (a(1 + &2) ~ E=22) |
+---+(1+0(1)) exp {(Aléz(l +e)— @)r”} , (r— o0).

Since (1 + &) — k=D 1)02 <0,...,M0(1+¢g) — k=D 1)02 < 0, it gives that for all
sufficiently large 7,

(18) U (re)| < O(exp{r?}).

Now we fix a ®(= Py) € (S5, N Dlz)\Eo,k =1,2,...,n. Then we find &1, P, €
Sy \Eo, ®1 < ® < &y such that & — Py < &, Dy — CI> < 7. We first prove that for
any9 P <0 <P, we have

(19) Uy (re'?)] < O(exp{r®?}), (r = o).

Write ® — @1 = 45,71 > 0, since o(Uy) < n, we have that ]Ul(re )]
e""2,0 < m < 1 for sufficiently large r. Set g(z) = Uy(z)/ exp((ze™ ) 3),
then g(z) is regular in the region {z : ®; < argz < ®}. Since P; < argz =6 <

O+P

d, P - Py < 7, we infer that Cos(arg((ze_%)@) > K for some K > 0. In fact,

s 7T€3 b — q)l

D e e
> <, =6

_ 2+ D — Py 7T§3 7T
< )93 | < < —.
< arg <(ze ) ) <3 5 =5, <73

Hence for ®; < 0 < P,

Uy (re'?)

W O(exp{r"*™}), (r = o).

g(re®)| <

It follows from (10) and (18) that for some M > 0, as r — oo

O(e™?)

30| < ot <
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and
762
_0E™)
~ exp{Krés} —

By the Phragmen-Lindelof theorem, we obtain (19). Similarly we see that (19)
holds for ® < 6 < ®,. Hence we conclude that (19) holds for any 6 € [0,27).

By a similar proof as before we can prove that for any 6 € [0, 27)

(20) Uy (re'®)| < O(exp{r®}), (r — o).
By (7) and (9), we have
@) Q- Qilh = (H(Qi(Qh+ Qo)) — QalQ + Qi)

Since 0(Q;) < ¢2 < &3(j = 1,2,3), by (5),(10),(20), (21) and Lemma 2.9, we have

(22) m(r, Qlepl(z) + QzePZ(Z) 4+ 4 QleP,(z))
< km(r, h’) + O(logr) < km(r, QU — Q1Uy) + O(réz)
< 0(7/53)/ (r — o).

Since % is non-real, S N'S, contains an interval I = [¢y, ¢,] satisfying
mingc;61(0) = x > 0. By Lemma 2.2, there exists an R(I)(> 0) such that for
any 0 € I and r > R(I),

10171 > exp((1 —€)d17™),  |QaeP2)| < exp((1 —€)dr™), ...,
and
10" )| < exp((1 — €)M, dor™).

Hence, we have

(23) m(r,QlePl(z) +Q2€p2<z>+...+Qlepl(z>)

P
2 / ’ 10g+ |Q1€P1(Z) + QZePZ(Z) + .o+ QLeP,(Z)|d9
P

1

> /:’2(1 — o(1)) log™ | Q1" ®)|dg

1

> /:’2(1 —0(1))(1 — £)sr"do

1

> (1=0(1))(1 —¢)sr" (92— ¢1), (r— ).

Combining (22) and (23) and recalling that {3 < 1, we get a contradiction. Hence,

A(f) = oo
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4 Proof of Theorem 1.1(ii)

Let f # 0 be a solution of (3). Write f = 7e", suppose that A(f) < n. From our
hypothesis, we have o(71) = A(71) < n. Eliminating e1 from (5), we have

24)  KU(W) = Ry (h) + Y eM[Qi(Q1 + Qi Py) — Qu(Q) + Q;P)],

j=2

where

1
(25) U= Qih" — E(Qﬁ + Q1P
From (24), (25) and Lemma 2.7, we have
(26) (@) (VT o (W) a2

2
= co(z) + ) e[Q;(Q1 + QiP) — Qu(Q} + Q;P))],
j=2

where ¢;(z)(j = 0,1,2,...,k — 1) is an algebraic expression in the terms u®
(I =01...k-2,0G =01.,k-1),P 6 =01,...1-1),L& =

(t =1,2,...,k) and aj,a;-(j =1,2,...,k—1), such as addition, subtraction and
multiplication.
Now we suppose that at least one of ¢j(z)(j = 1,2, ...,k — 1) is not identically

vanishing and co(z) + ¥, ePJ'[Q]-(Q’1 +Q1P)) — Ql(Q} + Q]-P]()] % 0. Without
loss of generality, suppose c_1(z) # 0, from (26) and Lemma 2.8, we have

(27) T(r,h') = m(r,h') i T(r,ci(z)) +m(r, Zepf[Qj(Qi + Q1P))
i=0 j:2
—Qi(Q+ Qij’)]) +0(1).
Set max{A(f),o(Q;): (j=1,2,...,1)} < & < {3 < n. From (5), we obtain

28) T (r, Q1M1 4 Qe ... 4 Qlep‘(z)> < kT(r,1') + O(logr).

By Lemma 2.5, we have

(29) m (r, Q1) +QpeP2@) 4. 4 QleP,(Z)>
> (1—e)m(r,e) +0(r%), (r — co,r ¢ E),
where E has finite linear measure. From (28) and (29), we obtain
1—e¢
k
Since 0 < p = % < %, gj = AjC2, Aj > 0and 0 < 2}23)\ < 1, we get
5(P2,9) = pé(Pl,G), and

Sim = S =+ = Suy

mr

(30) T(r,h') > T(r,e") +0(r%3),  (r— oo,r ¢ E).

Sin =Sy ="""=Sm m=1,..,n).
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By the same reasoning as in (11) and (14), we have
(31) U(re®)] < O(exp{r®2}),  (r— )

for any 6 € S; \Eg,m(Ep) = 0. Also by the same reasoning as in (15)-(18), we
have

(32) U(re?)| < O(exp{r2}),  (r— o)

for any 6 € S \Eop,m(Ey)) = 0. Since ¢(U) < n, by the Phragmen-Lindelof
theorem, we have

(33) U(re®)| < O(exp{r}),  (r— o)
for any 6 € [0,271).
We will estimate T(r, c;) as follows.
By our hypothesis f = mrel', A( f) < & < n, from Lemma 2.3 we have N (r, %) <

O(r%3). Thus, from (33), the assumptions of Theorem 1.1, the forms of cj(z) and
the theorem on the logarithmic derivatives, we have

k-1 k=1 k=1 k-1
(34) T(r,c;) <O (Z T(r, Q1 + Y m(r,an) + Y, m(r,ay)+ ) m(r,Pl(s))
0 A=0 A=0 s=0

i=
k—2 u(t) o 1
m\ = +m(r,U)+ N (r,E> + O(logr)

_|_
t
<O(r%), r—o, j=0,1,...,k—1,

and
(35) T(r, ) eM1Q(Q + QuP) — Qi(Q} + QP )
j=2
<O(r%) + T(r,e™) + T(r,e) + - -+ T(r,e")

1+ZA P2y 4 0(r%)

1+ZA )oT(r,e™) +0(r%), r— co.
=

From (27),(30),(34) and (35), we get

(36) 1TT(1’ e’ +0(r%) < T(r, 1)

1—|—ZA )oT(r,e") +0(r%), r— oco,r ¢ E.
j=
Thus, (36) implies

(37) (%—(1+i/\j)f?—0(1)> T(r,eM) <0, r— oo,r &E.
=3
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From 0 < p = % < 21—k,0 < 2;23 Aj < 1and (37), we get a contradiction. Hence
Ch1=+"-=C1=¢C+ Z}:Z eP][Q](Qa + lei) — QI(Q; + Q]P]I)] = 0, that is,

(38) —eo(2) = X T1Q(Q1 + QiPY) — Qi(Q; + Q)
j=2

First, we show that Q>(Q] + Q1P]) — Q1(Q5 + Q2P)) # 0 as follows. If

Q2(Q) + Q1P)) — Q1(Q5 + Q2P;) = 0, thatis, P{ — P; = % — % By solving
this differential equation, we get Q1 = ngeP 1—P2 where ¢ is a non-zero constant.
Thus, we can get 0(Q1) = n which contradicts with ¢(Q1) < n. Therefore, we

have Q2(Q} + Q1P;) — Q1(Q5 + Q2P;) # 0. Since 0(Q;) < n(j =1,2,...,1) and
Pj(z) are polynomials of degree n, we have 0(Q;(Q} + Q1P]) — Q1(Q; + Q;P)) <
n(j=23,...,1).

Next, we assume that Z}:z ePf[Q]-(Q’l + Q1P]) — Ql(Q;- + Q]-P]()] £ 0. If
Y2 eMQj (Qf + QiPf) — Qu(Q) + Q;P))] =0, that s,

(39) —eP2[Qa(Q) + Q1 P}) — Q1(Q) + Q213)]
= Y efIQj(Q) + QiP)) — Qi (Q} + Q;P))].
=3

]

Ifé(Pz,@) = 52(9) > 0,0 € [0,27‘(). Since C] = /\j§2,0 < /\]‘, (] =3,4,.. .,L), we
have 6(P;,0) = 6;(0) > 0,(j =3,4,...,1). Set Ay = max{/\j :j=23,4,...,1}, from

1—/\0),

(39), Lemma 2.5 and the assumptions of Theorem 1.1, for any £y(0 < gy < TFho

we have
(@0 exp{(1—e0)xr"} < [eP[Qa(Q) + QuPf) — Qi(Q5 + Q2P|

<

Y eQj(Q1 + QiPY) — Qi(Qf + Q;Ff ﬂ‘
j=3
< (1—2)exp{(1+¢eg)Aodor"}.

Since 9 > 0,0 > 0and 0 < g9 < %, we can get a contradiction.

If (P, 0) = 62(0) < 0,8 € [0,271), similar to the above argument, we can also
get a contradiction.

From (38), Q2(Q] + Q1P)) — Q1(Q5 + Q2P)) # 0 and (T(Q]'(Qi + Q1P)) —
Ql(Q} + QjP].’)) <n(j=2,3,...,1),by (34) and Lemma 2.5, we get
(41) (1—e)T(r,e2) +0(r%) < O(r*), r— co.

From (41), we have o(e2) < max{& &} < n, we get a contradiction. Hence
A(f) > n.
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