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Abstract

After a quick review of the most used numerical indicators for evaluating
research, we present an integrated model for ranking scientific publications
together with authors and journals. Our model relies on certain adjacentcy
matrices obtained from the relationship between papers, authors, and jour-
nals. These matrices are first normalized to obtain stochastic matrices and
then are combined together using appropriate weights to form a suitable
irreducible stochastic matrix whose dominant eigenvector provides the de-
sired ranking. Our main contribution is a in-depth analysis of various strate-
gies for choosing the weights, showing their probabilistic interpretation and
showing how they affect the outcome of the ranking process. We also prove
that, by solving an inverse eigenvector problem, we can determine a weight-
ing strategy in which the relative importance of papers, authors, and journals
is chosen by the final user of the ranking algorithm. The impact of the differ-
ent weighting strategies is analyzed also by means of extensive experiments
on large synthetic datasets.

1 Introduction

Evaluation of scientific research has always been a very important problem. Re-
cently, the number of scientific journals and papers has increased at an almost
exponential rate [23] making the task of using and evaluating scientific litera-
ture much harder than in the past. For example, researchers now rely on search
engines such as Google Scholar to choose what to read or what to cite. This
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problem doesn’t affect only researchers but also funding agencies, university ad-
ministrators, and reviewers called to evaluate productivity of researchers and
institutions. Most of the times it is impossible to give an in-depth evaluation of
the research performed by a scholar or institution, and it is becoming common to
use indirect indicators of quality.

Among such indicators, the most popular are currently those based on cita-
tion analysis. In addition to the obvious over-simplification introduced by using
just a few numbers to quantify the scientific merit, citation analysis has other
weaknesses. For example, it is based on the assumption that a citation is a sort
of trusting vote; this is not always the case since an author can cite a paper to
criticize its content. In addition, since authors know the mechanism of citation
analysis papers sometimes contain unnecessary self-citations. Another criticism
to the use of citations as the “corner stone” to asses quality of research is that
many items contained in the reference list of a paper are papers written by peo-
ple in the entourage of the authors.

On the other hand, as soon as a paper is discovered to contain errors usu-
ally it does not receive further citations. In addition, many studies [2, 15, 14]
show that self-citations do not inflate citation rates as one could expect since they
rapidly lose their weight as time elapses, aging much faster than citation coming
from other sources. Finally, one can argue that a thorough peer review process of
the published papers should guarantee the appropriateness of the reference list.
Summing up, citation analysis is usually recognized as a credible and convinc-
ing approach, especially for a quick, simple and objective evaluation of a large
amount of data when peer review in not practicable.

In the literature one can find many different metrics for evaluating papers,
journals, or researchers. The reason is that there are many possible different pur-
poses for ranking. For instance, the ranking of journals is interesting for librarians
to decide subscriptions and for authors to decide where to publish. The ranking
of papers is becoming useful for untangling the maze of papers published every-
day, and decide what to read or what to cite. Likewise, it is becoming common
to evaluate of scholars on the basis of their scientific productivity for distributing
funds, or even for hiring people.

Among the different methods proposed in the literature for ranking scientific
research we can distinguish between methods based on citation statistics — such
as Impact Factor (IF) (see [12] and references therein for an historical review),
simple Citation Count, the MCQ by the American Mathematical Society [3] —
and methods based on approaches similar to Google PageRank, such as Eigen-
factor [4], SCImago [22] and others [21, 20].

Metrics based on citation statistics are easy to compute but not all the scien-
tific community agrees on the effectiveness of these metrics to capture concepts
such as reputation or influence. In particular, two major objections against the
use of such measures are that the same journal may publish papers with very dif-
ferent citation rates, and that the “culture” of citations depends on the scientific
areas [1]. For examples, in fields such as mathematics or economics, the process
of citation gathering is much slower that in fields such as cell biology, and it can
take decades before the process stabilizes [23]. This reflects on the fact that the av-
erage length of the reference list significantly varies among different disciplines.
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For the ranking of individual papers the use of citation-based statistics is even
more questionable. Assessing the quality of a single paper on the basis of the
prestige of the journal where it is published is certainly a crude approximation
since it amounts to ascribing the properties of a journal to all the individual ar-
ticles it contains. Similarly, the approach of evaluating the quality of a paper
counting the citations received is not fair with respect to relatively recent papers.
Recently, citation-based statistics have been used also for the ranking of individ-
ual researchers. Indexes such as the h-index [16], g-index [9], m-index [16] are
based on the citations received by most cited papers of a given author. These in-
dexes are relatively easy to compute, but again they don’t measure the impact of
an author on the scientific community. In fact, scientists with a short career are at
an inherent disadvantage, regardless of the importance of their discoveries.

Metrics based on PageRank-like techniques seem more appealing since the ef-
fectiveness of PageRank for ranking web pages is proved by everyday use, and
citations in paper have a similar role than links in web pages. The main idea is
that not all the citations are equal and that, rather than the number, one should
consider the “quality” of citations. These metrics have nice mathematical proper-
ties: for example in [20] it is shown that a centrality measure similar to PageRank
is the only ranking satisfying a number of axiomatic requirements.

In [5, 6] we propose an integrated three-class model for the ranking of papers,
authors, and journals loosely inspired by the PageRank algorithm. In our model
papers, authors, and journals represent three distinct classes that mutually con-
tribute to the attribution of a ranking score to each element of each class. The
idea is that to evaluate an author we consider not only the quality of the journals
where his/her papers have been published, but also the quality of every single
paper he/she authored. In addition, we take into account also the “quality” of
the co-authors. In fact, an important author who writes a joint paper with a less
important one, expresses a sort of trusting vote by conferring to that author more
visibility in the scientific community. Similarly, to evaluate the quality of a paper
we consider the quality of the journal where the paper is published, the citations
received, and at the reputation of its authors. Also, when evaluating a journal we
take into account not only the cross-citations among journals — as done by many
methods such as Impact Factor [11], Eigenfactor [4], and others [7, 20] — but also
the quality of every single paper published there, and the authoritativeness of the
authors who published on that journal.

In this paper we describe a probabilistic interpretation of our model and con-
sider the problem of choosing the weighting parameters of the model. The weight-
ing parameters allow one to tune the relative importance of the three classes.
Hence, different weighting strategies can be used according to the intended use
of the ranking algorithm. The role of the weighting parameters is also investi-
gated by means of experiments on syntetic data. Finally, we compare the ranking
provided by our method with those returned by Impact Factor.
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Figure 2.1: A graph where we have different nodes for each category. We have
three papers, two authors and two journals.

2 The basic model

Assume we are given nP papers together with their bibliographic data. More
precisely, of each paper we know the authors, the journal where the paper is pub-
lished, and the list of citations contained in the paper. With this information we
construct a graph with three different kind of nodes (see Figure 2.1). We associate
with this graph three matrices, one for every kind of nodes: the matrix F which
records which journal has published each paper, the matrix K which stores infor-
mation about authorship, and the matrix H which records the citation structure
among papers. In particular, let nJ be the total number of distinct journals where
the nP papers are published, and let nA denote the number of distinct authors
who authored the nP papers. We define F = ( fi,j) as the nJ × nP binary matrix
such that

fi,j =

{
1 if paper j is published in journal i
0 otherwise,

K = (ki,j) as the nA × nP binary matrix such that

ki,j =

{
1 if author i has written paper j
0 otherwise,

and H = (hi,j) as the nP × nP matrix such that

hi,j =

{
1 if paper i has paper j in its reference list
0 otherwise.
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In the example of Figure 2.1 we have

F =

[
1 0 0
0 1 1

]
K =

[
1 1 0
1 0 1

]
H =




0 0 1
1 0 1
0 1 0



 .

We can combine these three matrices to obtain the following 3 × 3 block matrix

A =




FHFT FKT F
KFT KKT K
FT KT H



 (1)

of size N = nJ + nA + nP. For the example in Figure 2.1 it is

A =





0 1 1 1 1 0 0
1 2 1 1 0 1 1
1 1 2 1 1 1 0
1 1 1 2 1 0 1
1 0 1 1 0 0 1
0 1 1 0 1 0 1
0 1 0 1 0 1 0





.

Each block of this matrix expresses the relationship between the subjects be-
longing to the three classes of Journals, Authors and Papers. More precisely, the
entry (i, j) of the block FHFT contains the number of citations that the papers
published in journal i received from the papers published in journal j; the entry
(i, j) of the block FKT contains the number of papers that author j has published
in journal i; the entry (i, j) of the block KKT contains the number of papers co-
authored by authors i and j.

We can scale the rows of A to obtain a row-stochastic matrix P, that is Pe = e,
where e = (1, . . . , 1)T. Then, we compute the ranking score of the subjects as the
left eigenvector corresponding to the eigenvalue 1,

π
T = π

TP.

More precisely, numbering the subjects from 1 to N, the rank value (or impor-
tance) πj of subject j is the weighted sum of the importances πi of all the other
subjects i which are in relation with j, where the weights are pi,j, that is

πj =
N

∑
i=1

πi pij.

The row stochasticity of P implies that the overall amount of importance that a
subject i transfers to the other subjects coincides with the importance of i. In other
words, the amount of importance in the system is neither created nor destroyed.

To guarantee the existence and uniqueness of a solution we need A to be ir-
reducible. Under this condition, it is always possible to find a scaling technique
such that the matrix P can be constructed. The Perron Frobenius theorem [17]
guarantees the existence of a unique vector π, such that πi > 0 and ∑i πi = 1.
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We refer to π as the Perron vector of P. Moreover, in order to have nice conver-
gence properties of iterative algorithms for the computation of π we need A to
be aperiodic.

Note that working with the stochastic matrix P rather than computing the
dominant eigenvector of A has advantages also from a numerical point of view.
In fact, the approximation of the dominant eigenvector is done using an iterative
procedure, and working with a stochastic matrix guarantees that we don’t need
to perform a normalization at each step to limit the growth of the entries of the
intermediate vectors.

There are many ways to enforce the irreducibility of A; we use a technique
inspired by the Google PageRank model [8] but which is different from a mathe-
matical point of view. Similarly to what we have done for the one-class model [5],
we obtain an irreducible and aperiodic matrix introducing a dummy paper, a
dummy author, and a dummy journal. We assume that the dummy paper is cited
by every paper and cites back all the papers except itself. We also assume that the
dummy paper is written by the dummy author and is published in the dummy

journal. Mathematically, this corresponds to consider the matrices Ĥ, K̂ and F̂
obtained from H, K and F as follows,

Ĥ =

[
H e

e
T 0

]
, K̂ =

[
K 0

0
T 1

]
, F̂ =

[
F 0

0
T 1

]
,

and to replace H, K and F in (1) with Ĥ, K̂ and F̂, respectively. It is easy to prove
the following theorem [6].

Theorem 1. The matrix Â obtained by replacing the blocks H, K and F in (1) with the

blocks Ĥ, K̂, and F̂, respectively, is irreducible and aperiodic.

2.1 Row and column scaling

In the previous section we pointed out the importance of scaling the rows of A to
obtain a row-stochastic matrix. The simplest strategy is dividing each row of A
by the sum of the entries in the row. A more flexible strategy, introduced in [5, 6],
consists in performing a separate normalization of each block of A. That is, each
block of A is normalized to yield nine row-stochastic matrices; then these matri-
ces are compounded with weights Γ = (γi,j)i,j=1,2,3, where Γ is row stochastic,
into a new stochastic matrix. The entries of Γ can be used to weight the amount
of importance that each class (Journal, Authors, and Papers) transfers to the other
classes. An in-depth discussion about the different possible normalization strate-
gies of the single blocks is presented in [6] where a proposal for the normalization
of each block is discussed. In this paper we use the same normalizing techniques
presented and motivated in [6].

Denote by

Q =




JJ JA JP

AJ AA AP

PJ PA PP



 , (2)
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Figure 2.2: A two-level graph, representing the matrix P. Tick solid lines rep-
resent direct arcs between the three different classes and are labeled with the
weights expressed by γ. Following the dashed arcs we can recover informations
about the authors of a given paper and the journal where the paper has been pub-
lished. Thin solid directed arcs between subjects in the same class represent the
link described by the diagonal blocks of Q.

the matrix obtained from the corresponding block in the matrix Â of Theorem 1.
Each block is row-stochastic, and for example JJ is the stochastic matrix obtained

by the row-normalization of F̂ĤF̂T.
The notation used in (2) shows the role of each block with respect to the classes

Journals, Authors and Papers. For instance, the entries of the block JA weight the
amount of importance that Journals transfer to Authors.

Let Γ = (γi,j) be a 3 × 3 row-stochastic matrix, then the matrix

P =




γ1,1 JJ γ1,2 JA γ1,3 JP

γ2,1 AJ γ2,2 AA γ2,3 AP

γ3,1 PJ γ3,2 PA γ3,3 PP



 (3)

is row-stochastic and its entries pi,j ≥ 0 express the amount of importance that
subject i transfers to subject j. The parameters γi,j can be used to tune the role
that each class has with respect to the other classes. For instance, choosing γ3,3

greater than γ2,3 and γ1,3 means that the importance of papers comes more from
the citations they receive rather than from the importance of their authors or of
the journals where they are published. Figure 2.2 shows a representation of the
graph associated to the matrix P.
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3 Probabilistic interpretation and choice of weights

Similarly to what was done for the PageRank model, we can give a probabilistic
interpretation of our model in terms of a “random reader” or “random evalua-
tor”. According to this interpretation, the dummy journal represents the library,
the dummy author is the librarian, and the dummy paper is the catalog of the
library. Note that we should expect the rank of the dummy subjects to be higher
than that of the subjects belonging to the same class, since the random reader
consults more frequently the library or the catalog than a single paper or journal.

The random reader after entering the library and asking for the catalog, picks
a paper P and then she performs one of the following three actions. She keeps
reading papers choosing among the ones in the reference list of P , or she jumps to
one of the coauthors of P , or she looks at the journal where P is published. Each
of these actions happens with probability γ3,i, i = 1, 2, 3. While examining an
author A the random reader with probability γ2,2 chooses one of the coauthors,
with probability γ2,1 she browses the journals where A has published or with
probability γ2,3, she starts reading one of the papers written by A. While examin-
ing a journal J , the reader can move to another journal cited by papers in J , can
pick a paper published in J or can start examining an author who has published
papers in journal J . The random reader jumps from a class to another with a
probability described by the 3 × 3 Markov chain Γ. The probability of picking in
a particular class is, on the other hand, ruled by the underlining Markov chain
described by the nine stochastic matrices JJ , JA, JP, Aj, AA, AP, PJ , PA and PP.

The choice of modeling the problem with stochastic matrices combining them
with the weights γij allows one to tune how much of the importance of a class we
want to transfer to another class. Define

µJ =
nJ

∑
i=1

πi, µA =
nJ+nA

∑
i=nJ+1

πi, µP =
nJ+nA+nP

∑
i=nJ+nA+1

πi, (4)

It turns out that the vector (µJ , µA, µP) is the left Perron eigenvector of Γ cor-
responding to the eigenvalue 1. In fact, the following Theorem holds [19].

Theorem 2 (Coupling Theorem). Let P be an n × n irreducible stochastic matrix par-
titioned as

P =




P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3



 ,

with square diagonal blocks. Then the stationary distribution vector for P is given by

πT = (ξ1s
T
1 , ξ2s

T
2 , ξ3s

T
3 )

where si is the unique stationary distribution vector for the stochastic Schur complement
Sii. The vector

ξT = (ξ1, ξ2, ξ3)

is the unique stationary distribution vector for the 3 × 3 irreducible stochastic matrix C
whose entries are defined by

cij = s
T
i Pije. (5)
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The matrix C is called the coupling matrix and the scalars ξi are called the coupling
factors.

The Coupling Theorem applied to matrix P of equation (3), can be used to
show that Γ is the coupling matrix. In fact, since the nine matrices JJ , JA, JP, . . . are
stochastic, from (5) we get

cij = s
T
i Pije

= γijs
T
i e = γij

where the last equality holds because si are distribution vectors and s
T
i e = 1.

Moreover, the scalars µJ , µA, µP, introduced in (4), are proportional to the cou-

pling factors since ξ1 = ‖ξ1s1‖1 = ∑
nJ

i=1 πi = µJ and similarly for µA and µP. This

means that the vector (µJ , µA, µP)T is the Perron eigenvector of the 3 × 3 matrix
Γ, or equivalently, it corresponds the unique stationary distribution vector of the
coupling matrix Γ.

In [6] it was suggested to use uniform weights, which corresponds to having
Γ = 1/3ee

T. The dominant (left) eigenvector of Γ, or equivalently the stationary
distribution of the coupling matrix, is the vector 1/3 e. With this choice each class
has the same role in determining the importance of each subject since µJ = µA =
µP = 1/3. This also implies that the mean value of a journal is 1/(3 nJ), and
the mean value of an author and a paper are respectively 1/(3 nA) and 1/(3 nP).
However, in practical situations the number of journals, authors, and papers dif-
fer in order of magnitude. Typical values [3] are nJ ≈ 103, nA ≈ 105, nP =≈ 106,
making the mean value of a journal two or three orders of magnitude larger that
the mean values of authors and papers. This means that journals play a bigger
role in the determination of the ranking of the other subjects, while papers and
authors have a smaller role. Of course, citations are still important because they
influence the rank of journals in block JJ .

To correct this situation, we can think to a different weighting criteria. We ask
the following question: Which is the best weighting strategy if we want the av-
erage paper to hold as much as the average journal or author? Since the average
value of each class is µi/ni , with i ∈ {J, A, P}, the solution to this problem relies
on solving an inverse problem, where the Perron eigenvector is
(nJ/N, nA/N, nP/N)T with N = nJ + nA + nP, and we are seeking a stochas-
tic 3 matrix Γ. By direct substitution we see that a solution is given by

Γ =
1

N




nJ nA nP

nJ nA nP

nJ nA nP



 . (6)

In Section 4 we present experimental results to evaluate the differences between
these weighting strategies.

In view of the above considerations, we see that working with a symmet-
ric stochastic Γ will always produce an unbalanced average importance for each
class. In fact, if

Γ =




1 − a − b a b

a 1 − a − c c
b c 1 − b − c



 , a, b, c ∈ [0, 1], (7)
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then we obtain a Perron vector equal to 1/3(1, 1, 1)T and the average value of
each class will be the same as in the uniform model. Of course, the actual value
of each subject will change even if the average value remains the same for each
choice of the parameters in (7). Note moreover, that for small values of the pa-
rameters, we obtain a diagonally dominant matrix. Hence, the rank of each class
will depend mostly on the values within the class but the problem will become
close to reducibility and therefore numerically unstable.

Summing up, in our model we can influence the average outcome values for
each class with an appropriate choice of the weights. This requires solving an
inverse eigenvector problem and looking for a 3 × 3 stochastic matrix Γ, with the
prescribed eigenvector corresponding to the eigenvalue 1. As an example, sup-
pose we want to force our method to rely more on citations rather than on author-
ship or importance of journals. More in general, we ask which is a possible choice
of Γ such that the average importance of a paper is k times that of a journal, and
that of an author is h times that of a journal. To answer these questions we need
to find a stochastic matrix Γ with Perron vector equal to (nJ /C, hnA/C, knP/C)
where C = nj + hnA + knP. One possible Γ is

Γ =
1

C




nJ h nA k nP

nJ h nA k nP

nJ h nA k nP



 . (8)

Note that in the probabilistic interpretation of the model presented at the be-
ginning of this section, the value γij represents the probability of jumping from
class i to class j, for i, j ∈ {J, A, P}. Hence, choosing Γ as in (8), with k > h > 1,
means that the random evaluator will spend more time reading papers than ex-
amining authors or journals.

We point out that, although it is possible to know in advance the average value
of a particular class by looking at the matrix Γ, we cannot predict or influence the
outcome of the algorithm. In fact, the rank value of each subject is influenced by
too many factors, and in particular by the citation structure, authorship and the
importance of journals.

4 Numerical experiments

In [5, 6] the results of several tests on real and synthetic data using an uniform
weight matrix are reported. The experiments reported in this section address two
related questions. The first one is associated with the validation of the model on
reliable data. In fact, as stressed in [6], real dataset are either not publicly available
and usable, or so incomplete that the characteristics of the bibliographic items
do not correspond to those recognized in real cases. In this respect, a generative
model for building up synthetic matrices describing the subjects journals, authors
and papers is proposed. The synthetic data produced agree with the properties
observed on real datasets, allowing us to test the algorithm on a larger set of data,
where we can evaluate the robustness of our ideas on special critical situations.
For example, we plan to use synthetic data to discover malicious situation where
a set of papers cites each other to increase their citations count.
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The second question addressed in this section is the dependence of the rank
on the choice of the weight matrix Γ as discussed in Section 3.

Since most of the tests have been performed on synthetic data, let us first dis-
cuss the generative model. The problem consists of generating the three matrices
H, K and F when the parameters of the problems, that is the number of papers nP,
the number of authors nA and the number of journals nJ variates. These param-
eters are strictly related one to the other by a proportionality dependence. For
example, when the number of papers increases, one should expect an increase
also of nA and nJ . The factors of proportionality between nP, nA and nJ respect
those observed in large bibliographic collections such as Mathematical Review [3]
or ISI Web of Science [10].

The matrix H is a nP × nP boolean matrix where Hi,j = 1 if paper i contains
j in its reference list. To make the model more realistic we assume that, for each
paper i, we know the publication year y(i) as well as the incoming I(i) and out-
going citations O(i). The matrix H has to satisfy some basic requirements as well
as some statistical properties observed on real data. In particular, the matrix H
needs to satisfy the following requirements.

• A paper i can cite a paper j only if y(i) ≥ y(j), that means that i can cite
only already published papers at the time i was issued.

• The distribution of the outgoing citations O(i) follows a normal distribution
with mean 15 and variance 3. The choice of these parameters was based
on the study of the distribution of the references of a large portion of the
Mathematical Review database.

• As it has been observed in the literature (see for example [23] and the ref-
erences therein) incoming citations I(i) follow a Zipf law. In fact, a few
papers receive many citations while the majority are cited seldom.

The publication year is chosen randomly in a preset interval, so that the papers
are distributed uniformly over the years. To implement the Zipf distribution we
used a method proposed in [23]. We assign to each paper a “quality index” Q(i)
which follows a normal distribution, Q(i) ∈ N(µ, σ). The index of quality drives
the citation process, so that the number of citation c(i) that a paper i is going

to receive is such that c(i) ≤ ⌊10Q(i) − γ⌋, where γ is a minimum standard of
quality a paper needs for assuming it will receive at least a citation. For our
experiments the values of µ = 1 and σ = 0.4 have been chosen on the ground of
the experimental results presented in [23]. It is possible to show that, in this way,
the incoming citations follow a Zipf law.

The informations about the incoming and outgoing citations extracted from a
randomly generated H with nP = 106 are depicted in Figures 4.1. In particular,
Figure 4.1 (a) represents an histogram in a log-log scale of papers versus citations.
We see that there are many papers receiving few citations, while less than 10 pa-
pers receive hundreds of citations. In Figure 4.1(b) we see the distribution of the
outgoing citations O(i) with a shape resembling a normal distribution (gaussian)
with mean 15.
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Figure 4.1: Figure (a) represents s log-log scale histogram showing the distribu-
tion of papers versus citations. There are few papers with many citations, while
the big majority receives less than 5 citations each. In Figure (b) the histogram
showing the distribution of references on papers.

Matrix K stores information about authorship. K is a boolean matrix nA ×
nP and K(a, p) = 1 iff a is an author of paper p. From the analysis of real
datasets [3, 13] we can see that an author has in general peaks where (s)he is
more productive and periods in his (her) career where (s)he writes a minor num-
ber of papers. This leads to a model where the distribution of the publications
of each author follows a normal distribution over the time with a normal stan-
dard deviation which is a proper characteristic of an author. The distribution of
papers for each author follows a Zipf law, in fact we can hypothesize that a few
authors publish a larger amount of papers, while the majority publish a restricted
number of papers [18]. To enforce into the model the presence of coauthors, we
have to assume that the sum of papers written by all the authors is greater than
the number of distinct articles published. This guarantees that at the time of the
matching between authors and papers, we can assign the same paper to more
than one author.

Matrix F keeps track of the journal where a paper is published. Of course,
this boolean matrix has only an entry equal to one for each column, since each
paper cannot be published twice. The construction of F is done assigning uni-
formly papers to journals and forcing each journal to publish at least a paper.
The histogram showing the resulting distribution is visualized in Figure 4.2.

We used the above generative algorithms to produce a dataset with one mil-
lion of papers, half a million of authors and 5,000 journals, which respects the
proportion of the cardinality of the classes in real databases [3]. We tested our
methods with different choices of the weighting matrix Γ. In particular, in the
results appearing below we denoted by G1 the uniform choice of the parameters
γ as in equation (6) and by G2, G3 and G4 the choice of the weights in accordance
with equation (8) for different choices of h and k. More precisely, for h = 1, k = 1
we have G2, for h = 5, k = 1, G3, and finally when h = 1, k = 10 we get G4. From
the discussion carried on in Section 3, choosing as weighting technique matrix G1,
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Figure 4.2: Histogram of the distribution of papers on journals. It emerges the
gaussian shape.

which corresponds to using uniform weights, the rank will depend essentially on
journals. With G2, the mean value of a generic subject is the same, independently
of the class the subject belongs to. Hence, for determining the rank of a subject,
on the average, we are gathering the same amount of importance from the citing
papers, from authors and from the journals. The choice of weighting techniques
in accordance with G3 or G4 depicts more extreme solutions, where we give more
importance to authors, and more importance to citations, respectively.

Since we are interested in the relative rank rather than on the absolute value
of the rank of subjects, the plot in this section are obtained by normalizing the
value to span from 0 to 1.

In Figure 4.3, for the four different choices of the weights Γ, the behavior of
the rank respect to the number of citations received is shown. As expected and
desired, we notice a linear dependence on the number of citations, however, this
dependence is less evident in the last three plots, where for the same value of
rank, there are papers receiving a number of citations belonging to a quite large
interval. For example, the plot corresponding to G3, where authors contribute
more to the value of papers, the linear dependence is less strong. In particular we
can identify two clusters of papers which show a different linear dependence on
the number of incoming citations. This behavior might depend on the fact that
the coauthor-ship matrix has different connected components, since there are in-
dependent sets of authors working together which don’t have strong connections
with another group of authors. With this weighting strategy, where authors have
more importance than journals or papers, the reducibility of the diagonal block
AA in (2) starts to emerge. As observed experimentally, this poses also problems
of convergence for higher values of the parameter h.

On the other hand, using G1, we see that the dependence on the citations
is much stronger, since the rank of papers depends on the rank of the journals,
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Figure 4.3: Dependence of the rank of papers from the number of citation received
for the four models.

Figure 4.4: Dependence of the rank of papers from the Journal value for the four
models.
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Figure 4.5: For the four models it is shown the dependence of the rank of authors
on the number of papers written.

and the rank of the journals is ruled by cross citations between journals. Plots in
Figure 4.4 show the dependence of the rank of papers on the rank of the journals
where they are published. Again, we see that with weights G2 and G4, it is more
evident that good papers are published in good journals while the contrary is
not true in general. In fact, in good journals also low ranking papers can appear.
When we give more importance to citations using G4, we see that it completely
disappears the situation of good ranking papers that are published in low ranking
journals. When using weight matrix G3 the rank depends more on the quality of
the authors than on citations, and then we have high ranking papers appearing
also on low ranking journals . In Figure 4.5 it is shown the dependence of the
rank of authors from the number of papers written. The relationship between
authors and number of papers is similar to the one between rank of papers and
number of citations depicted in Figure 4.3. Again, using as weighting strategy G2
or G4, we get more interesting results. We still observe that authors publishing
more papers have more chances to become important. However, the importance
of an author cannot be determined by a mere counting the number of papers
published, but also the quality of the papers and of the journal where the papers
are published contribute to the final ranking score. Note that using G3, we have
a clear linear dependence. It is reasonable, in fact that giving more importance to
the class “Authors” we have that single authors can be compared on the basis of
the number of papers written.

The rank of a journal does not depend on the number of papers it publishes,
since this was especially requested (see [6]) when designing the normalization
techniques of the block (1,1) in matrix A (1). The dependency on the number of
citations received is linear but the plot is a sort of cloud. In this case we don’t
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Figure 4.6: For the four models it is shown the dependence of the rank of journals
on the mean value of the papers published therein.
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Figure 4.7: For the four models it is shown the dependence of the rank of journals
on the sum of the values of the authors publishing therein.
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Figure 4.8: For the four models it is shown that there is not a relation between
The rank of journals obtained using our method and that provided by applying
the two-year Impact Factor algorithm.

have much differences among the four models.

It is interesting to comment on Figure 4.6 where the dependence on the mean
value of the papers published on the journals is shown. We see that when us-
ing G1 and G4, we have a linear dependence, that is, the rank of a journal is
related to the value of the average paper published therein. This is expected in
the model using G4, since with this weighting method we are giving 10 times
more importance to papers. For models based on G2 and G3, the results show
that the influence of the quality of the average paper on the quality of papers is
minimal. In models G2 and G3, the ranking of journals is however dominated by
the sum of the importances of the authors publishing in those journals as can be
observed in Figure 4.7. In the author-centedred model G3 we have a very neat
linear dependence.

Finally, in Figure 4.8 the journal rank is plotted against the Impact Factor over
a two-year period showing that independently from the weighting strategy used,
the results returned by our method are profoundly different.

A more complete set of plots of the models is available at the companion web
site http://www.di.unipi.it/~romani/JAP4/JAP.html.

For completeness we tested also the bibliographic items in the CiteSeer dataset,
which can be freely downloaded from the CiteSeer web site [13] and is composed
mainly of technical reports collected from the net. Since this collection doesn’t
contain full issues of the journals, but especially unpublished reports, most of the
time the information about the journal where the paper is published is missing.
As reported in [6], starting from a collection of 800,000 papers, after cleaning the
database, and crossing it with a BIBTEXfile to recover the information about the
journal, we obtain a set of about 37,000 papers, 41,000 authors and 2829 jour-
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nals. But, among the 2829 journals, more than a half (exactly 1636), appear with
just one paper in the database. Because of the extreme sparsity of the journal-
paper matrix F, this database doesn’t represent a good dataset. However, for
completeness, at the address http://www.di.unipi.it/~romani/JAP4/JAP.html
the statistical behavior of our algorithm for the different choices for the weight
matrix is shown. The results obtained for the categories Authors and Papers show
similarity to those obtained with the synthetic data.

From the analysis performed, it is clear that the choice of a weight matrix
rather than another, should be ruled by the particular problem one is addressing.
For example, if one is interested in ranking papers on the basis of citations, model
G4 is the more adequate. On the other hand, it can be interesting to value more
coauthor-ship, because for example, we want to form a research team and we are
looking for researchers with the ability of working in a team. In this case, we
can use as weighting matrix something similar to G3, eventually lowering the
value of h to give more importance to to journals and papers. Model G2 keeps
balanced the average influence of the various classes, while with the uniform
weight distribution G1 we provide a ranking dominated by the importance of
journals.

To better understand the different choices of parameters also from a numer-
ical viewpoint, we perform experimentally a sensitivity analysis. In particular,
denote by π̄Γ = (π̄j; π̄A, π̄P)T the Perron vector of matrix P using as weight ma-
trix Γ. Let S be the sorting operator, which applied to a vector, returns the vector
sorted in a non-increasing order. To compute an approximation of the stationary
distribution of P, we use the power method combined with a stopping criterion

on the infinity norm of the difference between two successive iterations. Let π
(∗)
Γ

be the vector obtained at convergence of our method with a stopping criterion

of 10−15, and let rΓ = (r J ; rA; rP)T = (S(π
(∗)
J );S(π

(∗)
A );S(π

(∗)
P ))T the rank vector

sorted. Denote by PJ ,PA and PP the permutation induced by the reordering, that

is π
(∗)
J (PJ) = r J and similarly for the class of authors and papers. Since we are

interested in the rank position rather than in the numerical value of the subjects,
we analyzed experimentally, for the four models, the sensitivity to the stopping
criterion. Our analysis shares the same flavor of a rigorous and theoretical anal-
ysis for the Google PageRank model where a proposal of an alternative stopping

condition is carried on [24]. Let π
(i)
Γ be the approximation of π̄Γ obtained after

the i−th step of the power method, and let r
(i)
Γ

the vector reordered in accordance
with the permutations PJ ,PA and PP. In Figure 4.9 the behavior of the method
separately on the three classes is depicted for the different choices of the weight
matrix Γ. In particular, at each iteration is computed the number of mismatches

for each class, that is, the percentage of entries of r
(i)
Γ which are not sorted in a

non-increasing order. On the x-axis is reported the number of iterations and on
the y-axis the percentages of mismatches, for example, a value of S = 0.3 at iter-
ation i denotes that 30% of the entries are placed in the wrong position in vector

π
(i)
Γ . From the four plots, we see that using G1 we get a faster convergence than

with the other models and that the class “journal” converges always faster than
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Figure 4.9: For the four models, and for each class the number of mismatches for
iteration is plotted. From left to right it is represented the convergence behavior
for the class journals, authors and papers.

the other classes. Moreover, using G3, we see that only when we have achieved
convergence on journals we start converging also on the other entries of the it-
eration vector, while using G4 the convergence is almost simultaneous on the
three classes. In Figure 4.10 the negative logarithm of the error at each step is

plotted, where the error represents the distance of iterate i-th from π
(∗)
Γ in the

infinity norm. We see that all the methods have a linear convergence, and the
method obtained using G1 as weight matrix, achieves a better convergence. The
difference in the slope of the curves depends on the closeness to 1 of the second
dominant eigenvalue of the iteration matrix. As expected, the method based on
G3 has a slower convergence, in fact with that choice of Γ, more importance is
given to authors, and the co-authorship matrix is highly reducible. We notice
that, although we used a stopping criterion with a tolerance of 10−15, we get a
precision of around 12 significant digits in the computed approximation.

5 Conclusions

In this paper we have analyzed the performance of a method for evaluating sci-
entific literature [5, 6] on a large synthetic dataset. In particular, we performed an
experimental comparison of the dependence of the ranking provided with differ-
ent choices of the nine weighting parameters presented in the model. We showed
that the model analyzed in [5, 6] is tunable and that versatile weighting strategies
can be applied to meet the different needs of different users. In the final part of
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Figure 4.10: Convergence behavior of the four models. On the y-axis the negative
logarithm of the error expressed as the distance from the computed solution in
the infinity norm.

the paper, a sensitivity analysis is performed.
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