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Abstract. The group G(A) of the invertible elements of a Banach

algebra A can be pre-ordered by a closed semigroup S. We prove a com-

parison theorem for ODEs of the form u′ = f1(t, u)u + uf2(t, u) in Banach

algebras under the assumption that S is permutation stable. Applications

to monotonicity properties of initial value problems and dynamical systems

are given.

1. Introduction. Let (A, ‖ · ‖) be a real Banach algebra with unit 1,

and let G(A) denote the open group of all invertible elements in A.

Let S ⊆ A be a closed semigroup, that is S = S, 1 ∈ S, and x, y ∈ S ⇒

xy ∈ S.

A closed semigroup S will be called permutation stable if it has the following

property for each n ∈ N: If x1, . . . , xn ∈ G(A) then

xπ(1) · · · · · xπ(n) ∈ S

either for each permutation π : {1, . . . , n} → {1, . . . , n} or for none. Note

that this property holds for each n ∈ N if it holds for n = 3, and that each

closed semigroup is permutation stable in case A is commutative.

Each closed semigroup S ⊆ A defines a pre-ordering on G(A): For x, y ∈

G(A) let

x � y if and only if x−1y ∈ S. (1)

For general closed semigroups it is possible to obtain invariance results for

equations of the type u′(t) = f(t, u(t))u(t) or u′(t) = u(t)f(t, u(t)), see for

example L. Markus [3] for invariance of matrix Lie groups.

The aim of this paper is to prove comparison results for ODEs of the form

u′(t) = f1(t, u(t))u(t) + u(t)f2(t, u(t))

in G(A), with respect to pre-orderings induced by permutation stable closed

semigroups. Equations of this type can be considered as generalized Kol-

mogorov systems, since the classical Kolmogorov systems [5] are obtained

by concentration on the case A = R
n (endowed with the coordinatewise

multiplication).
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As an introductory example which will illustrate our concepts, consider

A = Mn×n, the Banach algebra of all real n × n matrices. Here

S = {X : 0 ≤ det(X) ≤ 1}

is a permutation stable closed semigroup. Thus, if X, Y ∈ Mn×n are in-

vertible then X � Y means 0 ≤ det(X−1Y ) ≤ 1.

2. Preliminaries and Notations. In the sequel always let S ⊆ A

be a permutation stable closed semigroup.

Obviously � defined by (1) is a reflexive and transitive relation on G(A),

and

S ∩ G(A) = {x ∈ A : 1 � x}.

Since S is permutation stable x � y if and only if yx−1 ∈ S. In particular,

if x � y then y−1 � x−1, since (y−1)−1x−1 = yx−1 ∈ S.

We define

W (S) = {a ∈ A : exp(ta) ∈ S (t ≥ 0)}.

The set W (S) is a closed wedge, that is W (S) 6= ∅ (since 1 ∈ S ⇒ 0 ∈

W (S)), W (S) = W (S) (since S is closed), λW (S) ⊆ W (S) for each λ ≥ 0,

and W (S) + W (S) ⊆ W (S) (according to Trotter’s product formula).

We consider a second pre-ordering on A. We define

a / b if and only if b − a ∈ W (S).

Since W (S) is a wedge, / is a reflexive and transitive relation on A.

In our introductory example A = Mn×n, S = {X : 0 ≤ det(X) ≤ 1}, and

W (S) = {A : trace(A) ≤ 0}.

According to Wronski’s Theorem:

det(exp(tA)) = exp(t · trace (A)) (t ≥ 0).

Thus, A / B means trace(B − A) ≤ 0 in this case.

Proposition 1. Let a, b, x ∈ A. If 1 � x and 0 / a + b, then

1 � exp(ta)x exp(tb) (t ≥ 0).

Proof. Fix t ≥ 0. We set

yn =

(

exp

(

ta

n

)

exp

(

tb

n

))n

(n ∈ N).
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Each yn is invertible, and yn → exp(t(a+b)) (n → ∞) according to Trotter’s

product formula. Hence, y−1
n → exp(−t(a + b)) (n → ∞). We have

1 � x exp(t(a + b))

= x

(

exp

(

ta

n

)

exp

(

tb

n

))n

y−1
n exp(t(a + b)).

Since S is permutation stable

1 � exp(ta)x exp(tb)y−1
n

exp(t(a + b)).

For n → ∞ we obtain

1 � exp(ta)x exp(tb) exp(−t(a + b)) exp(t(a + b))

= exp(ta)x exp(tb),

since S is closed.

Next, we prove that W (S) is similarity stable.

Proposition 2. If a, b ∈ A, 0 / a+ b and x ∈ G(A), then 0 / x−1ax+ b.

Proof. Let t ≥ 0. We have

1 � exp(t(a + b))x−1x

hence,

1 � x−1 exp(t(a + b))x.

Applying Trotter’s product formula twice, as in the proof of Proposition 1,

leads to

1 � x−1 exp(ta)x exp(tb) = exp(tx−1ax) exp(tb),

and then to

1 � exp(t(x−1ax + b)).

Hence, 0 / x−1ax + b.

3. Linear Equations. Let a, b, x ∈ A, and consider the initial value

problem

u′(t) = au(t) + u(t)b, u(0) = x. (2)
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The solution of (2) is

u(t) = exp(ta)x exp(tb).

Proposition 1 says that u(t) ∈ S ∩ G(A) (t ≥ 0) if x ∈ S ∩ G(A) and

a + b ∈ W (S). This leads to the invariance condition which will be used

later.

Proposition 3. Let a, b, x ∈ A. If 0 / a + b and 1 � x, then

lim
h→0+

1

h
dist(x + h(ax + xb), S) = 0.

Proof. We have

lim
h→0

x + h(ax + xb) − u(h)

h
= 0.

By Proposition 1, u(h) ∈ S (h ≥ 0). Therefore,

1

h
dist(x + h(ax + xb), S) ≤

‖x + h(ax + xb) − u(h)‖

h
→ 0

as h → 0+.

4. An Invariance Theorem. In the sequel always let T ∈ (0,∞].

Let E be a Banach space, and let K(x, ρ) denote the open ball in E with

center x ∈ E and radius ρ > 0. Let D ⊆ E. A function g: [0, T )× D → E

is called locally Lipschitz continuous if to each (t0, x0) ∈ [0, T ) × D there

exist numbers L ≥ 0, ρ > 0, δ > 0 such that

‖g(t, y)− g(t, x)‖ ≤ L‖y − x‖

for

t ∈ [t0, t0 + δ) ∩ [0, T ), x, y ∈ K(x0, ρ) ∩ D.

The following invariance theorem is a special case of an invariance theorem

of Volkmann [7], see also the closely related invariance and existence results

of Martin [3], Chapter 6.
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Theorem 1. Let D ⊆ E be open, C ⊆ E be closed, and let g: [0, T )×

D → E be locally Lipschitz continuous such that

lim
h→0+

1

h
dist(x + hg(t, x), C) = 0 (t ∈ [0, T ), x ∈ D ∩ ∂C).

If w: [0, T1) → D, T1 ≤ T satisfies

w′(t) = g(t, w(t)) (t ∈ [0, T1)), w(0) ∈ C,

then w(t) ∈ C (t ∈ [0, T1)).

Remark. Theorem 1 is a pure invariance theorem, since g is not as-

sumed to be continuous.

5. Comparison Results. By means of Theorem 1 we prove the

following comparison theorem.

Theorem 2. Let f1, f2, f3, f4: [0, T ) × G(A) → A be locally Lipschitz

continuous. Let u0, v0 ∈ G(A) with u0 � v0 and let

u: [0, Tu) → G(A), v: [0, Tv) → G(A)

be solutions of the initial value problems

u′(t) = f1(t, u(t))u(t) + u(t)f2(t, u(t)), u(0) = u0, (3)

v′(t) = f3(t, v(t))v(t) + v(t)f4(t, v(t)), v(0) = v0,

respectively. Assume for each t ∈ [0, min{Tu, Tv}) that

f1(t, u(t)) + f2(t, u(t)) / f3(t, y) + f4(t, y) (u(t) � y), (4)

or that

f1(t, x) + f2(t, x) / f3(t, v(t)) + f4(t, v(t)) (x � v(t)). (5)

Then

u(t) � v(t) (t ∈ [0, min{Tu, Tv})).

Proof. We assume (4). Set J = [0, min{Tu, Tv}) and consider w: J →

G(A) defined by w(t) = u−1(t)v(t). We have w(0) ∈ S, and an easy

calculation shows that w is a solution of the differential equation

w′(t) = g(t, w(t)) = g1(t, w(t))w(t) + w(t)g2(t, w(t))
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with

g, g1, g2: J × G(A) → A

defined by

g1(t, x) = (u(t))−1
(

f3(t, u(t)x) − f1(t, u(t))
)

u(t) − f2(t, u(t)),

g2(t, x) = f4(t, u(t)x), g(t, x) = g1(t, x)x + xg2(t, x).

Obviously g1, g2 and therefore g are locally Lipschitz continuous. Let t ∈ J

and x ∈ S ∩ G(A). Then u(t) � u(t)x, hence, by (4)

f1(t, u(t)) + f2(t, u(t)) / f3(t, u(t)x) + f4(t, u(t)x),

that is

0 / (f3(t, u(t)x) − f1(t, u(t))) − (f2(t, u(t)) − f4(t, u(t)x)).

By Proposition 2

0 / (u(t))−1(f3(t, u(t)x) − f1(t, u(t)))u(t) − (f2(t, u(t)) − f4(t, u(t)x)),

that is 0 / g1(t, x) + g2(t, x), and by Proposition 3

lim
h→0+

1

h
dist(x + hg(t, x), S) = 0.

According to Theorem 1 w(t) ∈ S (t ∈ J), that is u(t) � v(t) (t ∈ J).

If (5) holds we consider

g, g1, g2: J × G(A) → A

defined by

g1(t, x) = (u(t))−1
(

f3(t, v(t)) − f1(t, v(t)x−1)
)

u(t) − f2(t, v(t)x−1),

g2(t, x) = f4(t, v(t)), g(t, x) = g1(t, x)x + xg2(t, x).
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Again w′(t) = g(t, w(t)) (t ∈ J), and g1, g2, g are locally Lipschitz continu-

ous since x 7→ x−1 is locally Lipschitz continuous on G(A).

Let t ∈ J and x ∈ S ∩ G(A). Now, v(t)x−1 � v(t), hence by (5)

f1(t, v(t)x−1) + f2(t, v(t)x−1) / f3(t, v(t)) + f4(t, v(t)),

that is

0 / (f3(t, v(t)) − f1(t, v(t)x−1)) − (f2(t, v(t)x−1) − f4(t, v(t))),

and with the same conclusion as above

lim
h→0+

1

h
dist(x + hg(t, x), S) = 0.

Again Theorem 1 proves u(t) � v(t) (t ∈ J).

6. Monotone Dependence on the Initial Value. We call a func-

tion f : G(A) → A monotone increasing if

x � y implies f(x) / f(y),

and f : [0, T ) × G(A) → A is called monotone increasing if x 7→ f(t, x) is

monotone increasing for each t ∈ [0, T ).

Theorem 3. Let f1, f2: [0, T ) × G(A) → A be continuous, locally

Lipschitz continuous, and let f1 + f2 be monotone increasing. For each

u0 ∈ G(A) let

u(·, u0): [0, ω+(u0)) → G(A)

denote the nonextendable solution of the initial value problem (3). If u0 �

v0, then

u(t, u0) � u(t, v0) (t ∈ [0, min{ω+(u0), ω+(v0)})).

Proof. Apply Theorem 2 with f3 := f1, f4 := f2, u(t) := u(t, u0), and

v(t) := u(t, v0).

7. Monotone Solutions of Dynamical Systems. In analogy to

the known results on monotone solutions of dynamical systems with quasi-

monotone increasing right hand side [2, 6] we have the following theorem.

Theorem 4. Let g1, g2: G(A) → A be locally Lipschitz continuous

(hence, continuous), and let g1+g2 be monotone increasing. Let u0 ∈ G(A),
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and let u : [0, ω+) → G(A) be the nonextendable solution of the dynamical

system

u′(t) = g1(u(t))u(t) + u(t)g2(u(t)), u(0) = u0.

If 0 / [ . ] g1(u0) + g2(u0), then u is monotone increasing [decreasing] with

respect to � on [0, ω+).

Proof. First, let 0 / g1(u0)+g2(u0). Let f1, f2, f3, f4: [0, ω+)×G(A) →

A be defined by f1(t, x) = 0, f2(t, x) = 0, f3(t, x) = g1(x), f4(t, x) = g2(x).

The solution of z′ = f1(t, z)z + zf2(t, z) = 0, z(0) = u0 is z(t) = u0, and

0 = f1(t, u0) + f2(t, u0) / f3(t, y) + f4(t, y) = g1(y) + g2(y)

for t ∈ [0, ω+), u0 � y, since g1 + g2 is increasing. According to Theorem 2

we obtain u0 � u(t) on [0, ω+).

Fix t0 ∈ [0, ω+(u0)). Now, v(t) := u(t + t0), t ∈ [0, ω+ − t0) solves

v′(t) = g1(v(t))v(t) + v(t)g2(v(t)), v(0) = u(t0),

and 0 / g1(u0) + g2(u0) / g1(u(t0)) + g2(u(t0)). Thus, the same argument

as above proves u(t0) � u(t) (t ∈ [t0, ω+)).

In case 0 . g1(u0)+g2(u0) we consider g3, g4: G(A) → A defined by g3(x) =

−g1(x
−1), g4(x) = −g2(x

−1). Note that g3+g4 is monotone increasing too.

Now, w : [0, ω+) → G(A) defined by w(t) = (u(t))−1 solves

w′(t) = w(t)g3(w(t)) + g4(w(t))w(t), w(0) = (u0)
−1,

and 0 / g3((u0)
−1) + g4((u0)

−1). According to the first case w is monotone

increasing, hence, u is monotone decreasing on [0, ω+).

8. Remark on Equations Defined on [0,T) ×A. Let a, b: [0, T ) →

A be continuous functions, and let x ∈ A. The initial value problem

u′(t) = a(t)u(t) + u(t)b(t), u(0) = x

is uniquely solvable on [0, T ). By standard reasoning u(t) is invertible

for each t ∈ [0, T ) if x is invertible, and in this case v: [0, T ) → G(A),

v(t) = (u(t))−1 is the solution of

v′(t) = −b(t)v(t) − v(t)a(t), u(0) = x−1.

Therefore, if f1, f2: [0, T ) × A → A are continuous and locally Lipschitz

continuous, and if

u(·, u0): [0, ω+(u0)) → A
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denotes the nonextendable solution of the initial value problem

u′(t) = f1(t, u(t))u(t) + u(t)f2(t, u(t)), u(0) = u0,

then u0 ∈ G(A) implies u(t) ∈ G(A) (t ∈ [0, ω+(u0))). In particular, if

u0 ∈ G(A), then the maximal interval of existence of the solution does not

change if the domain of definition of f1, f2 is restricted to [0, T )× G(A).

9. Examples.

1. First, we return to our introductory example A = Mn×n, S = {X : 0 ≤

det(X) ≤ 1}. We have seen that W (S) = {A : trace(A) ≤ 0}. In particular

X � Y implies | det(Y )| ≤ | det(X)|.

Let Ak, Bk, Ck ∈ Mn×n, k = 1, 2 with trace(B1 + B2) ≥ 0 and let

fk: G(Mn×n) → Mn×n be defined by

fk(X) = AkX − XAk + | det(X)|Bk + Ck (k = 1, 2).

It is easy to check that f1 + f2 is monotone increasing. According to

Theorem 3 and Theorem 4 the solution of the matrix initial value problem

U ′(t) = f1(U(t))U(t) + U(t)f2(U(t)), U(0) = U0

depends increasingly on U0 ∈ G(Mn×n), and if U0 ∈ G(Mn×n) and

f1(U0) + f2(U0) . [ / ]0, which means

trace(| det(U0)|(B1 + B2) + C1 + C2) ≤ [≥]0,

then t 7→ U(t) is monotone increasing [decreasing], thus, t 7→ | det(U(t))| is

monotone decreasing [increasing].

2. Let A = R
4 endowed with coordinatewise multiplication. We consider

the permutation stable closed semigroup

S = {x = (x1, x2, x3, x4) : xk ≥ 0 (k = 1, 2, 3, 4), x1x2 ≥ 1, x3x4 ≥ 1}.

Now, x � y implies |x1x2| ≤ |y1y2| and |x3x4| ≤ |y3y4|. We have

W (S) = {a = (a1, a2, a3, a4) : a1 + a2 ≥ 0, a3 + a4 ≥ 0}.

Let f : G(R4) → R
4 be defined by

f(x) =

(

−
1

|x3x4|
− x2

3 − 1,−
1

|x1x2|
+ x2

3 + 1, |x1x2x3x4| − x3
1 − 2, x3

1

)

.
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Again, f is monotone increasing, and f((1, 1,−1, 1)) = (−3, 1,−2, 1) / 0.

According to Theorem 4 the solution of

u′(t) = u(t)f(u(t)), u(0) = (1, 1,−1, 1)

is monotone decreasing. Thus, t 7→ |u1(t)u2(t)| and t 7→ |u3(t)u4(t)| are

monotone decreasing.

3. Let B be any unital normed Banach algebra and let S0 = {x ∈ B :

‖x‖ ≤ 1}. Then S0 is a closed semigroup but, in general, not permutation

stable. Let m+[x, y] denote the right hand side derivative of the norm at

x in direction y. It is known [1], Chapter 1, that ‖ exp(ta)‖ ≤ 1 (t ≥ 0) if

and only if m+[1, a] ≤ 0.

Let A be any commutative closed subalgebra of B containing 1, fix n ∈ N,

and let S = {x ∈ A : ‖xn‖ ≤ 1}. Now S is a permutation stable closed

semigroup, and

W (S) = {a ∈ A : m+[1, a] ≤ 0},

since ‖ exp(ta)‖ ≤ 1 (t ≥ 0) if and only if ‖ exp(nta)‖ ≤ 1 (t ≥ 0). For

example a − µ1 ∈ W (S) if µ ≥ ‖a‖.

Let c1, c2: [0, T ) → A be continuous, c1(t) ∈ W (S) (t ∈ [0, T )) and let

f : [0, T )× G(A) → A be defined by

f(t, x) = ‖x−n‖c1(t) + c2(t).

Then, f is monotone increasing. According to Theorem 3 the solution of

u′(t) = (‖(u(t))−n‖c1(t) + c2(t))u(t) u(0) = u0 ∈ G(A)

depends monotone increasingly on u0.

4. This time let B be any unital normed commutative Banach algebra and

let A = Bn×n, the Banach algebra of all n × n-matrices with entries from

B. For A ∈ A let det(A) ∈ B and trace(A) ∈ B be defined by the common

algebraic formulas. It is well-known that X ∈ A is invertible in A if and

only if det(X) is invertible in B, and that det(XY ) = det(X) det(Y ) for all

X, Y ∈ A. Since the proof of Wronski’s Theorem is purely algebraic too,

we also obtain

d

dt
det(exp(tA)) = trace(A) det(exp(tA)) (t ∈ R) (6)

for each A ∈ A. Let

S := {X ∈ A : ‖ det(X)‖ ≤ 1}.
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Since B is commutative, S is a permutation stable semigroup, and from (6)

we obtain

W (S) = {A ∈ A : m+[1, trace(A)] ≤ 0}.

Moreover X � Y implies ‖ det(Y )‖ ≤ ‖ det(X)‖, since ‖ det(X−1Y )‖ =

‖(det(X))−1 det(Y )‖.

Now, the functions and conclusions from Example 1 can be reformulated

in this setting.
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