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Abstract. The group G(A) of the invertible elements of a Banach
algebra A can be pre-ordered by a closed semigroup S. We prove a com-
parison theorem for ODEs of the form v’ = f1(¢,u)u + uf2(t,u) in Banach
algebras under the assumption that S is permutation stable. Applications
to monotonicity properties of initial value problems and dynamical systems
are given.

1. Introduction. Let (A4, | -||) be a real Banach algebra with unit 1,
and let G(A) denote the open group of all invertible elements in 4.
Let S C A be a closed semigroup, that is S =5, 1€ S, and z,y € S =
xy € 5.
A closed semigroup S will be called permutation stable if it has the following
property for each n € N: If z1,... ,x, € G(A) then

either for each permutation 7 : {1,...,n} — {1,...,n} or for none. Note
that this property holds for each n € N if it holds for n = 3, and that each
closed semigroup is permutation stable in case A is commutative.
Each closed semigroup S C A defines a pre-ordering on G(A): For z,y €
G(A) let

x <y if and only if 271y € S. (1)

For general closed semigroups it is possible to obtain invariance results for
equations of the type u'(t) = f(t,u(t))u(t) or v/ (t) = u(t)f (¢, u(t)), see for
example L. Markus [3] for invariance of matrix Lie groups.

The aim of this paper is to prove comparison results for ODEs of the form

u'(t) = fu(t, u(t))u(t) + u(t) f2(t, u(t)

in G(A), with respect to pre-orderings induced by permutation stable closed
semigroups. Equations of this type can be considered as generalized Kol-
mogorov systems, since the classical Kolmogorov systems [5] are obtained
by concentration on the case A = R™ (endowed with the coordinatewise
multiplication).



As an introductory example which will illustrate our concepts, consider
A = M™*" the Banach algebra of all real n x n matrices. Here

S={X:0<det(X) <1}

is a permutation stable closed semigroup. Thus, if X, Y € M"*" are in-
vertible then X <Y means 0 < det(X 1Y) < 1.

2. Preliminaries and Notations. In the sequel always let S C A
be a permutation stable closed semigroup.
Obviously < defined by (1) is a reflexive and transitive relation on G(A),
and
SNGA) ={zeA:1=<z}.

Since S is permutation stable 2 < ¥ if and only if yz~! € S. In particular,
if z <y then y=! < 27! since (y~ 1) la "l =yl €8S.
We define

W(S)={a€ A: exp(ta) € S (t > 0)}.

The set W(S) is a closed wedge, that is W(S) # 0 (since 1 € S = 0 €

W(S)), W(S) =W(S) (since S is closed), AW (S) C W(S) for each A > 0,
and W(S) + W(S) C W(S) (according to Trotter’s product formula).
We consider a second pre-ordering on A. We define

a < bif and only if b —a € W(S).

Since W (S) is a wedge, < is a reflexive and transitive relation on A.
In our introductory example 4 = M™*" S = {X : 0 <det(X) < 1}, and

W(S) = {A: trace(4) < 0}.
According to Wronski’s Theorem:
det(exp(tA)) = exp(t - trace (4)) (¢t >0).

Thus, A 4 B means trace(B — A) < 0 in this case.

Proposition 1. Let a,b,z € A. If 1 <z and 0 < a + b, then

1 < exp(ta)rexp(th) (t>0).

Proof. Fix t > 0. We set

= (o0 (2)on (L)) wew
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Each y,, is invertible, and y,, — exp(t(a+b)) (n — o0) according to Trotter’s
product formula. Hence, y,; ! — exp(—t(a + b)) (n — o). We have

1 < zexp(t(a+10))

— <exp <%‘L> exp (%))nygl exp(t(a + b)).

Since S is permutation stable
1 < exp(ta)z exp(th)y,, " exp(t(a + b)).

For n — oo we obtain

1 < exp(ta)z exp(th) exp(—t(a + b)) exp(t(a + b))

= exp(ta)z exp(tb),

since S is closed.

Next, we prove that W (S) is similarity stable.
Proposition 2. If a,b € A, 0<da+band z € G(A), then 0 < " tazx +b.
Proof. Let t > 0. We have

1 <exp(t(a+b))z 'z
hence,
1<z texp(t(a+ b))z

Applying Trotter’s product formula twice, as in the proof of Proposition 1,
leads to
1 < 27! exp(ta)z exp(th) = exp(tz ™ ax) exp(tb),

and then to
1 < exp(t(ztax +b)).

Hence, 0 < z~taz + b.

3. Linear Equations. Let a,b,x € A, and consider the initial value
problem

u'(t) = au(t) + u(t)b, u(0) = x. (2)
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The solution of (2) is
u(t) = exp(ta)z exp(th).
Proposition 1 says that u(t) € SNG(A) (t > 0) if z € SNG(A) and

a+b e W(S). This leads to the invariance condition which will be used
later.

Proposition 3. Let a,b,x € A. If 0 <a+b and 1 < z, then

o1
hlg&_ Edlbt(x + h(ax + 2b),S) = 0.

Proof. We have

i & + h(ax + xb) — u(h)

h—0 h =0

By Proposition 1, u(h) € S (h > 0). Therefore,

< |l + h(ax —|—hxb) —u(h)]] _

1
Edist(x + h(ax + xb), S)

as h — 0+.

4. An Invariance Theorem. In the sequel always let T' € (0, c0].
Let E be a Banach space, and let K (z, p) denote the open ball in E with
center x € E and radius p > 0. Let D C E. A function ¢:[0,T7) x D — E
is called locally Lipschitz continuous if to each (fo,xo) € [0,7) x D there
exist numbers L > 0, p > 0, § > 0 such that

lg(t,y) —g(t,x)|| < Llly — ||

for
te [t05t0+6)m[07T)7 x,yeK(xO,p)ﬂD.

The following invariance theorem is a special case of an invariance theorem
of Volkmann [7], see also the closely related invariance and existence results
of Martin [3], Chapter 6.



Theorem 1. Let D C E be open, C C E be closed, and let g: [0, T) x

D — E be locally Lipschitz continuous such that

hlir& %dist(;v + hg(t,z),C)=0 (t€]0,T), x € DNIC).

If w:[0,T1) — D, Ty < T satisfies
w'(t) = g(t,w(t)) (t€[0,T1)), w(0)eC,

then w(t) € C (¢t € [0,T1)).

Remark. Theorem 1 is a pure invariance theorem, since g is not as-

sumed to be continuous.

5. Comparison Results. By means of Theorem 1 we prove the

following comparison theorem.

Theorem 2. Let f1, fa, f3, f4:[0,T) x G(A) — A be locally Lipschitz

continuous. Let ug,vg € G(A) with ug < vy and let
u:[0,T,) — G(A), v:[0,T,) — G(A)

be solutions of the initial value problems

respectively. Assume for each ¢ € [0, min{T,,T,}) that
filt,u(®) + f2(tu(t) 2 f3(ty) + falty) (u(t) Zy),
or that
filt,z) + falt, x) 2 f3(t,0(t) + falt, v(t) (2 = 0(t).

Then
u(t) <o) (¢t €0,min{T,,T,})).

Proof. We assume (4). Set J = [0, min{T,T,}) and consider w: J —
G(A) defined by w(t) = u=t(t)v(t). We have w(0) € S, and an easy

calculation shows that w is a solution of the differential equation

w'(t) = g(t, w(t)) = g1 (t, w(t))w(t) + w(t)ga2(t, w(t))

5



with
9,91,92: I x G(A) — A

defined by

g1(t,2) = ((t) ™ (Fo(t ult)) = fa(t u(®) Jult) - fot, u(t)),
gZ(tvx) = f4(t7u(t)x)7 g(t,x) = gl(tvx)m + Ig?(tvx)'

Obviously g1, g2 and therefore g are locally Lipschitz continuous. Let ¢ € J
and z € SNG(A). Then u(t) < u(t)x, hence, by (4)

fl (ta u(t)) + f2(t7 u(t)) d fB(tv u(t)x) + f4(t7 u(t)x)a

that is

09 (fs(t, u®)r) = fi(t,u(t))) = (fo(t, u(?)) = fa(t, u(t)z)).

By Proposition 2

0 < (u(t) ™ (fs(t, ult)) — fit,u®))u(t) — (fat, ult) — falt, ult)z)),

that is 0 < ¢1 (¢, x) + g2(¢, ), and by Proposition 3
lim ~dist(z + hg(t, z), S) = 0
Jim +dist(z + hg(t, ), 5) = 0.

According to Theorem 1 w(t) € S (¢t € J), that is u(t) < v(t) (t € J).
If (5) holds we consider

9,91,92: J Xx G(A) — A
defined by
g1(t,2) = (w(®) " (Fa(tv(1) = fit, w2 ™) Jult) = folt,v(B)r ™),

g2(t7 JI) = f4(tv U(t))’ g(t’ JZ) = gl(tv JE)JI + xg2 (tv JI)



Again w'(t) = g(t,w(t)) (t € J), and g1, g2, g are locally Lipschitz continu-
ous since x +— o1 is locally Lipschitz continuous on G(A).
Let t € J and x € SN G(A). Now, v(t)z~! < v(t), hence by (5)

flto®a™) + fa(t, o)) @ fa(t,v()) + falt,v(?)),

that is

0 g (f3(t,0(t)) = filt,v()a™") = (fa(t,0(t)2™") = fult, v (1)),

and with the same conclusion as above

.1
hlir&_ Edlst(;v + hyg(t,z),S) =0.

Again Theorem 1 proves u(t) < v(t) (t € J).

6. Monotone Dependence on the Initial Value. We call a func-
tion f: G(A) — A monotone increasing if

x =y implies f(z) <@ f(y),

and f:[0,T) x G(A) — A is called monotone increasing if x — f(¢,z) is
monotone increasing for each ¢t € [0,T).

Theorem 3. Let f1, f2:[0,7) x G(A) — A be continuous, locally
Lipschitz continuous, and let f; + fo be monotone increasing. For each
up € G(A) let

(- u0): [0, wy (uo)) — G(A)

denote the nonextendable solution of the initial value problem (3). If ug <
Vg, then

u(t,ug) 2 u(t,vo) (¢ € [0, min{wy (ug),w+(vo)}))-

Proof. Apply Theorem 2 with f5:= f1, fi:= fo, u(t) := u(t, up), and
v(t) = u(t, vo).

7. Monotone Solutions of Dynamical Systems. In analogy to
the known results on monotone solutions of dynamical systems with quasi-
monotone increasing right hand side [2, 6] we have the following theorem.

Theorem 4. Let g1,92: G(A) — A be locally Lipschitz continuous
(hence, continuous), and let g1 +¢2 be monotone increasing. Let ug € G(.A),
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and let u : [0,ws) — G(A) be the nonextendable solution of the dynamical
system
u'(t) = gr(u(t)u(t) + u(t)gz(u(t), u(0) = uo.

If 0 <[ >] g1(uo) + g2(up), then u is monotone increasing [decreasing] with
respect to < on [0, wy).

Proof. First, let 0 < g1(uo)+g2(uo). Let f1, fa, f3, f4:[0,wy) x G(A) —
A be defined by fi(t,2) =0, f2(t,2) =0, f3(t, ) = g1(x), fu(t,z) = g2(x).
The solution of 2’ = fi(t, 2)z + zfa(t,2) = 0, 2(0) = ug is z(t) = ug, and

0= fi(t,uo) + fa(t,uo) < f3(t,y) + fa(t,y) = 91(y) + 92(y)

for t € [0,wy), up =X y, since g1 + g2 is increasing. According to Theorem 2
we obtain ug < u(t) on [0, w4 ).
Fix tp € [0, w4 (ug)). Now, v(t) := u(t + to), t € [0,wy — to) solves

V() = gr(o(®)v(t) + v(t)g2(v(t),  ©v(0) = u(to),

and 0 < g1 (uo) + g2(uo) < g1(u(to)) + g2(u(to)). Thus, the same argument
as above proves u(tg) = u(t) (¢t € [to,wy)).

In case 0 > g1(ug)+ g2 (ug) we consider gs, g4: G(A) — A defined by g3(x) =
—g1(z71), ga(x) = —ga(2™1). Note that g3+ g4 is monotone increasing too.
Now, w : [0,w;) — G(A) defined by w(t) = (u(t))~! solves

w'(t) = w(t)gs(w(t)) + ga(w())w(t), w(0) = (uo)™",

and 0 9 g3((uo) ') 4 ga((uo)™*). According to the first case w is monotone
increasing, hence, u is monotone decreasing on [0,w).

8. Remark on Equations Defined on [0, T) x A. Let a,b:[0,T) —
A be continuous functions, and let € A. The initial value problem

o' (t) = a(t)u(t) + u(t)b(t), w(0) ==z
is uniquely solvable on [0,7"). By standard reasoning w(t) is invertible
for each ¢t € [0,T) if = is invertible, and in this case v:[0,T) — G(A),
v(t) = (u(t))~! is the solution of

V'(t) = —b(t)v(t) —v(t)a(t), u(0)=z"".

Therefore, if f1, f2:[0,7) x A — A are continuous and locally Lipschitz
continuous, and if
u(+,uo): [0, w (uo)) — A
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denotes the nonextendable solution of the initial value problem

u'(t) = fi(t, u(®)u(t) + u(t) f2(,u(t),  u(0) = uo,
then ug € G(A) implies u(t) € G(A) (t € [0,wy(up))). In particular, if

ug € G(A), then the maximal interval of existence of the solution does not
change if the domain of definition of f1, f2 is restricted to [0,7) x G(A).

9. Examples.
1. First, we return to our introductory example A = M"*" S ={X :0<
det(X) < 1}. We have seen that W(S) = {A : trace(4) < 0}. In particular
X <Y implies | det(Y)] < | det(X)].
Let Ag,By,Cr € M™™" k = 1,2 with trace(B; + B2) > 0 and let
fe: G(M™™) — M™™ be defined by
[e(X) = AgX — X Ay + |det(X)|Br + C, (k=1,2).

It is easy to check that f; + fo is monotone increasing. According to
Theorem 3 and Theorem 4 the solution of the matrix initial value problem

U'(t) = LU E)U ) + U @) f(U(1), U0) =To

depends increasingly on Uy € G(M™ "), and if Uy € G(M™*™) and
fl(U()) + fQ(U()) D> [ < ]0, which means

trace(| det(U0)|(31 + Bz) + C1 + 02) < [Z]O,

then ¢ +— U(t) is monotone increasing [decreasing], thus, ¢ — | det(U(t))] is
monotone decreasing [increasing].

2. Let A = R* endowed with coordinatewise multiplication. We consider
the permutation stable closed semigroup

S={z=(21,22,23,24) : ¢, > 0 (k =1,2,3,4), z129 > 1, 2514 > 1}.
Now, x <y implies |z122| < |y1y2| and |z3z4| < |ysya|. We have
W(S) ={a = (a1,a2,a3,a4) : a1 +az > 0,a3 + ag > 0}.

Let f: G(R*) — R* be defined by

1 1
flz) = <—m -z -1, P + 22+ 1, |v12z0zams| — 25 — 2,3:?) .
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Again, f is monotone increasing, and f((1,1,—1,1)) = (-3,1,—-2,1) < 0.
According to Theorem 4 the solution of

is monotone decreasing. Thus, t — |ui(t)uz(t)| and ¢ — |uz(t)us(t)| are
monotone decreasing.

3. Let B be any unital normed Banach algebra and let Sy = {x € B :
|z]] <1}. Then Sy is a closed semigroup but, in general, not permutation
stable. Let my[z,y] denote the right hand side derivative of the norm at
x in direction y. It is known [1], Chapter 1, that ||exp(ta)|| <1 (¢ > 0) if
and only if m4[1,a] < 0.

Let A be any commutative closed subalgebra of B containing 1, fix n € N,
and let S = {x € A: ||2"| < 1}. Now S is a permutation stable closed
semigroup, and

W(S)={aec A:my[1,a] <0},

since ||exp(ta)]| < 1 (¢ > 0) if and only if ||exp(nta)|] < 1 (¢ > 0). For
example a — pul € W(S) if u > ||al|.
Let ¢1,¢2:[0,T) — A be continuous, c¢;(t) € W(S) (¢t € [0,T)) and let
f:10,T) x G(A) — A be defined by

ftx) = [lz7"lex(t) + ca(t).
Then, f is monotone increasing. According to Theorem 3 the solution of
() = ([[(u(t) " ller(t) + ca(t))u(t)  u(0) =ug € G(A)

depends monotone increasingly on ug.

4. This time let B be any unital normed commutative Banach algebra and
let A = B"*" the Banach algebra of all n x n-matrices with entries from
B. For A € Alet det(A) € B and trace(A) € B be defined by the common
algebraic formulas. It is well-known that X € A is invertible in A if and
only if det(X) is invertible in B, and that det(XY") = det(X) det(Y) for all
X,Y € A. Since the proof of Wronski’s Theorem is purely algebraic too,
we also obtain

%det(exp(tA)) = trace(A4) det(exp(t4)) (t € R) (6)

for each A € A. Let
S:={X e A:|det(X)| <1}.
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Since B is commutative, S is a permutation stable semigroup, and from (6)
we obtain
W(S)={A e A: my[1,trace(4)] < 0}.

Moreover X =< Y implies || det(Y)| < || det(X)]|, since ||det(X~'Y)| =
(det(X)) ! det(Y)].

Now, the functions and conclusions from Example 1 can be reformulated
in this setting.
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