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1. Introduction

Consider the Cauchy problem for a semilinear parabolic equation of the
following form:

P) u, + 2ty A(u),, = vdu (xeR", t>0),
u(x, 0) = uy(x)

where 4 denotes the Laplacian; v is any fixed positive number; and Al i=1,...,n,
are C! functions of a single real variable. As is well known (see [8]) the solution
u of the problem (P) with bounded measurable initial value ug converges, as v-0,
to a global weak solution satisfying the entropy condition of the following hyper-
bolic problem: B ’

(H) U+ X, Au),, =0 (xeR", t>0),
u(x, 0) = ug(x).

On the other hand, Kobayashi [7] has recently proposed an approximation scheme
to the problem (H), using the solutions of the linear Boltzmann equation:

(B) fr+ 21218 =0 (xeR" E=(¢,...,EMeR", t>0),
f(x9 ﬁa 0) =f0(x9 é)‘

He used the function o(x, t)=S Sf(x, ¢, 1)d¢ under a suitable choice of the initial
function f, in order to construct approximate solutions of (H), and this procedure
is an analogy of getting macroscopic quantities in fluid mechanics by ‘integrating
the corresponding ‘microscopic ones with respect to the velocity argument. : In
this paper we modify the method in [7] so as to obtain approximate solutions of
the parabolic problem (P).

The relationship between the initial values of (P) (or (H))-and-(B).is given in
the following way (compare with [7]). Takeany function x(&) with the following
properties ;-
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(1.1)  x& =0 on R"; xeCPR") and suppy < {£eR"; |¢S1}.
12 1O =2 and {x@dz=1.

Put y,(&)=e"y(e€) for any fixed ¢>0 and

(13 Fw, &) = {7 x(t—ats)ds, were,
a(s) = (a'(s),..., a"(s)), ai(s) = dA'(s)/ds.

The following are easily verified.

(D) W= S Fw, &dé  for weR!
©) Ai(w) — AH0) = SﬁiFa(w, &d¢  for weR!

Now let {Ug1); t=0} be the family of solution operators of the problem (B) and
set, for any fixed >0, .

(14 ) (x) = S LULDfo]1(x, OdE  with  fo(x, &) = F(u(x), &).

Then conditions (C) and (D) together imply that the function S,u, satisfies (at
least formally) the problem (H) at t=0. This suggests that the function Sk/"u,,
h>0, approximates in some sense a solution of the problem (H), where [a]
denotes the greatest integer in a e Rl. Also, note that if ve L®(R") and if &1 oo,
then S,v tends to the function

1 if 0 <sZw,
Sw F(v(x—a(s)t), s)ds, where F(w,s)=( —1 if w=<s<0,

0 otherwise,

in the sense of distributions on R”. This function was used in the previous paper
[4] to construct approximate solutions of the problem (H) by the method illus-
trated above. See also [5]. '

The same argument as in [4] shows that if u,e L®(R") n LY(R") and if ¢>0
is fixed, then S{/#lu, converges, as h | 0, to the solution of (H) satisfying the
entropy condition. Kobayashi [7] proved this for ¢=1 by using nonlinear semi-
group theory. In this paper we will show that the same function converges to the
solution of the problem (P) if we let k| 0 and ¢ | 0 under the condition that h/¢?
is some fixed constant. To state our result we recall a notion of weak solution of
the Cauchy problem (P). Let u, be in L®(R*) n L'(R"). Then a function u(x, t)
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lying in L®(R"x (0, o)) 0 C([0, o0); LY(R")) is called a weak solution of the
problem (P) if u(-, 0)=u, and

S: dtS [u($i+vA)+ 3 i), Jdx = 0 forall e CF(Rx (0, 00)).

In Section 3 we shall show the uniqueness of the weak solution in the sense stated
above. We can now state our main result in this paper.

CONVERGENCE THEOREM. Let x be any function satisfying (1.1), (1.2), and
let h>0, >0 satisfy the relation

(1.5) (h/zneZ)g EPAE)dE = v,

where v is the number specified in (P). Then, if uye L\(R") n L*(R"), the func-
tion Stt/mMug tends in L\(R") as h | O to the unique weak solution of the Cauchy
problem (P) and the convergence is uniform for bounded t=0.

In proving this result it seems impossible to apply the argument in [4] which
is based on the compactness theorem for functions of bounded variation. Indeed,
it would be difficult to obtain necessary estimates for time-derivatives of Si*/#lu,
which are uniform in h>0, because the propagation speed of their supports be-
comes arbitrarily large as h | 0 under the condition (1.5). So we shall prove our
result by applying the approximation theorem for nonlinear semigroups which
was first established by Brezis and Pazy [1] and then generalized by Oharu and
Takahashi [10] to the form convenient for our use. We note that a similar (but
more complicated) idea was employed by Douglis [3] to obtain solutions of (P)
by using approximate solutions of (H).

The author is grateful to Professors Y. Kobayashi and S. Oharu for valuable
conversations and constant encouragement.

2. Estimates for S,v

First we recall the approximation theorem for nonlinear semigroups due to
Oharu and Takahashi [10]. Let X be a real Banach space with norm |-|, and
{X,.; m=1, 2,...} an increasing sequence of closed convex subsets in X. We set
X,=U®, X, Suppose given a family {C,; h>0} of (nonlinear) operators C,
on X, such that each C, defines a contraction map: X,,—X,, for all m, and set
B,=h~1{(C,—1). Now let A>0 and veX,. Then applying the contraction
mapping principle to the equation

w=h(h+1)~1 + Ah+A)"1Cw

we easily see that
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2.1) R(1—ABy) o X,, forall >0 and m

and
2 |jv—w |(1—iB,,)v—(1—/lB,,)w| forall A>0 and o, weX,.

Here R(1—AB,) denotes the range of the operator 1—AB,. The estimate (2.2)
means that the operators B, are dissipative in X; see [10]. From (2.1) and (2.2)
we see that the equation (1 —AB,)w=v with ve X, and A>0 has a unique solution
we X, which we denote by (1—AB,)~ 1.

THeOREM 2.1 ([10]). Suppose that the limit
J(A)v = lim,,, o (1—AB,)~" v

exists for allve X, and A>0. Then we have:
(i) There exists a dissipative operator B in X such that

R(1-B) = X, > D(B) and J(1) =(1—-4iB)™! forall 2>0

where ,D(B) is the domain of the operator B.

(ii) -B generates a C, semigroup {T(t); t=0} of nonlinear contractions on
the closure D(B) of D(B) such that T(t)[X,, n D(B)]<=X,, n D(B) for all m and
t=0.

(iii)  lim,, o Ci/"lo=T(f)v for ve X, n D(B) uniformly for bounded t=0.

For the proof we refer to [10, §2]. We wish to apply this theorem to the case
where C,=S,, X=LY(R"),

23) X = {ve L'(R") N L*(R"); |v| o =m},

and B is an appropriate operator associated to the problem (P). (Here and
hereafter ||, denotes the norm of the Banach space L?(R"), 1=p=<o0.) To this
end we prepare some basic estimates for the operators S,, h>0. First we note
that, by definition,

2.4) (S () = | Fote—¢h), ey

whenever the right-hand side makes sense.

'LEMMA 2.2. The following are valid: _
(i) ©,8,=S, for yeR" where (1,0)(x)=v(x+}).
(ii) ISwl, < lvl,  for veLP(R") (p=1, ©) and h=0.
(iii) [Spp—Sw|; £ lo—w|y . for v,weLYR") and h=0.

PrROOF. Assertion (i) is obvious from (2.4). By (1.1)~(1.3), the function
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F,(w, &) is nondecreasing in w; hence

Fs(—rS é) é Fs(v(x_éh)9 6) é Fs(r, 5)

if ve L°(R") and |v|,=r. Integrating this with respect to ¢ and then using
condition (D), we obtain assertion (i) with p=oco. We next consider the case:
p=1. By (2.4) and Fubini’s theorem we have

IS0, < deg |Fo(x—Eh), E)|dE = gdc S |F(o(x—Eh), &)|dx

= S d&S |F(v(x), )ldx = S dx S [F(v(x), )IdE.

Since |w|=S |F(w, £)|dE for we R, the last term equals |v|,. This shows (ii)
with p=1. Assertion (iii) is similarly proved by using the identity:

|v—w|=g|Fe(v, E—Fw, &ldE  for v, weRL

This completes the proof.

Lemma 2.2 above shows that the operators S,, h >0, satisfy all the conditions
imposed on C, in Theorem 2.1. Thus the operators

2.5) B,=h"(S,—1), h>0
satisfy (2.1) and (2.2) with |-|=]-.],. Moreover, Lemma 2.2 (ii) implies
(2.6) v, = (1=AByv|, (p=1, o0) for A>0 and wveL'(R") n L®(R").

In the next section we discuss the behavior of the functions (1 —AB,)~!v, with
ve X,=LY(R") N L°(R"), as h tends to 0 and prove our result (Convergence
Theorem stated in the Introduction) by applying Theorem 2.1.

3. Proof of Convergence Theorem

We begin by proving the following lemma, which is important in the subse-
quent argument. Let B, be defined by (2.5).

LemMMA 3.1. Let ve L*(R"), ke R! and ¢ € CF(R™) with $=0. Then
3.1 S sgn (v—k)¢B,vdx
sht XS sgn (v—Kk) [F(v, &)—F(k, )] (P(x+Eh) — (x))dxdE

where sgn (y)=y/|y| if ye R, y#0, and sgn (0)=0.
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Proor. We note that B,k=0 by (2.4). Thus direct calculation gives
S sgn (v— K)pB,vdx = g sgn (v— K)$(Byo— ByK)dx
= = {{ sgn otx-+ M) — K)BCx-+ M) IF (0(0), O Fulk, 1w
— h=1{{ sgn (000~ IO TF.o0), O~ Folk, dxd
= 1= [ sen 0~ R TF.(0(x), O F.(k, 91 (Bx-+Eh) — $x)dxde

+ i (TR0, 9= Futk, 91
[sgn (v(x + Eh)— k) —sgn (v(x) — k)]d(x + Eh)dxdé.

Since [F,(v, £)—F(k, £)]sgn (v—k)=0 and ¢ =0, the last term is nonpositive;
so we obtain the inequality (3.1). This completes the proof.

We now define an operator B in L1(R") by
(3.2) By = vdv — Y1, A¥(v),, for ve D(B);
DB) = {ve X, N HXR"); Bve X}

where H?(R") is the usual Sobolev space. (Recall that X, =L!(R") n L®(R").)
The following can be shown in the same way as in [2, Proposition 2.3].

PROPOSITION 3.2. The operator B defined by (3.2) is dissipative in L1(R").

In view of Theorem 2.1 and Proposition 3.2, the following result ensures the
convergence of Sk/"lu,, uge X, as h | 0.

PropoOSITION 3.3. Letve X, and A>0. Then R(1—AB)=X_, and
(1—-AB)"‘v— (1—AB)"'v» in LYR") as hlO
provided that h and ¢ satisfy the relation (1.5).
We prove this result in two steps. Set v}=(1—AB,) v forve X,

LemMA 3.4. If h and € satisfy (1.5), then the set {v}; h€(0, 6)} is precompact
in L1(R") for any fixed >0, ve X, and 6>0.

Proor. First we note that (2.2), (2.6) and Lemma 2.2 (i) together imply
(3.3) [vl, < Ivl, (p=1, ),

(34 { 1o#x+ )~ oiColdx 5 {1+ )= o0l
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for all h>0 and ye R". We next show that
3.5 lim,,mg |o(0)ldx = 0

Ixl>p

uniformly in h € (0, 6) if h and ¢ satisfy (1.5). Lemma 3.4 then follows from the
Fréchet-Kolmogorov theorem ([12, p. 275]). To show (3.5) we first note that
if ve X, the estimate (3.1) with k=0 holds for any bounded continuous function
¢=0 with bounded and continuous derivatives up to and including order 2.

Fixing any such ¢, we use (3.1) with v=v} and k=0. Since By}=1"1(v}—v),
we have

36 471 {1itgdx—{ 10lgdx] <  sen oDsBioax
< i {{ sen D0, O T90e+Eh) - Bx)1dxd
= % {{ sen ODEF 0k O (dxd

+ 154, {{ sen @DEF Lo, O [ (1 00e v+ 08I0 |dxae
=1, +1,

By condition (C) we obtain
1, = | sen 0D L4/ ~ 4O1.dx = 2, lofibg..dx,
where bi(x)= S: a'(0vi(x))d6. Thus (3.3) implies

(.7 M4l = (supigsm |a()DIvily sup |D@| < (supis<m la(s)DIvly sup [D|

where D¢ =(o,,,..., §,,) and m=|v|,. On the other hand, by the change of
variables: e£=n,

1= hZ, ([ sen b [ a0 " @+ aien @ +arm© x
X (1=0)p,,.,(x+0(¢+ a(s))h)ds:l dxd¢
= o2 5, {{ san @[ ] a6 " (rt+ ca(s) v+ 2ayam

x (1 -o)¢x,x,(x+e(n+ea(s))hs-1)ds] dxdn.

In what follows, we assume that the number >0 is so chosen that 0<e<1
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whenever he(0, ). Since || <1 for 5 € supp x, we obtain
(3.8) 3] = n*he™*(1+supyy sm la(s)])[v], sup |D?¢]

where D2¢=(¢,,)i.=;. From (3.6)~(3.8) we have

39 27 Iofigdx = 471 {olgdx + (supyula@Diel, sup 1D
+ n2he=2(1+sup <m la(s)])?|v], sup | D3¢ .
Now choose a function g € C*(R?') such that
gis)=1 if s=1;9(5)=0 if s<0; and 0=Zg(s) <1 for seR!
and define for p>1>0 the fﬁnction g,.(s) as the even function so that
9,49 = gl(s—1)(p—1)"1] for s20.

By definition we easily see that 0<g, (s)<1 for se R! and

9o ) =1 if sl 2 p;g,{s)=0 if [s|=7;

sup|g,./— 0 and suplg,.]— 0 as p1 oo.
So if we set ¢, (x)=23;g,.(x;), then,

(3.10) 0=, <n;5¢,.() 2 1if x| 2 pn'/2; and ¢,.(x) = 0 if x| < 1,
(3.11) sup|D¢,.| — 0 and sup |D?¢, | — 0 as p T co.
Substituting ¢ =¢,, . into (3.9) and then using (3.10)~3.11), we obtain

limsuppmg
lxl>

piC)ldx S fo(oldx,
pnt’2 Ix|>z
since he~2=const.. Since t>0 is arbitrary, this proves (3.5).
The proof of Proposition 3.3 will be complete if we show the following

LeMMA 3.5. Suppose that h and ¢ satisfy (1.5) and let v* be any cluster point
of the set {v}} as h} 0. Then

v*eD(B) and v*=(1—-AB)~ '
where B is the operator defined by (3.2). Consequently, vi—-v* in L\(R") as h | 0.

Proor. We may assume, without loss of generality, that v}—v* in L1(R")
and v}—v* ae. in R™ as h | 0. First we show that the function v* satisfies the

equation
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(3.12) A 1(vA—v) = vavt — 3, AiwY),,
in the sense of distributions. Since A~ (v} —v)=B,v}, we have, for ¢ € Cg,
(313 a7 { @i -o)pdx = =t (| Foh, 9@+ Em) - p(pdxde

= % ([ ercob Ogudxds + @12 ., (| P 0h O rin,dxae

+n %, ([ eoreim, o x
X [ (1=0) (P, (6 08H) — e (x))d0 | dxdle
0

= JI + J2 + J3.
By condition (C) and (3.3) we have
G14) L =3, S APy dx — T, S AW, dx as hO.
J, is rewritten as

o= D) Eis { o (s { @ +a@)@ + @i o101 ax

= 41263 4,5 s, [ s 0+ 20160 0 + 00 o)) xn .
Since y is assumed to be a radial function (see (1.2)), we have
Sn‘x(n)dn =0; Srl'n"x(n)dn =0 if i#j; S(n")’x(n)dn =n"! S [n12x(m)dn.
Hence,

(15) gy = (2| { inlxCrydn | oagax

+ 1]2) i | buuny| (F aH(5)aT(5)ds Jax
=Jy + Ja
and, by (1.5),

(3.16) Jyy=v S vi(x)4p(x)dx — v S v*(x)4¢(x)dx as hlO0;
(3.17) |J22] < const. hlv|, sup g <mla(s)>?— 0 as h 10

where m=|v],. On the other hand, since || <1 for n € supp x, we obtain after a
change of variables,
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|73] < e(n)mhe~2[sup {|n+ea(s)|; In| 1, |s|Sm}]* x (sup x) x

X sup {s |D2¢(x +One="h +Ba(s)h) — D2P(x)|dx; |s| <m, || <1, 0§9§1} ,

where c¢(n) is a constant depending only on n. From this and (1.5) it follows that
(3.18) J;—0 as hlO.

Combining (3.13)~(3.17) and (3.18) we conclude that (3.12) is valid. In view of
the definition (3.2) of the operator B, it remains to show that v*e D(B). Since
v* e X, by (3.3), it suffices to show that v* € H2(R”). We write the equation (3.12)
as

(3.19) vaAvt = A" (v —v) + X; AN(vY),,.
Since v* and v are in X, A~ 1(v*—v) is in L2(R"). Also, the functions

A'(w*) — AY0) = biv*, i=1,.,n,
belong to L2(R") because b’ =Sl a*(0v*)d0 are bounded functions. Hence,
(1]

2 A v, e HY(R").

This, together with the equation (3.19), implies that v# is in H!(R"); so as in the
proof of the chain rule ([6, Lemma 7.5]), we obtain

2 AMw)y, = Xy al(v*)v}, € LX(R").

Consequently, the right-hand side of (3.19) is in L2(R"). Hence v*e H2%(R"),
which completes the proof of Lemma 3.5; and so Proposition 3.3 is proved.

We are now in a position to prove our main result. By Proposition 3.3 and
Theorem 2.1 there exists a function u in C([0, c0); L!(R")) n L*(R" x (0, 0))
such that u(-, O)=u, and, as h | 0,

Ste/mlyy —— u(-, f) in LY(R") uniformly for bounded ¢ = 0.

Hence we have only to show that the limit function u is the desired weak solution
of the problem (P). Since (S,u,)(x, ©)=uy(x, t+h) for u,=Sk'"u,, we have

h=[uy(x, t+h)—uy(x, )] = (Buy) (x, 1),
so that, for ¢ € CP(R" x (0, o)) and small h>0,

b1 S: dt S w(x, 1)($(x, t—h)—(x, ))dx
— h-t S " SS F (%, ), &)@+ Eh, 1)—(x, D)dxdE.
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Hence the same argument as in the proof of (3.12) yields

[ ar u(+vag) + 2o awp.dax = 0

which shows that u is a weak solution of (P). Finally, we prove the uniqueness of
weak solutions. Suppose that there is another weak solution v with v(-, 0)=u,
lying in C([0, o0); LY(R")) n L*(R" % (0, o0)) and set w=u—v. After the sub-
stitution: w—e**w, we see that w(., 0)=0 and

(3.20) w, + v(1—=A)w + e~ 3 [Ai(e**'u)— Ai(e*v)],, = 0

in the sense of distributions. Since
(321)  Ai(e"u)— Ai(e*v) = evbiw, bi = g’ @[e*'((1—0)v +0u)]d6
0

and since w(-, t)e X < L?(R") for a.e. t 20, (3.20) implies that w, is in L®(0, T
H~-2(R")) for every T>0. So, as in [9, p. 71], we obtain

(3.22) (d/d)|w()|2,,2 = 2(1 =)~ w,(1), w(D)).

Here and in the following |- |, , denotes the norm of the Sobolev space H%(R") and
(-, -) the inner product of L?(R"); the operator (1 —4)~1! is defined via the Fourier
transform (see [11]). From (3.20)—(3.22) we have

(d/dDIw(D)|21,2 + 2vIW(DI3 2 = —2 X, (1= 4)~1(b'w). (1), w(D))
=23((b'w)(®), A=A~ 'w, (1) < const. [w(B)lo,2lw(D)l -4,
Svw®IE2 + Cw(®)I24,2

with a constant C,>0 independent of w. Hence w=0 by Gronwall’s lemma.
This proves Convergence Theorem.

References

[1] H. Brezis and A. Pazy, Convergence and approximation of nonlinear semigroups in Banach
spaces, J. Funct. Anal. 9 (1972), 63-74.

[2] M. G. Crandall, The semigroup approach to first order quasilinear equations in several
space variables, Israel J. Math. 12 (1972), 108-132.

[3]1 A.Douglis, An approximate layering method for multi-dimensional nonlinear parabolic
systems of a certain type, Ann. Scuola Norm. Sup. Pisa (4) 6 (1979), 193-283.

[4] Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasi-
linear equations, Duke Math. J. 50 (1983), 505-515.

[5] Y.Giga, T. Miyakawa and S. Oharu, A kinetic approach to general first order quasi-
linear equations, preprint.

[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,



310

[71
[81]

{91
[10]
[11]

(12

Tetsuro MIYAKAWA

Springer-Verlag, Berlin, 1977. .

Y. Kobayashi, Product formula for solving first order quasilinear equations, preprint.

S. N. Kruzkov, First order quasilinear equations in several independent variables, Math.
USSR-Sb. 10 (1970), 217-243.

J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires,
Dunod et Gauthier-Villars, Paris, 1969.

S. Oharu and T. Takahashi, A convergence theorem of nonlinear semigroups and its
application to first order quasilinear equations, J. Math. Soc. Japan 26 (1974), 124-160.
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.
Press, Princeton, 1970.

K. Yosida, Fuctional Analysis, Springer-Verlag, Berlin, 1965.

Department of Mathematics,
Faculty of Science,
Hiroshima University





