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Introduction

Consider the parabolic operator
ou
Lu(x, t) = a(x)a — du + <b(x, t), V.u) + c(x, t)u
and its adjoint operator
ou
L*u(x, t) = — a(x)a — Au — <b(x, t), V.u) + c*(x, t)u

with sufficiently smooth coefficients a > 0, b (R"-valued), ¢ and c¢* = ¢ — Vb on
a domain D in R" x R. 1If we write L= (L+ L*)/2, then, noting that ¢ = L1
and c* = L*1, we have

Adu= — Lu+ull.

Therefore, if the “lateral” boundary d,D of D is sufficiently regular, then for f,
ge C?(D) such that g vanishes on d,D, Green’s formula implies

fgL1dxdt = f g Lf dxdt,

D

0.1) J V.f,V.g>dxdt + '[

D D

provided that all the integrals exist.

The purpose of the present paper is to establish a formula corresponding to

(0.1) on a harmonic space (X, #) with an adjoint structure #*, as an

application of the theory of Martin boundary of X with respect to the
structures # and H#*.

In §2—§6, we develop a theory of Martin boundary of such a harmonic
space (X, #). Theories of Martin boundary of general harmonic spaces have
been discussed to some extent by M. Sieveking [8], K. Janssen [3] and C.
Constantinescu-A. Cornea [1; Chapter 11]; and some results in §2—§6 of the
present paper can be obtained from these general theories. However, in order
to obtain some properties which we need in establishing the above mentioned
formula, we rather follow the classical approaches by Martin-Brelot-Naim and
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their “parabolic” counterparts discussed in J. L. Doob [2; Chap. XIX], and we
give details of the theory for reader’s convenience.

We then introduce (in §7) a class & of functions on X for which we can
naturally define boundary values on the Martin boundary. In §7, we show
that “energy finite” bounded functions belong to &%. Finally, in §8, we
establish formulas of type (0.1) for an energy finite bounded function f and an
energy finite function g of potential type. There, we make use of the boundary
values of f on the Martin boundary of X and their relations with the minimal
fine limits of f with respect to the adjoint structure #* (cf. [5;§5.6 and §6.7]
for such relations).

§1. Preliminaries

Let X be a connected locally compact space with countable base and
consider a pair (#, #*) of mutually adjoint harmonic sheaves on X as defined
in [7]. By definition, (X, 5#) and (X, #*) are P-harmonic spaces and there
exists a Green function G(x, y) satisfying the following conditions:

(GO) G(x, y) is lower semicontinuous on X X X and continuous off the

diagonal,;

(G1) For each yeX, G(-,y) is an s -potential and is #-harmonic on
X\ {y};

(G*1) For each xeX, G(x,-) is an s *-potential and is # *-harmonic on
X\ {x};

(G2) Any continuous s#-potential p is uniquely expressed as p = Gu with a
nonnegative measure pu on X, where Gu(x) = [ G(x, y)du(y);

(G*2) Any continuous s#*-potential g is uniquely expressed as ¢ = G*v with
a nonnegative measure v on X, where G*v(y) = [ G(x, y)dv(x).

We further assume that the constant function 1 is #- and # *-superharmonic.

We denote by &, the set of all nonnegative # -superharmonic functions
on X, 2 the set of s -potentials and £, the set of continuous #-
potentials. The corresponding sets with respect to s#* are denoted by &%,
P* and 2§, respectively.

We recall ([7]) that, associated with G(x, y), there exist measure
representations o: # — # and ¢*: B* —» M, where X (resp. £*) is the sheaf of
functions which are locally expressible as the difference of two continuous -
(resp. #*-) superharmonic functions and .# is the sheaf of signed measures on
X. By definition, 6(Gv + u) = v if ue #(X) and G|v|e#.. Also, by assump-
tion, 6(1) > 0 and o*(1) > 0.

The reduction operator with respect to # (resp. # *) will be denoted by R
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(resp. R*) (cf. [7; p.3] and [1; pp.39-40]). For an open set U in X and ve ¥,
(resp. we %), let

Ryv = R(xyv) (resp. REw = R*(yyw)),

where y, is the characteristic function of U. (In [1], Ryv is denoted by
RY) Then Ryve¥, (resp. REwe ¥*), and Ryve? (resp. REwe 2*) if U is
relatively compact.

LemMa 1.1. Let U be a relatively compact open set in X. If veS, is
locally bounded on X and is continuous on U, then there exists a unique
nonnegative measure u on X such that Ryv= Gu and Supp pc U. If, in
addition, v|ye #(U), then Supp u < oU.

ProoF. (i) Uniqueness: Let 2% = {fe Z#*(X)| Supp f is compact}. Note
that f = G*(o*(f)) for feR§. Suppose Ryv = Gu. Then for any fe Z§,

jfdll = JG*(G*(f))du = JGu do*(f) = JRuv da*(f).

Since 2% is dense in (X)) (= the space of continuous functions with compact
support in X ; cf. [1; Theorem 2.3.1]), u is determined by Ryv.

(i) Existence: Let {U,} be an exhaustion of U and choose ¢, € %,(X) such
that 0< ¢, <1 on X, ¢,=1 on U, and Supp ¢, < U (n=1,2,...). Put v,
= R(p,v). Then v,e?. and Ryv = lim,_, , v, (cf. [1; Theorem 4.2.3]). Let pu,
= o(v,). Then Supp u, = U (cf. [7; Lemma 1.1]). Choose y € €,(X) such that
Yy =1on U. Then

(X)) = py(U) < JR*lﬁ du, = fvnda*(R*w) < Jvdo*(R*xlf) < 0,

since Supp o*(R*y) is compact. Hence, a subsequence {u, } vaguely converges
to a nonnegative measure u with Supp u = U. By the lower semicontinuity of
G(x, ), Gu <lim,, v, = Ryv. On the other hand, since v, =v on U,, p,ly,
= o(v)|y, for all n, so that ul|, = p,ly,. Together with the continuity of G(x, -)
on U\{x}, it follows that Gp,,— Guon U. Hence Gu = Ryv = v on U, which
implies Gu > Ryv on X. Thus, Gu = Ryv. The above arguments also show
that u|, =0 if v|ye A (V).

Lemma 1.2 ([1; Proposition 7.1.2 and Corollary 7.1.2]). Let U be a
relatively compact open set in X. Then, for each x € X, there exists a nonnegative
measure 8Y on U such that

(Ryo) (x) = j vddy

U
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for all ve¥ .
LemMa 1.3. Let U be an open set in X. Then
[REG(x, )1(y) = [RyG(-, y)](x)
for any x, yeX.

PrROOF. Since Ryv = lim,, , Ry, v for an exhaustion {X,} of X and for
any ve%, ([1;Corollary 4.22]), we may assume that U is relatively
compact. By the above lemma,

[RyG(-, y)](x) = JG(z, y)do3(z) = (G*55) (v)

for any x, yeX. We see easily that RyG(-,y)=G(:,y) if yeU (cf.
[6; Proposition 2.5]). Hence G*8Y = G(x, -) on U, so that G*6Y > R¥G(x, -)
on X for any xe X, namely,

[RyG(-, y)](x) = [REG(x, -)1(y)

for all x, ye X. By symmetry, we obtain the converse inequality.

§2. Martin boundary

A nonnegative measure A on X will be called a standard #-reference
measure if A(X) < oo, G*1 is bounded continuous on X and is positive
everywhere. In view of [4; Lemma 3.6], we see that a standard # -reference
measure is a reference measure with respect to J# in the sense of [3], namely X
is the smallest absorbent set (with respect to ) containing Supp 4. We fix
such a measure A throughout this and the next four sections.

Let

H,={ueH(X)|u=>0, Judi< oo} and

‘#l,l = {uefﬂ J\udl S 1}

By Harnack’s inequality [1; Proposition 6.1.5], 5, is locally uniformly
bounded on X, and by [1; Theorem 11.1.1], we see that it is compact with
respect to the locally uniform convergence topology.

We define the A-Martin kernel K,(x, y) by

for x, yeX.
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LemMA 2.1.  For a compact set E in X, {K;(x, )}, is uniformly bounded
outside a neighborhood of E.

ProOOF. Let V be a relatively compact neighborhood of E. Then there is
a>0 such that G(x,y) <a(G*A)(y) for all xeE and yedV. By
[6; Proposition 2.5], this inequality holds for all xe E and ye X \ V, namely,
K;(x,-)<a on X\ Vfor all xeE.

There exists a (unique) compactification X* of X such that every K,(x, -)
has a continuous extension to X* and {K,(x, -)}..x separates points of 0*X
= X*\ X. Then K,(-, n)e#,, for any ned*X. X?*is metrizable; in fact, for
a countable dense set {x;} in X, {K,(x;, -)}; separates points of 0*X.

LemMmA 2.2. Let ue#; and U be an open set in X. Then there exists a
nonnegative measure y, on X* such that Supp uy < 0*U (= the boundary of U in
X%, py(X*) = [xRyudi and

Ryu = J‘ K;(+, n) duy(n).
XA
In particular, for each ue # , there is a nonnegative measure p on 0*X such that
w(0*X) = [xudA and

u= J K;(-, n) du(n).
0AX

Proor. Let {X,} be an exhaustion of X and set U, = UnX, By Lemma
1.1, for each n, there is a nonnegative measure u, such that Supp p, = U, and
Ry, u=Gp, Letv,=(G*2)u, Since

@.1) v, (X) = jc*x dy, = fRU"ud/l < Ju i < o,

{v,} has a vaguely convergent subsequence as measures on X* Let py be its
limit measure and set v = [ K,(-, y)duy(y). Then, Supp py = 0*U and (2.1)
implies that py(X*) = [Ryudl, since Ry ufRyu. Also, since Ry, u
= [K;(+, y)dv,(y) and K,(x, -) is continuous on X*\ {x} and lower semicon-
tinuous on X% we see that v=Ryu=u on U and v < Ryu on X. Since
ve¥ ., it follows that v = Ryu.

LemMMA 2.3. Let U be an open set in X.

(i) For each xeX, n—[RyK,(-, n)](x) is lower semicontinuous on X*.

() If U is relatively compact, then, for any ned*X, RyK,(-, )
— RyK;(-, n) uniformly on X as y—n (yeX?.

ProorF. By Lemma 2.1 and [1l; Theorem 11.1.1], if U is relatively
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compact, then K,(-,y)— K,(-,#) uniformly on U as y-n (ned*X,
yeX%. Hence we have (ii) of the lemma. Then (i) follows from the fact that
" RyK,(-, n) =lim,_ . Rynx, Ki(-, n) for an exhaustion {X,} of X.

Let ned*X and U be a relatively compact open set in X. By Lemma 1.1,
there is a unique nonnegative measure &/ such that Supp & < 9U and

RyK (-, m) = sz(', y)dey ().

Note that &)(X) = [RyK,(-, n)di < 1.

LemMa 24. Let U be a relatively compact open set in X. Then n—
fou f dell is continuous on 3*X for each fe€(0U).

Proor. If f=(p/G*1)|;y with pe P¢ such that Supp o*(p) is compact,
then f = [y K;(x, -)dv(x) on dU, where v = o*(p), so that

f fd&‘.’,’=f {J K;(x, J’)def,’(J’)}dV(X)=j RyK;(-, n)dv.
ou x Wau b

Hence, in view of Lemma 2.3 (ii), the assertion of the lemma holds for such an
f. Since &/(0U) <1 for all ned*X, [1; Theorem 2.3.1] implies that the
assertion of the lemma holds for any fe €(0U).

By the above lemma, for any nonnegative measure g on 0*X and a
relatively compact open set U in X,

22 1o(f) = f (J fdsf,]> du(n)  for fe%(0U)
a2x \Jou

defines a nonnegative measure uY such that Supp pu¥ < U and uY(0U)
< u(@*X).

LEMMA 2.5. Let pu be a nonnegative measure on 0*X and let
u=f K (-5 ) du(n).
arX
Then for any open set U in X,
23 Rou= | RuK(n) i
orX
Furthermore, if U is relatively compact, then

(2.4) Ryu = J K;(-, y)du®(y),
ou
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where U is the nonnegative measure defined above.

Proor. First, let U be relatively compact. Since (2.2) holds for any
nonnegative lower semicontinuous function, we have

J K;(x, y)du®(y) = J { J K;(x, y)de,‘,’(y)}du(n)
ou 04X ou

_ j [RuK (- )] () dutn)
AX

for any xe X. On the other hand, by Lemma 1.2,

j [RuKl(-,n)](x)du(n)=f U_Ka(z, n)dcsi’(Z)}du(n)

U

= J _u(z) ddY(2) = (Ryw) (x).

U

Hence, (2.3) and (2.4) hold when U is relatively compact. To prove (2.3) for
any open set U, it is enough to note that Ryv = lim,_,, Ry.x,v for ve#, and
an exhaustion {X,} of X.

§3. Reduced functions for boundary sets

For a closed set F = 0*X let B(F) be the set of open neighborhoods of F in
X* and for ve%,, let

Rpv =inf{we &, |w>v on ¥nX for some Ve B(F)}.

By Perron’s theorem ([1; Theorem 2.2.1]) we see that Rpve #(X). If ues#,,
then R,.y = u, since X is an MP-set (cf. [1; Corollary 2.3.3]). Obviously, if
F, c F, and vy <v,, then Rp v, < Rp,v,. Note that if V,eB(F), n=1,2,...,
satisfy

3.1) Vi, cV,n=12..,and (| V,=F,

n=1
then Rpv = lim,, Ry, ,xv. Thus, by [1; Theorem 4.2.1], we obtain
LemMma 3.1. If F is a closed set in &*X and v,, v,€ ¥ ., then
Rip(vy + v;) = Rpvy + Ry,
LemMma 3.2. If F is a closed set in 0*X and ve ¥ ,, then
Rp(Rpv) = Rpv.
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ProoF. Obviously, Rg(Rzv) < Rpv. For any Ve B(F),
Rp(Rynxv) = Rpv,

since Ry,xv=v on ¥nX. Since Ry, xv — Rppe& ., using Lemma 3.1, we
have

Rpv = Rp(Ryoxv) = Rp(Rynxv — Rpv) + Re(Rpv)
< Rynxv — Rpv + Re(Rpv).
Taking the infimum on V, we obtain Rpv < Rg(Rpv).

COROLLARY 3.1. If F,, F, are closed sets in 0*X such that F, c F, and if
ves ., then

Rp,(Rp,v) = R, (Rp,v) = R, v.

PROPOSITION 3.1. For a closed set F in 0*X and ue #,, there exists a
nonnegative measure p on 0*X such that Supp p < F, p(F) = [y Rpud and

Rpu = J K; (-, n)du(n).

Proor. Let V,e B(F) satisfy (3.1). Applying Lemma 2.2 with U = V,nX
and taking a vaguely convergent subsequence of the corresponding measures,
we easily obtain the proposition.

COROLLARY 3.2. Let ue#, and ned*X. If R, ,u=u, then u= ([udl)
K;(-,n). If in addition u# 0, then | K,(-,n)dA = 1.

ProOF. By the above proposition, R ,, u = ¢ K, (-, n) with ¢ = [x Ry udA.

PROPOSITION 3.2. Let u be a nonnegative measure on 0*X and let
u=f K (-5 m) dp(n).
aAX
Then, for any closed set F in 0*X,
Rpu = J RpK; (-, m)du(n).
X
Proor. Taking V, e B(F) satisfying (3.1), applying (2.3) in Lemma 2.5 with

U=V,nX and letting n — oo, we obtain the required result by Lebesgue’s
convergence theorem.
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§4. Minimal boundary points

We say that ue#(X), u >0, is minimal if «u# 0 and 0 <v <u with
ve #(X) implies v = cu (c: constant).

LemMa 4.1. If ue s, is minimal and F is a closed set in 0*X, then either
Reu =0 or Rpu =u.

Proor. Since Rpues#’; and 0 < Rpu <u, Rpu = cu. Using Lemma 3.2,
we see that ¢ =0 or 1.

LEMMA 4.2. Let F be a closed set in 0*X. If ue #, is minimal and R ,,u
=0 for all neF, then Rpu =0.

Proor. For each neF, there is V,eB({n}) such that Ry yu #u. We
can cover F by a finite number of closed sets F;, j = 1,...,k such that F; c V,
for some neF for each j. Then Rypu =0 by the above lemma, and hence
Rpu <) ;Rpu=0.

PROPOSITION 4.1. If ue #; is minimal, then there exists a unique ned*X
such that R, ,u=u, and hence u = (judA)K 1(, n) (by Corollary 3.2).

Proor. The uniqueness follows from Corollary 3.2. By Lemma 4.1,
R, u=u or 0 for each ned*X. If R, ,u=0 for all ned*X, then Rpuyu =0
by the above lemma, which implies u =0. Thus R ,,u = u for some ned*X.

We shall say that ned*X is a A-minimal point if K,(-, n) is minimal and
[xKi(-,m)dA=1. Let 0{X be the set of all A-minimal points and let 95X
=0*X\dtX.

PRroPOSITION 4.2.
01X ={ned*X|K;(-,n) #0 and R, K;(-, n) = K;(-, n)}.

PrROOF. Let A4 be the set in the right hand side. By Proposition 4.1, X
< A. LetneA and suppose 0 < u < K,(-, n) withue #(X). Putv=K,(-, n)
—u. Then ves#, and by Lemma 3.1

Ripyu+Ryv=R, K;(-,m)=K,(,m)=u+v
It follows that R, ,u =u, and thus ned}{X by virtue of Corollary 3.2.
PROPOSITION 4.3. 94X = {ned* X |R,, K,(-, ) = 0}.

Proor. If R, K;(-,n) =0, then n¢d}X by the above proposition.
Conversely, suppose nedsX. If K,;(-,n) =0, then obviously R, K;(-,n)
=0. If K,;(-,n) #0, then by Proposition 3.1 R, K;(-, n) = cK;(-, n) with
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0<c<1. Sincen¢d?X,c#1. Using Lemma 3.2, we see that ¢*> = ¢, so that
c=0.

PROPOSITION 4.4. The set 05X is an F ,-set. For any ue #, and for any
closed set F contained in 04X, Ryu = 0.

Proor. First, note that if there is {,€d5X such that K;(-, {;) = 0, then
Ry, u =0 for any ue#; by Proposition 3.1.
For an open set U in X* 0<t<1 and xeX, let

Fy.i.={ned*X|[Ry.xKi(-, m1(x) < tK;(x, n)}.

By Lemma 2.3, Fy ., is a closed set. Let P, = {ned*X | K,(x, n) > 0} and set
Ayyi=Fy,,nUNP,. Then Ay ,,is an F,-set. We show that if F is a closed
set contained in Ay ., and if ue &, then Rpu = 0. In fact, by Proposition 3.1,
there is a nonnegative measure pu with Supp u < F such that Ryu
= IKA(-, n)du(n). Since [RpK,(:, 1)](x) < tK,(x, ), Lemma 3.2 and Propo-
sition 3.2 imply that (Rpu)(x)<t(Rpu)(x), and hence (Rpu)(x)=0, or
jF K;(x, n)du(n) =0. Since F < P_, it follows that 4 =0, i.e., Rpu =0.

Choose a countable base {U,} of open sets in X, a countable dense set {x,}
in X and a sequence {t,} of positive numbers such that ¢,,11. Then, using
Propositions 4.2 and 4.3, we see that 05X \ {{o} = UnimAuv, 51w This,
together with the above observation, implies the required results.

RemMARK 4.1. If we define a mapping ¢: 3*X —» A, , by ¢(n) = K;(+, 1),
then ¢ is injective and continuous. Let A} = {ue #, , | u is minimal and [udA
=1}. By Proposition 4.1, (0} X) = 42 Thus, we can see that 9}X is a G,-
set by a general theory (cf. [3]).

LEMMA 44. If ned?X and F is a closed set in 0*X, then

K,(-, }
RFKA<-,n)={0‘( ) sz':’;

Proor. If neF, then RzK,(-, n) = K,(-, n) by Proposition 4.2. If n¢F,
then R, K;(-,n) =0 for any {eF by Lemma 4.1 and the uniqueness in
Proposition 4.1. Hence RyK,(-, n) =0 by Lemma 4.2.

LEMMA 4.5. Let ned1X and let {X,} be an exhaustion of X. Then X" — ¢,
(the unit mass at %) vaguely.

ProoF.  Since ef"(X*) < 1, {¢X"} is vaguely relatively compact. Let u be
any limit measure. Then Supp p < d*X. Letting n— oo in the equality
Iax,. K;(, y)da,’f"(y) = Ry, K;(-, n), we have
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J K;(-, Odu() = K;(+, m).
0AX
Since K,(-, ) is minimal and u(6*X) < 1, it follows that u = &y

§5. Canonical representations

A signed measure v on 0*X is called a canonical measure (with respect to A)
if |v|(34X)=0.

LemMMA 5.1. If p is a canonical nonnegative measure on 0*X and

u= jKA(-, n) du(n),

then, for any closed set F in 0*X

Rpu =j K,(-,mdun)  and u(F)= jRpu da.
F

Proor. By Proposition 3.2 and Lemma 44, we have the first
equality. Integrating both sides by A, we obtain the second.

CoroLLARY 5.1 (Uniqueness of the canonical representation). If

le(" mduy(n) = JKA(-, 1) du,(n)

for canonical nonnegative measures |, and u,, then u, = u,.

THEOREM 5.1. If ue #,, then there exists a unique canonical nonnegative
measure y, on 0*X such that

u= j K5 (-, m) dp(n).
orx

PrROOF. The uniqueness is given in the above corollary.

Let 04X =2, A, with closed sets A4, such that A4,< A4,,,. By
Proposition 44, R, u = 0. Hence, given an exhaustion {X,} of X, we can find
v,€¥, such that 0 < v, <u, v,=u on V,nX for some V,e B(A,) and v, <27"
on X, (cf. the proof of [1; Proposition 5.3.2]). Set v =) 2 ,v,. Then ve¥,
and v is locally bounded on X. Form >0, set U,, = Us=,(V,n---nV,,) and
F,=0*X\U,. Then,F, is a closed set contained in X and F,, < F,,,, for
each m. By Proposition 3.1, there is a nonegative measure y, such that
Supp p, = F,, (so that p, is canonical), p,(F,)=[Rp, udi and Rg u
= j'K 2+, m) du,(n) for each m. By Corollary 3.1 and Lemma 5.1, we have
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Rp,u= Rp, (Rg, ., ,u) = RF,,.(fKA(" 1) At + 1(’1)) = j K; (-, 1) dit 4 1(n).
F"I

By Corollary 5.1, it follows that ., lp, = Hm Since p,(F,) < fudi < oo,
there is a nonnegative measure u on 0*X such that pu|p_ = p, for all m and
w@* X\ Y®_,F,)=0. Then, u is a canonical measure and

(5.1) J K; (-, n)du(n) = lim f K; (-, m)dpn(n) = lim Re u <u.
04X mTo Jarx m= e

For fixed m, take we %, such that 0 <w <wu on X, w=u on WnX for some

We®B(F,). Since v>mu on U,nX and U,UW> d*X, we see that v/m

+w>uon X. Hence, v/m+ Rp_u>u for any m. This, together with (5.1),

implies that u = [ K, (-, n)du(n).

REMARK 5.1. In view of Remark 4.1, the above theorem can also be
obtained through a general theory (cf. [3; Theorem 2.5]).

PROPOSITION 5.1.  If u is a canonical nonnegative measure on 0*X and {X,}
is an exhaustion of X, then u*» — u vaguely, where uU denotes the measure defined
by (2.2).

ProoF. Since &"(X*) <1, the functions n+> [y, fdey» are uniformly
bounded on 9*X for each fe%(X*. Hence, we obtain the required result by
Lemma 4.5 and Lebesgue’s convergence theorem.

COROLLARY 5.2. Let ue #; and let {X,} be an exhaustion of X. If Ry u
= [ox, Ki (-, )dun(y), then {u,} vaguely converges to p, (the canonical measure
representing u).

Proor. By Lemma 2.5 and the uniqueness in Lemma 1.1, u, = uX~.

§6. Minimal fine limits

Given nedtX, a set A = X is said to be #;-minimal thin or, simply # ;-
thin at n, if there is an open set Uc X such that A< U and
RUKA(" r’) # K}.(', ’7)

LEMMA 6.1.  For an open set U in X, it is # ,-thin at ned* X if and only if
RyK; (-, n)e2.

Proor. The “if” part is obvious, since K, (-, n)e#(X), #0. To prove
the “only if” part, let v = RyK,(-, ). Since ve ¥, v=h+ p with he #(X)
and pe 2. Since RyK; (-, n) # K, (-, n) and K, (-, #) is minimal, h = cK, (-, 1)
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with 0 <c¢ < 1. Since Ryv = v, we have
cK; (-, m) + p=Ry(cK; (-, 1) + p) = cv + Ryp = K, (-, ) + cp + Ryp,

which implies that ¢ = ¢>. Hence, ¢ =0, i, v = pe 2.

LEMMA 6.2. For nediX, By ={V< X | X\ Vis A ,-thin at n} is a filter.

Proor. It is enough to verify that if U, and U, are open sets which are
H ,-thin at n, then so is U, UU,; and this is easily seen by the inequality
Ry, uu,K; (-, 1) < Ry, K; (-, n) + Ry,K; (-, ) and the above lemma.

The limit (resp. upper limit, lower limit) of a function f on X with respect to
the filter Bf will be denoted by

F-limf(x) (resp. F-limsup f(x), F-liminff(x)).
x—n x—n x-n

LEMMA 6.3. Let ned'X. Then, for any neighborhood V of n in X*, X\ V
is A ,-thin at .

PrOOF. Choose WeB({n}) such that W< V and let U= X\W. By
Lemma 2.2, there is a nonnegative measure u on X* such that Supp u < 9*U
X'\ W,

RuKa(','l)=J_ K; (-, du(@) and u()?‘)=JRuK;(','1)dl-

X
Put u=[uyK;(-,0duQ) and p=[xK,(-,)du((). Then, ue, and
0<u<K,(-, 1), so that u=cK,(-,n) with 0 <c <1 by the minimality of
K;(-,n). On the other hand,

u(@‘X)=,u()?l)—u(X)=fRUKA(-,n)di—fpdlzjud}tzc.

Hence, if ¢ # 0, then the minimality of K,(-,n) implies that u = ce,, which
contradicts the choice of . Hence, ¢ =0, and so RyK;(-,n) =pe?,ie, U is
H ,-thin at n by Lemma 6.1. Hence X \ V is #,-thin at 7.

COROLLARY 6.1. For any extended real valued function f on X and for any
nedtx,

liminf f(x) < F-liminf f(x).
x-n

x—n,xeX

Let 1 =h; + G(o(1)) with h,e#(X). Then h,e#,, so that there is a
unique canonical nonnegative measure w} on 0*X such that
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hy = j K; (-, mdai().
04X
REMARK 6.1. If h, =0, then w} =0 so that all the results in the rest of
this section become trivial.

LEMMA 6.4. For an w’-measurable set E in 0}X, let
up = f K, (-, n)doi(n).
E

Then, an open set U in X is # ;-thin at w’-a.e. neE if and only if Ryuge?.

Proor. By Lemma 2.5,
Ryug = J RyK; (-, n) dowi(n).
E
Let A= {neE|U is not #,-thin at n}. Then, A is w}-measurable and
Rqu=J K, (-, n) dewi(n) +j RyK; (-, n) dwi(n).
ANnE E\A
The first integral in the above belongs to J#; and, by Lemma 6.1, the second
integral belongs to 2. Hence, Ryuze? if and if w}(AnE)=0.
LEMMA 6.5. For any pe? and ¢ > 0, the set
V,.={xeX|p(x) > eh;(x)}
is A ,-thin at w'-ae. nedtX.

PROOF. V. is an open set in X and p > ¢Ry,, h,. Hence Ry, h; €2, so
that the lemma follows from the previous one.

PROPOSITION 6.1. If pe?, then F-lim,_,p(x) =0 for wi-ae. nedtX.

ProOF. By the above lemma, for any & > 0, F-limsup,_,, p(x) < ¢ for a..
nediX, since hy < 1.

COROLLARY 6.2. F-lim,_, h,(x) =1 for w}-ae nediX.
ProOOF. It is enough to note that 1 — h, e 2.
ProrosiTioN 6.2 (cf. [3; Proposition 2.20] and [8;§2, Satz 3]). For a

bounded w*-measurable function ¢ on 0*X, let

h¢=f K, (-, n)o(n) doi(n).
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Then
F-limh,(x) = @(n)  for w}-ae nediX.
x—n

Proor. It is enough to consider the case ¢ = yg, the characteristic
function of an w}-measurable set E. Let u=h,, and v =h, —u = h,,_, where
E' =0*X\E. For n>0, V,={xeX|nu(x)>uv(x)} is an open set in X and
v, = min{ny, v}e ¥ ,. Letv,=u,+ p, with u,e #, and p,e?. Let p, be the
canonical measure representing u,. Then, for any closed set F contained in E’,
Lemma 5.1 implies

u,(F) = JRFundl < jRFv,,dl < anFud/l =nwi(FNE)=0.

Hence u,(E’)=0. Similarly, using the inequality v, <v, we have p,(E)
=0. Thus p, =0, so that v,e?. Since R, v <uv, it follows that R, veZ2,
and hence V, is #,-thin at w’}-ae. ned}X\E by Lemma 6.4. Since
u<v/m<l1/non X\V,, letting n > oo, we see that

F-limu(x) =0 for w}-ae nekE'.
x—n
Similar arguments show that F-lim,_,v(x) = 0 for w}{-a.e. neE. Since u = h,
— v, Corollary 6.2 implies that F-lim,_,, u(x) = 1 for w?t-ae. neE. Hence the
required assertion holds for ¢ = yg.

COROLLARY 6.3. If ue #(X) is bounded, then

u= J K, (-, no,(n)dwi(n)
rX

with @,(n) = F-lim,_, u(x), which exists for w}-a.e. nedtX.

Proor. We may assume that u >0. If u, is the canonical measure
representing u and if u < M, then u,(F) < Mw}(F) for any closed set F in 0*X
by Lemma 5.1. Hence, p, is absolutely continuous with respect to w} and g,
= @,0’ for some w}-measurable function ¢, with 0 < ¢, <M. Thus, u = h,
and F-lim, ., u(x) = ¢,(n) for w}-ae. nediX.

u

§7. Function classes &, and

Let A* be the set of all standard s# *-reference measures, namely the set of
all nonnegative measures 4 on X such that A(X) < oo and GA is positive
bounded continuous on X. Let 2, = {peP|Supp a(p) is compact}.
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LeEMMmA 7.1. Let v be a nonnegative measure on X such that

jpdv < for any pePco.

Then there exists A€ A* such that {GAdv < .

Proor. Let {U,},.x be a countable base of the open sets in X and let J
= {(m,n)eN x N|U,, is compact and U,, < U,}. For each (m, n)eJ, choose
@ € €o(X) such that 0 < ¢, ,, <1 on X, ¢, =1 on U,, and Supp @gm.n
c U, Let ppn = ROumn Then pen€Pco, 0 < pmm <1 on X and pg,,
=1 on U, Put pu,= 0(Pemw)- By assumption, dg, . = [Pumndv < .
Choose &, > 0, (m, n)eJ, such that

Z(m,n)e.l &(m,n) Max {a(m,n)’ ”(m,n)(X)’ 1} < 00

and set 4 =Y wes EmmPemnm- Then, we see easily that this A has the required
properties.

The mutual gradient measure ., and the gradient measure J, for f,
geR(X) are defined by (see [6])

dip.g=12{f0(9) + go(f) — o(fg) — fgo()}  and &, =0y

We know that d, >0 ([6; Theorem 3.1]). If we define 6, for f, ge Z*(X)
similarly in terms of o* then 6., =6, whenever f, geZ(X)NZ*(X)
([7; Theorem 2.1]). Therefore, we can define 6, for fe Z(X)nZ*(X) and
geR(X) + Z*(X) in such a way that the mapping g+ §;,, is linear on Z(X)
+ R*(X).

Let ?p={pePc|o(p)(X)< o} and 2p =P — P,. We consider the
function classes

'97}.={q/Gj-|qGQp} fOI' ’IEA*y and gr=U}.eA*‘9rl'

LEMMA 7.2.  Suppose fe R(X) and ge 2y satisfy the following conditions (i),
(i) and (iii):
(1) f is bounded,
(i) [xlgldlo(f) — fo(1)] < o0
(i) 64(X) < 00 and 6,(X) < o0.
Then fge 2.

PROOF. Let v=o0(fg). Since v = fa(g) + ga(f) — fga(l) — 201 15
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IvI(X flfldlo(g)l+flg|d|0(f — fo(D)] + 2{6;5,4|(X).

Since f is bounded and |o(g)|(X) < oo, [|f|d|a(g)| < co. By conditions (ii) and
(iii), the last two integrals in the above are finite. Hence, |v|(X) < co. Thus,
Gvelr and u = fg — Gve#(X). If |f|<M and g = p, — p, with p,, p,e P,
then |u| < M(p, + p,) + G|v|eP.. It follows that u=0, and thus fg
= Gve ;.

ProrosiTiON 7.1.  If fe R(X) satisfies the following three conditions (i), (ii)
and (iii), then fe F:
(1) f is bounded,
(ii) 0,(X) < 03
(iii) [pdlo(f)—fo(1)| < oo for any peP.,.

Proor. In view of condition (iii), by Lemma 7.1, we find A€ A* such that
jGidla(f) fo(1)] < 0. Note that dg,(X) < jGidi < oo by [7; Theorem
3.1]. Hence, by Lemma 7.2, fGle 2, ie., fe

ReMARk 7.1. Condition (iii) in Proposition 7.1 is valid if one of the
following is satisfied:
(@) G*|o(f) — fa(1)| is locally bounded;
(b) la(f) — fo()I(X) < o0;
(© la(f)(X) < oo and [f?da(l) < o0;
[ Gla(f)ldlo(f)] < oo and [f?do(1) < .

Proor. If (a) is satisfied, then [pd|a(f)— fo(1)| = [G*|a(f) — fa(1)]
do(p) < o for any pe P, Since any pe P, is bounded, (b) implies (iii) of
Proposition 7.1. Also, by [7; Theorem 3.1], | p*da(1) < [ pda(p) < oo for any
pePco. Hence, [f?do(l) < oo implies [p|f|do(l) < oo for any pePc, by
Schwarz’s inequality, and, in view of [7; Proposition 2.2], lea( Nldlo(f)| <
implies [ pd|a(f)| < oo for any pe P, Thus, each of (c) and (d) implies (jii) of
Proposition 7.1.

Let

Hy = {u e #(X)

8,(X) + fuz do(1) < oo},

jpdo(p) < oo},

2, =2, —%,, and
'%EB = {fE%E + ‘QI l f: bounded}.

g’l'—'{l’e?c
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COROLLARY 7.1. Any feRgp satisfies conditions (i), (i) and (iii) of
Proposition 1.1; so that Rgg < F .

ProOF. Let feRgg. By definition, (i) of Proposition 7.1 is satisfied. By
[7; Theorem 3.1], we see that 6 (X) + [f?do(1) < co. Therefore, (ii) and (iii) of
Proposition 7.1 are valid in view of (d) in the above Remark.

§8. Green’s formulae

Given Ae A*, we denote by K¥(x, y) the adjoint A-Martin kernel, namely,

_Gkxy)
GA(x)’

K*(x, y) x, yeX.
The adjoint A-Martin compactification X** is defined by {K¥(-, y)},ex and, for
Eed* X = X*\ X, K¥(¢& )eH%,.

Now, let 1=h¥+ G*(o*(1)) with hfe#*(X). For any Aed*,
h*e#* By Theorem 5.1 (applied to #*), there is a unique canonical
nonnegative measure w** on 0*uX such that

.
ht = K} (¢, -) dat*(9).

JorAx

LeMMmA 8.1. Let AeA*. If f=p/GA with pe Py, then

»

(8.1) fO = | KX y)do(fGA)(y)

JX
belongs to L*(w**); and hence (8.1) is defined w**-a.e. on 0**X and fe L' (w**) for
any fe F ,.

Proof. If f=p/GA with pe P, then

fawr =

X

{f K3y dw?“(é)}da(p)(y)

*AxX
= f h¥do(p) < o(p)(X) < 0.
X
We define

H*f = K¥ (¢, )f(©) dot ()
o*AX

for fe#,. Then H*fe #* — #% Obviously, H*1 = h*.

ProrosiTION 8.1. Let {X,} be an exhaustion of X and let t* be the
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nonnegative measure on 0X, such that R¥ hf = G*t¥ (cf. Lemma 1.1). Then,
for any fe %,

H*f(y) = lim,_,, G*(ft7)(y)  for all yeX.

PrROOF. We may assume that f= p/GA with pe P and AeA* Let pu
=o(p) = 6(fGA). Then for any yeX,

"

H*f(y) K3 (& »)f(©) dot*(9)

o au.x
= K3 (S, y){f K3, 2) du(Z)} dwt*(¢)
JorAx X

= {f K3 (& »K3(E, 2) dw’{“(é)} du(z).
o*AX

JX

By Corollary 5.2, {(GA)t}} vaguely converges to w¥* Since &> K¥(¢, y)
K*(&, z) is continuous near 0**X for fixed y, ze X, we have

j K% yK3(E 2) dot(Q)
X

= lim f K3(x, yKI(x, 2) GAX) dry(x)
n— oo ox,,

h— oo

= lim J K*(x, y) G(x, z) dt}¥(x).
ox

For any relatively compact neighborhood V of y, there is ¢ > 0 such that
K*(x, y) <c for xe X\ V (cf. Lemma 2.1). Then, for X, >V

0< j K*(x, y)G(x, z) dt}(x) < cj G(x, z)dt¥(x) = c(R% h¥)(z) < c
ox 2

n X,
for all zeX. Since u(X) < oo, Lebesgue’s convergence theorem implies

H*f(y) = lim I { f K3 (x, y)G(x, 2) dff(X)}du(Z)
X ¢

n— oo

= lim J KX (x, y) Gu(x) dryf(x) = lim f G(x, y)f(x) dzj(x).

X,

CoRrROLLARY 8.1. For fe%, H*f is independent of the choice of
AeA*; H*f >0 if f> 05 [H*f| < || fllht.

PrOPOSITION 8.2.  Suppose fe Z(X) and ge 2 satisfy conditions (i), (ii) and
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(iii) in Lemma 7.2 and f also satisfies condition (iii) in Proposition 7.1. Then

(8.2) o(f9)(X) = J

X

H*fdo(g) + J fgds*(1).
X
PrOOF. By Proposition 7.1 and Lemma 7.2, we see that fe# and

fg€2p. Thus, |o(f@)I(X) <oo. Let g=p, —p, with p;eZp (j=1,2);let
[fl<M on X. Then, using Corollary 8.1, we have

f |H*f1d|o(g)| < M{a(p))(X) + o(p)(X)} < o0,
X

J |fglda*(1) < MJ (py + po)do*(1) = Mf G*(a*(1))do(p, + p2)
X X X

< M{o(p)(X) + a(pr)(X)} < oo.

Thus, every term in (8.2) is well-defined and finite valued. Since R% h¥
+ G*(o*(1))11, we have

a(f9)(X) = "llj;j {R%, hT + G*(o*(1))} do(f9)

X

= lim U G*t*do(fg) +J G*(a*(l))do(fg)}
n— oo X X

= lim {f fgdtk +J fg da*(l)}
"o (Jex, b's

= lim f G*(f1¥)da(g) +f fgda*(1).
n—ow X b'e

By Proposition 8.1, G*(ft¥) > H*f. Since {G*(ft})} is uniformly bounded
and |o(g)|(X) < oo, Lebesgue’s convergence theorem implies

limJ G*(f) d(f(g)=f H*f do(g).
n— oo X X

THEOREM 8.1. If fe Rpg and ge 2;r = 2,N 2y, then

26¢;,5(X) +[ fgda(1) +f fgda*(1)
X X

=J (f—H*f)da(g)+J g do(f).
X X

Proor. By Corollary 7.1, f satisfies (i) and the first condition in (iii) of
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Lemma 7.2 and (iii) of Proposition 7.1. Since g€ 2,, the second condition in
(iii) of Lemma 7.2 is also satisfied. If f=u + q with ues#; and qe2,, then

f Igldla(f)lsj G(lo(9))) d|a(q)l

X

SJ G(lo(g)) dla(9)| +J G(lo(q)) dla(g)] < o0
X X

by [7; Proposition 2.2], and

1
J [fglda(1) < —{J u?do(1) + J q* da(l)1 + J g*do(1) < 0.
X 2 X X j X
Thus (ii) of Lemma 7.2 is satisfied. Hence, (8.2) in the previous proposition and
the definition of d,, yield the required formula.

LeEmMMA 8.2. Let AeA* and f = p/GA with pe Pg. Then
f(&) = liminf f(x)  for any E(ed¥*X.
x=¢

Proor. Let u=a(p). Then, f(x) = jK}‘(x, y)du(y). Hence, by the lower
semicontinuity of K*(-, y) on X*, we have f(¢) < liminf, ., f(x).

To prove the converse inequality, let o < liminf,_. f(x). Then there exists
a neighborhood V of & in X** such that f(x) >« on ¥nX. Let {X,} be an
exhaustion of X and let v, be the nonnegative measure such that Supp v, = 0X,,
and R} K¥(£ -) = [K¥(x, -) dv,(x). Note that by Lemma 4.5 applied to #'*,
v, =& vaguely as n— co. Hence, v,(XnV)—>1 (n— ). Thus, we have

f©

J K%(&, y)du(y) = lim f [RX, KX -)1(y)duly)
X neo Jx

lim J { f K3(x, y) dv,.} du(y) = lim J J(x) dv,(x)
n>wo Jy ox,, n-o fy

> alimsup v, (X nV) = a.

n— oo

Hence, f(£) > liminf, ,; f(x).

Given leA* and (ed** X, F*-lim, F*-limsup and F*-liminf are
defined with respect to the filter B}F = {V< X | X\ Vis #¥-thin at £}.

ProrosITION 8.3. Let Ae A* and fe F ;. Then

F*-lim f(x) = f(§) for w**-ae. Eed**X.
x=&
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PrROOF. Since f(¢) is finite for w**-a.e. £€0**X, it is enough to show that
the equality F*-lim,_,; f(x) = £(&) holds for all £€d**X in case f = p/GA with
pePr. By Corollary 6.1 (applied to #*),

liminf f(x) < F*-liminf f(x)  for all £ed**X.
x—»{ x—>§

Hence, together with Lemma 8.2, we have

f(6) < F*-liminff(x)  for all Eed**X.

x—¢
To prove F*-limsup, ., f(x) < f(&), we may assume that f(¢) < 0. Let o > f(£)
and set U, = {xe X | f(x) > a}. Then U, is an open set in X. Using Lemma
1.3, we have

(8.3) [RE. KX(x. )10) = [R.G(x, -)1(y)

1
(GA) ()

=———[Ry. G(-, .

Gy Ree 60> 910

Let {X,} be an exhaustion of X and consider the measures u, , = §2="*" defined
in Lemma 1.2. Then, since Supp u,, < U, and GA < p/a on U,, we have

r»

J [Ry,G(-, »1(x)di(y) = lim | [Ry,qx,G(+, y)1(x)dA(y)
X e Jx

r

= lim ” G(z, y)dux,,.(Z)}di(y)
U,

R
noJx

[ 1
= lim GAdy,, < —lim j

- -
noo |5 O n—o0

pdiy,

U

1. 1
= — lim [Ry,x,P](x) < —p(x).
o n> o o
Hence, by (8.3),
1
f R} K¥(x,)di <= f(x).
X o
Thus, using Lemma 2.3 (applied to #*) and Lemma 8.2, we have

1 1.
j RE, K3(&, -)dA < - liminf f(x) = - f(§) < 1 =J K%, ) d4,
x o x—¢ o X
which implies that R§_ K¥(&, ) # K¥(&, +), ie, U, is #'%-thin at £ Hence, F*-
limsup,., f(x) <a, and thus F*-limsup,., f(x) < f(¢). This completes the
proof.



Martin boundary of a harmonic space 185

LemMa 83. If feF n(#*(X) + 2¢), where 2t = P — PE, and if f is
bounded, then f = H*f + G*(a*({)).

Proor. Let fe#,, AeA* Since fe#*(X)+ 2% f=u*+ G*(o*(f))
with u*e #*(X). Then u* is bounded on X. Hence, by Corollary 6.3 applied
to H¥,

u* =f K& ) 9@ dot*(©)
o*AX

with @(¢) = F*-lim,_ u*(y), which exists w}*-a.e. £€0f*X. By Proposition
6.1 (applied to #¥),

F*-lim G*(a*(f))(y) =0  for w¥**-ae. ed*'X.
y=8
Hence
F*-lim f(y) = (&)  for w¥*-ae. Eed**X.
i ndd

Thus, by Proposition 8.3, f(£) = ¢(¢) w**-a.e. on d**X, and hence H*f = u*.
We write 6(f) = {a(f) + o*(f)}/2 for feR(X)nR*X).
THEOREM 8.2. If fe RegN(H *(X) + 2¢) and g€ 2,y, then

84) Orr.a1(X) +j fgdé(1) =j gdé(f).
b b'

Proor. By Corollary 7.1, fe#%#. Thus, by Lemma 83, f— H*f
= G*(0*(f)). Therefore,

j (f—H*f)dG(g)=j G*(G*(f))da(g)=f g da*(f).
X X

X

Hence, (8.4) follows from Theorem 8.1.

COROLLARY 8.2. If feRpgNREp and g€ 2;p + 2, then (8.4) holds.
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