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ABSTRACT. This paper proves the existence of a new nontrivial family of filtration
three in the stable homotopy group of spheres 7y(pn.p)(p-1)-3S Which is of order p and

is represented by (boh, + hib,_1) in the E;Z(p (7D term of the Adams spectral
sequence, where p > 5 is a prime and n > 3.

1. Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized
at an odd prime p. To determine the stable homotopy groups of spheres
7,.S is one of the central problems in homotopy theory. One of the main tools
to reach it is the Adams spectral sequence (ASS) Ey'' = Exty'(Z,, Z,) = n,—S,
where the Eg”-term is the cohomology of A. If a family of generators x; in
Ey" converges nontrivially in the ASS, then we get a family of nontrivial
homotopy elements f; in #.S and we say that f; is represented by x; € E;”" and
has filtration s in the ASS. So far, not so many families of homotopy elements
in 7S have been detected. For example, a family {, | € myng44—3S for n > 2
which has filtration 3 and is represented by hgb,_1 € Extj”’ "q+q(Zp, Z,) has been
detected in [2], where ¢ =2(p — 1).

From [6], Ext}"(Z,,Z,) has Z,-base consisting of ag,h, (n>0) whose
internal degrees are 1, p"g respectively and Exlj’*(Zp7Zp) has Z,-base con-
sisting of aé,uz,aohn (n>0), gnkn, b, (n=0) and hh, (n=n+2,n>0)
whose internal degrees are 2, 2¢+1, p"q+1, (p"+2p" Vg, (2p" +p" g,
p"tq, p"q+ pMq respectively.

Let M be the Moore spectrum modulo a prime p > 5 given by the co-
fibration

(1.1) stsimlzs.
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Let oo: 29M — M be the Adams map and K be its cofibre given by the co-
fibration

(1.2) sy m kD oseiy

The spectrum which we briefly write as K is known to be the Toda-Smith
spectrum V(1) and the elements in the stable homotopy of spheres 7.S are
closely related to the elements in n.M or n,K. The main purpose of this
paper is to detect a new family of (boh, + h1b,_;)-element in 7, S as stated in
the following Theorem A.

THEOREM A. Let p =5, n> 3, then,

(1) i.(lhy,) € Exty”" P (H* M, Z,) is a permanent cycle in the ASS and
converges to a nontrivial element &, € Tyngypg—2 M.

(2) For &, € mpngrpg—2M obtained in (1), j&, € Myngipg—3S is a nontrivial
element of order p which is represented (up to nonzero scalar) by (bohy, + hib,—1)
€ Ext;”""""(7, 7)) in the ASS.

Theorem A(2) is an easy consequence of Theorem A(1) which will be
proved by an argument processing in the Adams resolution of certain spectra
related to M and using the known {,_;-map in [2] as a geometric input. The

main step is to show that there exists a map &, € [7"9743 M, S] such that
wié, = j'pni’ modulo higher filtration,

where f e [SP*VIK K] is the known second periodicity element and #'i'i €
Tyngrq—2K is an hoh,-map induced by the known {,_; € myny44—3S so that the
right hand side of the above equation has filtration 4 in the ASS.

The new family in 7S obtained in Theorem A(2) actually is a third peri-
odicity family represented by y,. 2/, 2>_; + other terms e Ext?g’;* gp(BP,, BP,) in
the Adams-Novikov spectral sequence based on the Brown-Peterson spectrum
BP. Roughly speaking, we have the relation that o1y,u2 /21 = 1Byt /pn1-
€ Extyy pp(BP,,BP,) and after the Thom map & : Exty zp(BP., BP.) —
Exty"(Z,,Z,) we have D(yuajpna_y) = bohy+hib, 1 € Ext}*(Z,,Z,) since
(1Pt jpn1 1) = bohohy € Ext}™(Z,, Z,).

After giving some preliminaries on low dimensional Ext groups in §2, the
proof of Theorem A will be given in §3.

2. Some preliminaries on low dimensional Ext groups

In this section, we prove some results on low dimensional Ext groups
which will be used in the proof of the main theorem.

PrOPOSITION 2.1. Let p>5, n=>3, h,eExt;”Z,,2,), ajeExty"-
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(Z,,Z,) and a3, b, be generators in Extj"*(Zp,Zp) with internal degrees 2q + 1,
p"tlq respectively. Then we have the following.
(1) The product aybohy # 0 € Ext?" ™04 (7 7y,
(2) Exlj’p q*”“(Z,,,Z,,) = Zp{aobohn,aobn_1h1},

Ext}?" V(7 7y ~ 7 {bohohy}.

xt’n r,, = or t=1,2 and r=1,2,3.

3)  Exiprietetietz 7y =0 1,2 and r=1,2,3
4) Extp"7(z,.2,) =0 for r=2,3.

Proor. From [8], p. 82, Theorem 3.2.5, there is a May spectral sequence

$:0% d.} which converges to Ext;'(Z,, with Ej-term

MSS) {ES"*,d,} which Ext}y'(Z,,Z,) with E

E7" " = E(hyilm>0,i >0)® P(by,;|m>0,i>0)® P(a, |n > 0),

where E is the exterior algebra, P is the polynomial algebra, and #,, ;e
Ell,Z(pm—l)p’,melj bm.i € Elz’z(pmfl)”ﬁm"p(szl) a, € Ell’zl’"*l"znﬂ. Observe the sec-
ond degree of the following generators (mod p"q) for 2 <i<n, n>3:

b

hil =p'q  (mod p"g),
b1l =p'q  (modp"q),
hsia| = (P2 -+ p" g (modp"q),i<s+i-2<n,
bsit| = (p '+ 4 pHg  (modp"q),i<s+i—2<n,
laii]=(p'+---+1Dg+1 (mod p”q).

At degree t =p"g+ (p+r)g+k for r=0,1,2 and k=0,1,2,3, Ef""* has no
generator which has factors consisting of the above elements, because such
generators will have internal degree (¢, 1p" '+ --- 4+ c1p +co)g +d (mod p"q)
with some ¢; #0, 2 <i<n—1, where 0 < ¢, <p,s=0,...,n—1, 0<d <4.
Exclude the degree > p"g, then we know that Ef" “for t=p'q+ (p+r)g+k
with r=0,1,2, £k=0,1,2,3 has elements of the form /A ,x or by ,_1x for
some x e E(hlﬂ(),hl"l,hz’o) ® P(ao,al,ag,bho). So we have

4,p"q+(p+1)g,
E, = Zp{h1,ub1,0M1,0,b1, n—1h1,111,0},
PPN i ko, Bl ol 0o, By w11 02, By neth
E = Zy{h1 nh1,1h1,0a1, h1 wh20h1 000, b1 n—1h1,0a2, b1, n—1h2,0a1 },
4,p"q+H(p+)g+1,+ b h b h h i1 h
E = Zp{b1 n—1h1 101, b1 n_1h2 000, 1 nh1,1h1 a0},
4,p"q+(p+2)q+2, % 2
E| = Z{b1 n-1a2a1, hy yha oarao, hi whi oaxao, hi nhi1ai'},

4,p"q+(p+1)g+2,% 2
E| = Z{b1 n-1a2a0, hi nh1 oarao, hi nha0a;},



480 Jinkun LIN

4,p"q+(p+2)q+3,* 4,p"q+(p+1)q+3,* 2
El = Zp{hhnagalao}, El = Z,,{hhnazao},
4,p"q+pg+1,% __
E = Z,{b1,n—1h1,1a0, h1,xb1,0a0},
E3.,17”61+1)q+1,* —Z {h h E3-,I’NLI+(P+1)KI-,* — 7 1b h oy
1 = p{ 1,n 1,100}, 1 = p{ 1,n—1712,0,11,0/1,1 1,0}7

Ef’pnﬁpq’* = Z,{h1,ub1,0, b1 p—1hi1}.

From [8], p. 82, Theorem 3.2.5, the formulas for the differential d; are
di(h.n) =0, di(b1,,1) =0, di(ag) =0, di(a1) = —aoh0, di(ha0) = —hiohi 1,
di(az) = —aohy,0 — aihy,y and d,(xy) = d,(x)y + (=1)°xd,(y) for xe E>"*, ye
EST (r=1), xy= (=1)* " yx for x,y = miybm.i of a,. Thus, we have

di(hy by 1 oar) = 0 = di (hy wha, ol 0ao),
di (b1 n—1h1,0a2) = b1 n—1h oaoha o + b1 p—1h10a1hi1 # 0, )
di (b1 p—1ha0a1) = by n—1ha 0a0hi o0 — b1 1810l 141 # 0, )

and the last two elements are linearly independent. Therefore,
Eyr et & 7y oan, by gha.ohoae} and  these two  generators
are permanent cycles in the MSS since it is known that hy ,, b1 ., h2 0010,
hioai,ap € E’"" are permanent cycles which converge in the MSS for all
n>0 to hy,by, go, 02, ao€ Exty™(Z,,Z,) respectively. Then, hyoa1by ohi €
E)” "Hpath cannot be hitted by differential and it converges in the MSS
nontrivially to ayboh, € Ext;? P24 (7 7y and so (1) is proved.

Note that Ay ,hy 1hioar, b1 ,h0h20a0 converge in the MSS to h,hjon =0,
hngoap =0 (Note: axhy =0, goap =0 by [1], Table 8.2) in Ext respectively.
Combining with the linearly independent equations (*), (**), this shows that
Exty?" et etz 7)) =0. Look at the following:

di (b1 p—1h1a1) = by p—1hy 1a0hy 0 = —di (b1 p—1h2,0a0)

and bl,n,1h171a1 + bl,nflhloao =d (bLn,laz). Moreover, hl,nhl,lhl,oao € E14"*’*
converges in the MSS to /uhihpap=0 in Ext, then we have
Exty?" etttz 7)) =0. By a straightforward calculation we have

di (b1 n1ara1) = —b1 y_1a0h2,0a1 — b1 p—1a1h1,1a1 + b1 n_1a2aohy o # 0,
di (h1,wha0a1a0) = by nhi ol 1a1a0 — hi who 0aohy oap # 0,
di (hy wh10a2a0) = —hy i 0aihi 1ao — by phi oaohz,0a0 # 0,
dy (h nhi1al) = —hy why 1aohy oar + by nhy 1araohy o = 2y ,hy 1agarhy o # 0,
where the first three elements are linearly independent and

di (hy (hy,0arag + hy gazag + hy 1a?)) = 0.
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However, Iy n(hz oa1ag + hy oarag + h] 143 ) = —d, (h] nazal) which  shows
that all the generators in E‘”’ T+ (P22 die, ie. E;” aHrat2x _ o 5o
Exty?" T2z 7y =0 as desired. By a stralghtforward calculation we
have

di (b1 p—1a2a0) = —by y—1a0ha 000 — by p_1a1hy 100 # 0,

dy (hy pha.0al) = hyohy ohi 1@ #0

which are linearly independent. In addition, /; ,h; oa1ap is a permanent cycle
which converges in the MSS to h,0ap =0 in Ext (Note: apop =0 by [1],
Table 8.2). This shows that Exzj? "7tz 7y — 0. Moreover, we have

dy(hi,nararao) = hy waohs oarag + hy waihy 1avag + hy waxaoh oaog # 0,
dy(h naral) = —hy phooai — hy uhijaral # 0.

This shows that Exz;? ¢+ (r+74+3 (Z,,Z,) =0 for r =1,2 and finishes the proof
of (3).

It is easily seen that d,(E""174*1*) =0 for all r>1 and d (E; 7" 7T04x)
=7 {b] n— 1h1 Ohl 1} Therefore E4‘I7 (g ~ 7 {hl nb1 ()h1 ()} E4p THpatl
~ Z,{b1.n_1h1a0, hy_ub1 0ag} and d( g *) 0 for all r> 2, which
proves (2). The result in (4) follows from E; "4 — 7 (h a2ay)},
E;‘,(p+2)q+2,* = Z,,{bl‘oalz,hlvlhlvoalao} and dl (hlﬁla%ao) # 0, dl (blﬁ()a%) # 0,
2hy 1hparap = d) (hl_ylalz) by a straghtforward calculation. Q.E.D.

ProposITION 2.2. Let p>5, n> 3, then
(1) Extpr et 242(geg H*M) = 0.
) ExtyP" N HK, Z,) =0 for r=3,t=0,1 or r=4,1=1,2.

Proor. (1) Consider the exact sequence (k =p"q+ (p+2)q,r =2,3)

Exi*™"(H*M,Z,) = Ext**"(H*K, Z,) & Ex(t*"~ " (1" M, Z,) &

induced by (1.2), where o, is the connecting homomorphism associated with
the short exact sequence in Z,-cohomology induced by (1.2). The first and
the third groups are zero by Proposition 2.1(3) except for the third group in
case r = 2 which has unique generator o.i.(boh,) by Proposition 2.1(2),(3), since
hobohy = juoiy (bohy) € Ext;? """ (Z 7)) (cf. Remark below). However,
o, (i), (bohy) # 0 € Ext}”" qu(p”)q”(H M,Z,) by the fact that j.o.(od),(bohy)
= onboh, # 0 (cf. Proposition 2.1(1)). This shows that the above o, is monic
and im j/ =0. So the middle group is zero for r = 2,3 and the result follows
by the exact sequence (k = p"q+ (p+2)q)
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0= Ext"* 3 (H'K, Z,) L Exi* 2(H'K, H*M) 5 Ext* ™ (H'K,Z,) = 0

induced by (1.1).
(2) Look at the exact sequence

Exz:;"p’lq+2q+l(H*M7Zp) i) Ext/;’17nq+2q+r(H*K7Z ) _} E trp q+q+i— 1(H M,Z )

induced by (1.2). The right group is zero for (r,7) = (3,0),(4,1),(4,2) by
[1], Table 8.1 or [4], Proposition 2.1 and has unique generator i, (/ob,—1) for
(r,1)=(3,1) which satisfies o.i,(hob, 1) =i,o2b, 1 #0€Exty?” "™ (H* M, Z,)
by [4], Proposition 2.1 and Exz;”"4"*(Z,,Z,) = 0 by [1], Table 8.1. The left
group is zero for (r,t) = (3,0) and has unique generator i.(ohy), i(c2b,—1),
o (af), (by—1) for (r,t) =(3,1), (4,1), (4,2) respectively (cf. [1], Table 8.1
and [4], Proposition 2.1(2)). However, i i.(oaxh,) =0, ili.(02b,—1) =0 and
ilo (od), (by_1) = 0 by i'ijo’i = 0 € mp,—1 K, then the result follows. Q.E.D.

RemMARK. Let us intepret why the connecting homomorphism p. :
Ext'(Z,,Z,) — Ext;*"""(Z,,Z,) is a multiplication by ap. Let W Lx?
Y L ZW be a cofibration such that 4 induces the zero homomorphism in Z,-
cohomology. From [8], p. 63-64, Theorem 2.3.4, the connecting homo-
morphism /, : Ext}'(H*Y,Z,) — Ext;""'(H*W,Z,) can be described as the
Yoneda product with the element of ExtA (H*W,H*Y) corresponding to the

short exact sequence 0 — H* Yy L H* X H*W — 0 in Z,-cohomology. Ap-
plying this result to the cofibration (1.1), for the connecting homomorphism
ps: Exty'(Z,,Z,) — Ex t”l’tH(Z,,,Zp),p*(x) is the Yoneda productof x € Ext;
(z,,2,) w1th ap € ExtA (Z Z,) corresponding to the short exact sequence
0> H'SLH HMS H'S — 0. (Note: The latter also follows from the fact
that the degree p map S — S is represented by aq € Ext/}’ ! (Z,,Z,) in the ASS.)
This shows that p.(x) =aox and p.(x)-x" =p.(xx’). Similarly we have
p(x) = apx and j.oui.(x) = hox.

Let L be the cofibre of o) =jui: X7 'S — S and K’ be the cofibre of
ofi : 2"S — M given by the following cofibrations:

(2.3) setsg 2 s U p L sag,
(2.4) zras 2oy g 2 sl

r

Then K; also is the cofibre of vj’: 'K — X9K’ given by the cofibration

(2.5) sk Doz ok 2k,

where we briefly write K| as K’ etc., which can be seen by the following
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commutative diagram of 3 x 3 lemma in stable homotopy category (cf. [9], p.
292-293):

>l Y, o yagr L, yutlg
(2.6) SIM

/\/\

sus 2L, M —— K,
and we have the following relations:
(2.7) y=yy, Yv=wvo,  prn=i, jp=—upn.

Let my : XM — M A M be the injection and my; : M A M — M be the mul-
tiplication of M satisfying ma (i A lp) = 1y, (G A L)y = (Mg A J)ay =
Ly and (i A Ly)mpr + ipe(G A Lyr) = Ly - By the commutative diagram of
3 x 3 lemma

IK//\p

M —  SK'

\lj/\lM)m% /\]\ /

(2.8) PXGERY

/ \ g \

we have two cofibrations

(2.9) K KDy 2L vk
(2.10) Pl QEEAEE) VEULILING (N VLI

where [K, X9"2S]~Z,{ji'}, since [M,X92S] =0, [M,XS]=Z,{j} and «ijj’ =
—(og A lp)j =j'a" with o = oy A lg. In addition, (vi A Ly)mar(od A 1pr) +
(v A Ly (Joi A Lpr) = (0 A Lpr)(ei A 1p) = 0, which shows that

(2.11) (i A Lpp)o = —(v A Lpg)mp(oq A 1ay),

since my (i A Lpg) = a0 =mp(i A Lyy)ar.
By the commutative diagram of 3 x 3-lemma in the stable homotopy
category
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J "Alg

M ——— LAK 21K

N AN

(2.12) SIK' A M

SN S

solg I syt s
we have a cofibration

(i”/\ l/()

(2.13) M LAK SIK'AM

M

with the relation
(2.14) e(v A Ly)imy = o, e(lg A i)y’ = =2/’ € [E2K, M.

Note that e(lg A i)ve [Z97'M, M| = Z,{ijo, aij} so that e(1g: A i)v = Ayijo+
Jowij, Aijooi + Jaodjoi = 0 and Ay = —24; by 2aijo = ija® + o%ij. By applying
don e(lg A i)v=¢(lg A if)(v A Ly)imar we have A =1 and so ¢(lg A i)y’ =
—2j'o’. In addition, by the 3 x 3-lemma in the stable homotopy category one
can easily check that there is a cofibration

(2.15) MEK SsL — 5s

with the relation that k-v = i"j.

From [7], p. 434, there are A€ [ 'L A K,K] and 4€[S'K,L A K]
satisfying 4(i" A 1g) = (j" A 1x)d =i'j' € [Z797'K, K] and jj’A =0. Then, by
(2.9), there is Ag € [ 9" 'L A K,K'] such that

(2.16) Ag/(i" A lg) =0/ e [Z7K, K], AG"A k)= (" A lg)d =i
ProrosiTiON 2.17. Let p > 5,n> 3, then

(1) Exey?" MY HK H*M) =0 for t=0,1.

() Ex;”(Z, H*M)=0 and  Exi;"""UPUHKIAM, Z,)  has
unique generator (v A leM) *(hago), where hugo € Ext, 3" (2

(H*M,H*M) satisfies  j.i*(hugo) = hugo, the unique generator of
Ext;?" "2z 7)) stated in 1], Table 8.1.

(3) (v Alyimy), : Exgy? "0 g B M) — Exi) PP (e KA
M,H*M) is monic.

ProoOE. (1) Consider the exact sequence (k =p”"q+tg+ 1 with t=0,1)

(i), ().

Ext™(H*M,H*M) — Ext;*(H*K, H*M) = Ext;"* "' (H*M,H* M)
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induced by (1.2). The left group is zero for ¢t =0 and has unique generator
%,(b,_1) for t = 1 (cf. [4], Proposition 2.3(1) and 2.4(1)), and hence im (i), = 0.
The right group is zero for 7=0,1, since Extj"p"ﬁ(l*l)qﬂ(zp,Zp) =0 for
t=0,1 and r=—1,0 (cf. [1], Table 8.1). Thus im (j'), =0 and the result
follows.

(2) By [l], Table 8.1, Ext;? """ (7, 7,) =0 and Ext,” "*"(Z, Z,)
has two generators h,bg, h1b,_1 such that ayh,by,aphib,_ 1 are linearly inde-
pendent in Exzj’*(Z,,, Z,) (cf. Proposition 2.1(2)). Then the first result follows.

For the second half, look at the exact sequence

(L‘A lM)*

Ext;?" TR (N A ML Z,) S B PP (KA M Z,)

(yAla), Extj,p"q+(p+l)q+l(H*M,Zp)
induced by (2.4). The right group is zero by Extj’p”qﬂpﬂ)qﬂ(zp,Zp) =0
for r=20,1,2 and the left group has unique generator (iys),i*(h.go) by
Exg)?" R (7 7 =0 for r= 1,2 and Ext;”" "7, 7)) = Z,{h.go}
(cf. [1], Table 8.1). Thus the result follows.

(3) Consider the exact sequence induced by (2.10)

(j/O(/

EXl‘:J’”‘]ﬂL(PJrz)W‘Z(H*K’ H*M) —>*> Exl‘jpnq+(p+2)q+l (H*M, H*M)

(U A 1,11}1_1]\4)*

Ext; P P (KA MOH M),
The left group is zero by Proposition 2.2(1) and so the result follows. Q.E.D.

ProposITION 2.18. Let p > 5,n> 3, then
(1) [Z7'LAK,M]=0.
(2) Exty?" "0 gep A K, H*M) = 0.

Proor. (1) By (2.3), it suffices to prove [27'K,M]=0=[29'K, M].

Consider the exact sequence (1 =0,1)
=apr ) Y5 etk v L (st i)

induced by (1.2). The left group has unique generator «,a for t=0,1 re-
spectively, and hence im ()" =0. The right group has unique generator i
for t=0 and two generators ijo, aij for t=1. However, jja #0, (A1ija+ Aroif)o
=0 implies 4; = 4, =0, and hence o* is monic. Thus im (i’)* =0 and the
result follows.

(2) Since the top cell of L A K has degree 2¢g + 2, the result follows
from the fact that Extz;*(Z,,Z,) has Z,-base consisting of /, for all n >0
with internal degree p”q.
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3. Proof of the main theorem

We first prove Theorem A(1) which will be done by an argument pro-
cessing in the Adams resolution of some spectra related to K. Let

LN R s L RN )

(3.1) | l;;z lzzl l;}o

>72KG, 27KG, KGy = KZ,

be the minimal Adams resolution of S satisfying the following.

(1) E; by KG, & Eg % ¥E, are cofibrations for all s > 0 which induce
short exact sequences in Z,-cohomology.

(2) KGy is a wedge sum of suspensions of Eilenberg-MacLane spectra
of type KZ,.

(3) mKG; are the E'-terms, (b,¢s—1), : mKG,_1 — m,KG, are the dffl”—
differentials of the ASS and n,KG, = Exty'(Z,,Z,) (cf. [3], p. 180).

Then an Adams resolution of an arbitrary finite spectrum J can be
obtained by smashing ¥ on (3.1). We first prove the following lemmas.

LemMa 3.2. (1) Let p>3,n>3 and h, eExt/}’pnq(Zp,Zp), bo, 0,90 be
the generators in Exlj’*(Zp,Z,,) with internal degrees pq,2q+1,(p+2)q re-
spectively, then dy(h,go) = aah,by # 0 € Extj’p’querz)qH(Zp,Zp) (up to non-
zero scalar), where dy : Exty*(Z,, Z,) — Ext, "' (Z,,2,) is the differential of
the ASS.

(2) The differential satisfies  dy(Gohy) = ot (bohy) € Ext; " 72472,
(H*M,H*M) up to nonzero scalar, where g, eExtj’@”)qH(H*M,H*M),
bo € Extj"’q(H*M, H*M) and hy € Extf}”’"q(H*M7 H*M) satisfy i*j.dy = go,
i*(bo) = i.(bo) and i*(h,) = i.(h,) respectively.

Proor. (1) Let e [Z(P*1IK K] be the second periodicity element (cf.
[7], p. 426). It is known that S, =jj'fi'i € m,y»S is represented by by e
Ext;?(Z,,7,) in the ASS and wf; = julijj'fi'i = 0, azby # 0 € Exty P12+
(Z,,Z,). Then ayby must be hitted by the differential and the only possibility
is dh(go) = o2by up to nonzero scalar. From [8], p. 11, Theorem 1.2.14, d(hy,)
=apb,_ € Exzjﬂpanrl(Zp’Zp)a then d2(hn90) = dZ(hn)g(] +hnd2(90) = ahuby up
to nonzero scalar. (Note: goag =0 by [1], Table 8.2).

(2) Since p.(go) = aogo =0, we have goej. Exty PN H M, Z,).
Moreover, p* Ext; "™ (H M, 7)) < i, Ext} "™ (Z,,Z,) =0 (cf. Prop-
osition 2.1(4)), then there is g, € Ext;’ """ (H* M, H* M) such that i*j,g, =
go. By (1), the differential satisfies d(i*/.g,) = aabo = i*j.o.a,(by) and so
dr(i*Go) = i* a0, (by) modulo i, Ext/;"(“z)quz(Zp,Zp) =0 (cf. Proposition 2.1(4)).



A new family of filtration three 487

Hence we have ds(gy) = oo (by) modulo j* Exty "™ (H*M,Z,) =0 by
Proposition 2.1(4). Since ds(h,) € Ext;” "' (H*M,H*M) which is zero by
Ext;”" """ (H*M, Z,) =0 for r=1,2 (cf. [4], Proposition 2.3(1)), we have
dy (Gohn) = da(Go)hn = oo (bo) - by = a0 (bohy) (cf. Remark of Proposition 2.2)
as desired. Q.E.D.

LemMma 3.3. Let p > 5n>3, then there exists 77,’,’2 e [ZPTIK Ey A K]
such that (by A g)n;, 5 = hohy A 1x € [P K, KGy A K] and (1, A o)y, 5 =0,
where hohy € Ty yKGy = Ext;?"7(Z,,2,) and o' =jui A 1g € [297'K, K].

Proor. From [5], Proposition 3.4, there is a dj-cycle (hoh,)" €
[anq+q71K, KGy A K] such that (IKGg /\j/)(/’lohn)” = (IKGz A l]]/)(h()hn A 1]()
and (¢ A Lg)(hoh,)" = 0. Tt follows that (& A 1z .x)(1ke, A 4)(hohy)" =0
and there exists f, € [EP"9"9 2K Ey AL AK] such that (by Alp,g)fi =
(1kg, A A)(hohy)" € [ZP"7972K KGy A L A K]. Then, by (2.16) we have

(b2 A 1) (Lg, A J" A L&) = (Lkay A (G A 1x)A) (hohy)"

= (Ixe, A 17" (hoha)" = (1xG, A '5j") (hohw A 1)

and so

(by Ag)(Lg AJ" A LK) (g A L A ) (fy A Lg)Y
= (1xg, A ) (1kgy A F'ijj A 1g) (hohy A 1 A 1g)v = hohy A 1k,

where u: K A K — K is the multiplication of K satisfying u(i'i A lg) = lg and
v:Z9PK — K A K is the injection such that (jj' A 1x)v = 1k (cf. [7], p. 433).

This shows that 7, , = (15, Aj" A lg)(1g, A 1z A ) (fy A lg)v is our desired
map. Q.E.D.

PrOOF OF THEOREM A(l). For the map #,, in Lemma 3.3, we have
(b2 A L), »1'] = [(hohy A 1x)'1"] = (o1 A 1g),[(h A 1k)i"], then [(by A 1pak)-
(I, A" A L)y i =0€ Ext;”"""(H*L A K,H*M). By (2.3) and Proposi-
tion 2.17(1) we have Exz;”" """ (H*L A K,H*M) =0, then (a@a A lz.x)-
(g, A 8" A Lg)n! i' € [EP"7T92M | L A K] has filtration > 4. Moreover, the sec-
ond periodicity element fe [E(?*D9K K] has filtration one, then (@oa A

tration > 5 with f, e [ZP"TH (P23 0 Es A L A K], Tt follows that (1z, A i"

A LK)(Lg A B, 5" = (@2a3ds A 1 nk)fo+ (€1 Alpak)g and the di-cycle g e
[ZP"a+(r+2d N KGy A L A K] is zero by Proposition 2.18(2). That is, we have

(3.4) (lEz A (i// A IK)ﬁ)ﬂ,/l,zl'l = (@azds A 1 ak) fa

for some f € [ZP"4H (P43 Es A L A K.
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By composing (l1g, Ae(lg: A i)dg) on (3.4) we have (@aas A ly)-
(g, A e(lgr A i)dgo) foi = (1, A e(1gr A D)o By, 5i'i = 0 by (2.16), (2.14), (3.4)
and Lemma 3.3. '

Note that 7,11 (p12)g-1KGa A M =0 and 7,0y (p12),KG3 A M has unique
generator (lgg, A D)h,go (cf. [1], Table 8.1). Then we have

(35) (&4 A lM)(lEs A 8(1]{/ A i)Zi[o)fzi = }V(E3 A IM)(lKG3 A i)hng()

for some A€ Z, and this shows that the differential Ad>(i.(h.g0)) =0, since
e€[X9'K'A M, M] induces the zero homomorphism in Z,-cohomology.
Note that d»(i.(h,g0)) # 0, for otherwise, we would have d5(h,g0) = p+(gobn-1)
= apgobp_1 =0 by apgo=0 in [1], Table 8.2, and Extj‘p”“(p”)q(Zp,Zp)
=~ Z,{gob,—1} by [4], Proposition 2.1(2). This contradicts Lemma 3.2. So
the scalar 4 must be 0 and by applying the derivation d on (3.5) we have (cf.
[10], p. 210, Theorem 2.2 and d(e(1x: A i)dg/) € [E~'L A K, M] =0 by Propo-
sition 2.18(1)):

(36) (d4 A 1M)(1E5/\8(1K’/\Z)A_K/)d(ﬁy) =0.
Let X be the cofibre of ¢(1x: A i) : X4 'K’ — M given by the cofibration

e(1grni) Wy w0

X JIK'.

(3.7) K M
It follows from (3.7) and (3.6) that
(3.8) (ag A L) (Mg A Ag)d(frif) = (15, A wa) f3

with f; e [ZP"+ (P20 By A X and by (3.8), (3.4) and (2.5) we have
(3.9) (@ay A 1gg)(1g, A Yu) f5 = 0.

We claim that the cofibre of Yuy: X — K} is K'A M given by the
cofibration

l//”z

(3.10) X2 K5 KAMS 5X.

This can be seen by (2.5), (2.10) and the following commutative diagram of
3 x 3 lemma in stable homotopy category.

\/\/\

(3.11) XK' K'AM PR ANy

%’ X‘IK/A%AIM}EM\ u3/u2
g sy L sx
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Then, by (3.9) we have
(3.12) (@az Aly)fs=(lg Aus)fys  with fy € [ZP"FDIpg By A KA M.
We claim that the above f; has filtration > 4, that is

(3.13) Ja=(@ay A lgram)fs

for some fse [ZP'H(PH2e201 Ey A K'A M]. This will be proved later.
Then, by (3.8), (3.12), (3.13) and wou3 = —vj’% in (3.11) we have

(3.14) (g, A ' B)d(m, 5i'i) = —(@2a3 A 1) (1E, A vj'7) [
and
(315) (1E2 /\j,ﬂ)d(ﬂmzili].) = —(52&3 A 1M)(1E4 /\j'n)fs + (152 A OCZ')E,L’Z

with én, ,e[Zr'etri-I M Ey). The left hand side of (3.15) has filtration 4, since
(Le, AJj' By 51" € png s (pr1)g—2E2 s represented by bohoh, € Ext}?" e
(Z,,Z,) in the ASS. However, since [(bs A 1x)(15, A 1) f5] € Exty? 4772042,
(H*K,H*M) =0 (cf. Proposition 2.2), the first term of the right hand side
of (3.15) has filtration > 5. Then (1g, A ozi)f,hz must be of filtration 4 and so
fn, , € [ZP"tPi=1 M| E,] should be represented by the unique generator ;*(hih,)
of Exty?" ™Yz, H*M), since Ext;”"""(Z, H*M)=0 (cf. Proposition
2.17(2)). This shows that ¢ (hihy,)j =0 and so (¢é2 A 1ar)(1kg, A ) (hihy) =0,
and the theorem is proved.

Now our remaining work is to prove the claim (3.13). Note that
(by A Lgipar) fo € [ZP"9F(PH2IN KGy A K'A M) =0 by the following exact
sequence

(1}/\1M>*
e

[(ZP" AN KGy A M A M) [(ZP PN KGy A K' A M

UL, a0 M K Gy & M)

induced by (2.4), where the first and the last groups are zero by the fact that
Tyt (pingirKGr = Exty?" Y04 (7 7y =0 for 1=1,2 and r = —1,0,1 (cf.
[6]). Hence, f3 = (@ A lgian)fs for some fi e [ZP"HPH2+ AL Ey A K/ A M]
and from (3.12) we have

(3.16) (@ A lx)fs = (1 A ) fo + (G2 A 1yl
with Iy € [ZP"H (P20 KGo A X].

Note that (b3 A la)(1g, Ay A Lyg)fs € (2P0 KGy A M] =0 by
the fact that 7, (p41)+KG3 =0 for t=—1,0,1 (cf. [1], Table 8.1), then
(153 A lK’/\M)f6 = /1(1KG3 AVIA IM)%_F}V/(IKGg AVA 1MmM)mU + ;L”(lng A
v A L) (hago) for some A, A/, 1" € Z,, where huge [ZP"4H(PHDatlpyg

KGs A M satisfying  (1xg, A j)hngoi = hngo € Tpngi(p12)gKG3 = Extj‘p"‘“(”“)q.
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(Z,,Z,). Note that h,go is a dj-cycle which represents the element Gohn
in Lemma 3.2(2), then by Lemma 3.2(2), the differential satisfies d»[h,go] =
o0t (bohy) € Ext; TP (A H* M) and

dr((vi A 1ag), [1ago))
= (0i A Lyg), 00t (Bohy) = —(0 A Lygiming), (0 A Lag) 0 (Bohy) — (by (2.11))
= — 3 (A Ly, [oabohy Ay] (b 2(o0 Alpg)oe= oz Al (cf. [7], p. 430))

= =3 (0 A Lyiming) dohugo A 1ag).

Note that (1kg, A i)hngoi = (1kg, A D)hugo = (hugo A 1ar)i, then we have
Bago A L = (1kGy A §)lingo + 2 - hugoij € [ZP" 4T PHDIM KGy A M|

for some Zle€Z, Since d(h,go) e [ZP"TPTVITIM KGy A M] =0 by
g (pi2)g1rKGy = Exty? "0 (7 7y — 0 for r=1,2,3 (cf. [1], Table
8.1), by applying d on the above equation we have A =1. Moreover, the
differential satisfies d>[(1kg, A i)hngo + Magoij] # 0, for otherwise, we would
have Cllz[(lj(G3 N i)hngo] =0 and dz(hngo) :p*(gobnfl) = aogobn,l =0 (Cf [4],
Proposition 2.1(2) and apgo =0 in [1], Table 8.2) which contradicts Lemma
3.2. Hence, by Proposition 2.17(3) we see that 2’ = 2" =14, ie.

(317) (53/\1K’AM)f6:;~(1KG3/\Ul'/\1M)WgO

+ 341k, A v A Lygiting) (hugo A 1ar)

"

for some A€ Z, and we need to show that this 4 is zero.

Observe from (3.7) that &(lg/ A i)uy =0, then by (2.13), (1x: A iHuy =7u
with @ e [X,LAK] and dus € [E'K'AM,LAK] = Z,{(i" A g)n(1g Aij), AT}
By (2.8), we may choose the sign of n:K'A M — K so that n(lg A i)v
=i’ with positive sign and so up to sign we have j'm=jmg(x A ly)=
my(j'x A 1y) =j"k A 1y, 1e. we have

(318) E(IK/Ai)U:i/, j’n: i(j”k/\ 1M)

Note that, by [7], p. 434, Lemma 6.2(iii), (1. A j")dn = —(i" A ly)ijj'n =
+ (" A)if(G"e A Ly) = (1 AJ)E" A L) (1 Adf) and so Am + (i" A lg)
(g Aif) = (1 Ai") (kA ly), since [E'K'AM,LAM] = Z,{knly}. Hence
we have ius = A (i" A g)n(lg Adf)+2A2(1p Ai")(k A ly), and by 4 = x(1x/ Aj)F
and 7 = (1g A i)u, we have

0 :Jﬁu3 = l]l./j/n'(le AN l]) — ﬂzl',l'j(j”k AN 1M)
(by A(1p A i') = —i"ii(j" A 1), cf. [7], p. 434)
= (x4 — /lz)i/l'].(jﬂk A IM).
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This shows that 1, = +4; and
(319) uuy = /l](l'” A lK)ﬂ(lK/ A l]) + }vl(lL A l',)(k A IM)

By (3.16), (3.19) and (3.17), modulo dj-boundary —(b3éy A 11, x)(1xe, A @)l
we have

0= (53 A IL/\K)(IE3 A L_lu3)f6

= (ke A (i A 1k)r(1kr A B) (Vi A 1ar)) (ngo)
+ 34 (ke A (i7" A1) r(1gr A i) (v A Tygimiag)) (hago A 1ar)
+1 220 (kg A (1 A1) (kA 1ag) (0 A Lyriting)) (hugo A 1ar)

= 241 (1kgs A (i" A 1g)i'i7) (hugo) —&—%/121(11((;3 A" ALY (Bago A L)
i%ﬂvll(h{@ A (" A1) (hugo A L) (by (3.18), (2.15))

and so we have AgAd;(1gg, A (i" A Lg)i'ij) (hugo)i=0 for 4g=1 or 2. However,
(" A k), (i), (hugo) #0€ Ext; TP H L AK, Z,), since Exty? 4Tt
(H*K,Z,) =0 (cf. [6]). This shows that the scalar A in (3.17) is zero and
proves the claim (3.13). Q.E.D.

ProorF OF THeOREM A(2). From Theorem A(l), there is ¢,s€
TpngipgEa A M such that (by A 13)E, 5 = (1ka, A i) (hihy,) and so by(1g, A j)E, 0
=0 and we have (lg Aj)E, 2 =ayf" for some f'empgipEs. It follows
that @ (lg, Ap)f' =0 and (1g Ap)f' = A'¢(mh,) for some A'eZ,, since
Tpng+pgKGr = Extj’pn’””"(zp, Z,) = Z,{hih,}. We claim that the scalar " # 0,
which can be shown as follows. If A'=0, then (1gAp)f' =0, f'=(1gAj)f"
for some f” € myrgipgr1E3 A M and so &, o= (@ A1) f" + (1, A Q) f" with
S" € myngipgE> which must have filtration 2 and it is represented by 7k, €
Extj’p atp “(Z,,Z,). This contradicts the following nontrivial differential:
dz(/’l]hn) = dz(hl)h,, — hldz(h,,) = Clobo/’l,, — hlaobn_l = ao(bol’ln + /’l]bn_l) > # Oe
Ext;?"7 (7, 7,) (cf. [8], p. 11, Theorem 1.2.14 and Proposition 2.1).
This shows that (1g, A p)f' = A'¢(hih,) with A" # 0, or equivalently, the dif-
ferential satisfies db(A'hih,) = p.[bsf'] = A'ao(bohy, + hib,_1) and so [byf'] =
2 (bohy + hib,_1), since Exty?""7(Z, Z,) = Z,{bohn,ib,1} by [1], Table
8.1. This shows the theorem. Q.E.D.

Acknowledgement

The author would like to thank the referee for his corrections of proofs
of some propositions in the original manuscript. He would also like to thank
Professors Qibing Zheng and Xiangjun Wang for their help on calculation in
the proof of Proposition 2.1.



492

Jinkun LIN

References

T. Aikawa, 3-Dimensional cohomology of the mod p Steenrod algebra, Math. Scand. 47
(1980), 91-115.

R. Cohen, Odd primary families in stable homotopy theory, Memoirs of Amer. Math. Soc.
No. 242 (1981).

R. Cohen and P. Goerss, Secondary cohomology operations that detect homotopy classes,
Topology 23 (1984), 177-194.

Jinkun Lin and Qibing Zheng, A new family of filtration seven in the stable homotopy of
spheres, Hiroshima Math. J. 28 (1998), 183-205.

Jinkun Lin, Some new families in the stable homotopy of spheres revisited, To appear in
Acta Math. Sinica.

A. Liulevicius, The factorizations of cyclic reduced powers by secondary cohomology
operations, Memoirs of Amer. Math. Soc. No. 42 (1962).

S. Oka, Multiplicative structure of finite ring spectra and stable homotopy of spheres.
Algebraic Topology (Aarhus), Lect. Notes in Math. v. 1051, Springer-Verlag (1984).

D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic
Press, Inc, 1986.

E. Thomas and R. Zahler, Generalized higher order cohomology operations and stable
homotopy groups of spheres, Advances in Math. 20 (1976), 287-328.

H. Toda, Algebra of stable homotopy of Z,-spaces and applications, J. Math. Kyoto
Univ. 11 (1971), 197-251.

H. Toda, On spectra realizing exterior part of the Steenrod algebra, Topology 10 (1971),
53-65.

Department of Mathematics, Nankai University
Tianjin, 300071, People’s Republic of China
email: jklin@nankai.edu.cn



