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ABSTRACT. In this paper we consider an extended growth curve model with two hier-
archical within-individuals design matrices, which is useful in analyzing mean profiles of
several groups with parallel polynomial growth curves. The covariance structure based
on a random effects model is assumed. The maximum likelihood estimators (MLE’s)
are obtained under the random effects covariance structure. The efficiency of the MLE
is discussed. A numerical example is also given.

1. Introduction

Suppose that a response variable x has been measured at p different occa-
sions on each of N individuals, and each individual belongs to one of k groups.
Let xj(-g) = [ng.),...,xl()f)]' be a p-vector of measurements on the j-th individ-
ual in the g-th group, and assume that x/(g)’s are independently distributed as

N, (¢, X), where X is an unknown p x p positive definite matrix, j=1,... Ny,

g=1,...,k. Further, we assume that mean profiles of k groups are parallel
polynomial growth curves, i.e.,
(1.1) w9 =91, + B'E,  g=1,...,k,
where 1, is a p-vector of ones,
| 1
1/ oo 1
02 .
B, : :
[i]_l ...... [Il)I—l

is a ¢ x p within-individuals design matrix of rank ¢ (< p). Yokoyama and
Fujikoshi [10] considered a parallel profile model with

/1("):5<§’>1p—|—;t, g=1,... k.
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Therefore, the model (1.1) means that u# has a linear structure. It may be
noted that the mean structure (1.1) includes two hierarchical within-individuals
design matrices. Without loss of generality, we may assume that e =0, In
the following we shall do this. Let

X:[xil),...,xgvll), ...... ,x§k>7...,xs\l,€:]’, N=N;+---+ Ng.

Then the model of X can be written as

(13) X~NNXP(A1611;7+1N5£B,Z®IN)7
where
1y, 0
Ar = 0 lNk—l
0

is an N x (k—1) between-individuals design matrix of rank k—1 (< N—
p—1),¢& = [é“), . ,f(/‘_l)}/ and &, are vectors of unknown parameters. The
model (1.3) may be called a parallel growth curve model. This is a nested
model based on the growth curve model with two different within-individuals
design matrices. For a generalized nested model based on the growth curve
model with several different within-individuals design matrices, see, e.g., von
Rosen [9]. The model (1.3) with B = I, is a special case of mixed MANOVA-
GMANOVA models considered by Chinchilli and Elswick [2], Kshirsagar and
Smith [4, p. 85], etc. The mean structure of (1.3) can be written as

(1.4) E(X) =4, 1] EZ é(;)JB’

where & =& and & = [&  &),].  We note that the model (1.3) is the ordinary
growth curve model (Potthoff and Roy [5]) with a linear restriction on mean
parameters.

Fujikoshi and Satoh [3] obtained the MLE’s in the growth curve model
with two different within-individuals design matrices when X has no structures,
i.e., is any unknown positive definite. When there is no theoretical or empirical
basis for assuming special covariance structures, we need to assume that X is
any unknown positive definite. However, for analysis of repeated measures or
growth curves, it has been imposed to consider certain parsimonious covariance
structures. As one of such structures, we are interested in a random effects
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covariance structure (see, e.g., Rao [6]). In our model, the structure can be
expressed as

(1.5) I =51,1) + 6’1,
where 6> > 0 and ¢? > 0. The covariance structure (1.5) can be introduced by
assuming the following random effects model:

(1.6) 7 = (€9 41, + B'E + 4,

where n](g)’s and s}g)’s are independently distributed as N (0,0%) and N, (0, ¢%1,),
respectively. Therefore, the covariance matrix of x](f’) is given by (1.5). This
implies that

(1.7) X ~ Nysp(di&1) + 1yE B, (5°1,1) + 6°1,) ® Iy).

In this paper we consider the problems of estimating the unknown parameters
&, &, 6% and ¢ when X has the structure (1.5). In §2 we obtain a canonical
form of (1.7). In §3 we obtain the MLE’s in the model (1.7), using a canonical
form. In §4 it is shown how much gains can be obtained for the maximum
likelihood estimation of &; by assuming a random effects covariance structure.
In §5 we give a numerical example of the results of §4.

2. Transformation of the model

In order to transform (1.7) to a model which is easier to analyze, we use a
canonical reduction. Let H =[H, N~'?1y Hj] be an orthogonal matrix of
order N such that

4, 1] =[H N—1/21N][L11 0}

B N
= HpL,

where H; : N x (k—1),and L; : (k — 1) x (k — 1) is a lower triangular matrix.
Similarly, let Q = [p~'/?1, Q) ©Qj]' be an orthogonal matrix of order p such

that
/ 12 —12
{lp] _|P / o’ p~Y 11/,
B, gn G» )}
= GQ(2)7

where 02 : (¢ —1) x p, and Gy : (¢ —1) x (¢ — 1) is a lower triangular matrix.
Then the mean structure of (1.7) can be written as

(2.1) A& + INEB =p ' PH 011 + N 215050,
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where
0, =p'*L&, 0, = N'2&,G+ 15[ 0]G.

Here we note that (&;,&,) is an invertible function of (6;,6;). 1In fact, & and
&, can be expressed in terms of @; and 6, as

(22) &=p L0, &=N"POGT - Ny [p L ey 0.

Using the above transformation, we can write a canonical form of (1.7) as

yu Yoo Y3
(23) Y=H'X0'= |yu yyn | ~NygEY),¥QIy),
yii Yn Y3

where means E(Y) and covariance matrix ¥ are given by

0, 0 O

(24)  E(Y)= |0y 6, 0], {0“ ?]:LF” (,)}G,
0 0 0 021 022 521 522

0, =01, 05 =0, 65

and

6% + o2 0’
2.5 w =050 = |? .
(2.5) 0xQ 0 21,
3. The MLE’s

In this section we obtain the MLE’s of &, &, 6% and ¢2 in the model (1.7),
using (2.3). Let

ui ujy Uy
U=[yy Yo Yiul'lyn Yo Ysl=|uwn Un Usyl|,
w31 Uy Uss

vt vy oy
i ! ! i !/
V=1[ya1 ¥y Ipllva ¥pn ypl=|va Vo Vil
v3i Vo Vi

Wi Wiy Wi
W=yy Y Yul'lyy Y Yul=|wn Wn Wy
wir Wi Wis
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and

i t, t
T=U+W= |ty Tn 1Ixn
3y Ty T3

It is easy to see that the MLE’s of #; and 6, are given by

0 =y, 0, :yé(n),
where yé(lz) = [yn y5). Hence the MLE’s of & and &, are given by
(3.1) él :P_1/2L1_11Y117 éﬁ = N_]/zJ’Q(lz)G_l _N_]/zlél[l’_l/le_llJ’n 0].

Using a technique similar to the one in estimating variance components in a
one-way random effects model by maximum likelihood (see, e.g., Searle, Casella
and McCulloch [7, p. 148]), we can obtain the MLE’s of 6° and o2 Let
L(6,,0,,5%,6%) be the likelihood function of Y. Then we have

g(c*,0%) = —2log L(0,,0,,6%,6%)
w11

= Np log(2n) + N log(pé* + 62) + ———
p log(2n) g(p ) 1 o7

+N(p—1)loga*+ :

;(tf T23)(23) + tr V33),

where

T | T T
e P

The minimum of g(a2,0%) with respect to 0> >0 and ¢ > 0 is achieved at
Y 171 1
0 = max ; NWI] — ]\I(T—l)(tr T(23)(23> + tr V33) ,0 s

1
3.2 572 = ming ————(tr T tr V-
(3.2) G mm{ N(p— 1)( 1 T(23)(23) + tr V33),

1
m (Wit +tr Tiazy3) + tr V33)}

(see, e.g., Arnold [1, p. 251]). Therefore, the MLE’s of 6% and o2 are given by
(3.2).

Now we express the MLE’s given in (3.1) and (3.2) in terms of the original
observations. Let S,, and S; be the matrices of the sums of squares and prod-
ucts due to the within variation and total variation, i.e.,



430 Takahisa YOKOYAMA

k Ny
Sy =X'HsH;X = Z Z (9) g> — x50y,

g=1 j=1

Nﬂ/

_)/7

M»

S, = X'(H\H| + HsH})X =

g=1 .1:1

where ¢ and ¥ are the sample mean vectors of observations of the g-th group
and all the groups, respectively. Further, let

(3.3) A, = ( ]1,1N1’>A1, Bsz( 111’)

Then, from the definitions of L and G it is easily seen that
1
VN

Using these results, we have the following theorem.

- - 1
Hi= ALy, Iy =—=I1y4, 0:=Gy'By, gy = ﬁle,»

THEOREM 3.1.  The MLE’s of &, &, 8% and o? in the extended growth curve
model (1.7) are given as follows:

R Lo 1 I
&y = [fc’{lp—B;(Bng) 1Bz}—N1]/\,A1(A{A1) IA;X]lp,

1
P
&, = ¥'B)(B,B})”,
R 11 1
# =m0

1 1

~2 : 2 2 2

0 =ming ——55,,— (57 + 55) ¢,
{N(p—l) : Np( : 2)}

where Ay and B, are given by (3.3), and s? and 53 are defined by

1,
= ;lpSwlp
and
2 1 / =/ 1 / n' (D D\-1D =
S2 =1tr S[—;lpS[1p+Nx Ip _;lplp —Bz(Bsz) 32 X,
respectively.

We note that the MLE’s 6% and 6 are not unbiased. The usual unbiased
estimators of 0> and ¢ may be defined by
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1 1 1
;{N—k‘”” TNp-)-(g-1)

1
52 = No—1) -1 (tr T3)23) +tr V33),

respectively. There is the possibility that the use of 6> can lead to a negative
estimate of 02, while &2 is non-negative. As a modification of the MLE’s, we
propose the estimators obtained from the MLE’s by replacing N and N(p — 1)
by N —k and N(p — 1) — (¢ — 1), respectively, in (3.2). The modified MLE’s,
which are based on the joint distribution of wy; and (tr T{3)023) + tr ¥33) only,
may be called restricted maximum likelihood estimators (REMLE’s). These
estimators can be expressed in terms of the original observations, again using
the notations in Theorem 3.1.

5=

(tr T(a3)23) + tr V33)},
(3.4)

4. Efficiency of él

Next we consider the efficiency of the MLE for &; in the case when the
covariance structure (1.5) is assumed. When no special assumptions about X
are made, the MLE of &; is given by

(4.1) & = (1S,'1,)" (Aj A1) " 4y xS, '1,.

The estimators &, and & have the following properties.

THEOREM 4.1.  In the extended growth curve model (1.7) it holds that both
the estimators &, and &, are unbiased, and

Var(§)) = —(po® + 0%) (41 A1),

Vaf(fl) =

SRS R

2, 2 p—1 R
(po +a)(1+Nkp)(A1A1) :

Proor. From (2.2), (3.1) and 4|4, = L|,L;;, we obtain the result on &,.
It can be shown that for any positive definite covariance matrix X,

z 1yl r—1 R
E(&) =¢ and  Var(¢) = (1,27'1,) (1 +m> (414,).
Under the assumption that & = 6”1,1) + 021, it holds that
1
(Lxr'1,)" = ;(p&z + 0?2),

which proves the desired result on &.



432 Takahisa YOKOYAMA

From Theorem 4.1, we obtain

. . -1 o
42) Vv —V = (p*+0) L (A4) " >0
( ) al‘(é]) ar(ﬁl) (p +G)p(N—k—p)< 1 1) )
which implies that & is more efficient than &, in the model (1.7). This shows
that we can get a more efficient estimator for &; by assuming a random effects
covariance structure. Especially, when p is large relative to N, we can obtain
greater gains.

5. Numerical example

In this section we give a numerical example to illustrate the efficiency of &
by assuming a random effects covariance structure. We apply the results of
§4 to the data (see, e.g., Srivastava and Carter [8, p. 227]) of the price indices
of hand soaps packaged in four ways, estimated by twelve consumers. For six
of the consumers, the packages have been labeled with a well-known brand
name. For the remaining six consumers, no label is used. Then, from the data
we obtain

) =[31667, .45833, 47500, .64167]
@ =[.60000, .66667, .85000, .96667]
%= (45833, .56250, .66250, .80417,

21833 .15167 .20500 .08333
25542 16375 21375

S = 30375 .17875 |
.29542
45917 32875 52375 .35958
S _ 38563 .39813 41688
a 72563 54438
.61229
For the observation matrix X : 12 x 4, we assume the model (1.7) with
16 1 1 1 1
5.1 EX)= 1,+1
(5.1) (X) {0]511 4 H12[é, fzz}[h Hh ot t4]

_{1(, 16”@1 OHI Lo 1}
L0 L&y nllh b oo

(5.2) Var(vec(X)) = (6%141; + 0°L) ® L.
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Now we estimate how much gains can be obtained for the maximum
likelihood estimation of &;; by assuming the covariance structure (5.2). Since
p=4 N=12, k=2, A|4, =3, 6> =.01353 and 6% = .00976, it follows from
Theorem 4.1 and (4.2) that

L N 1 .
Var(¢n) — Var(¢y) = ﬁ(452 +6%) = .00266.
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