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Abstract. We give a new classification of tilings of the 2-dimensional sphere by

congruent triangles accompanied with a complete proof. This accomplishes the old

classification by Davies, who only gave an outline of the proof, regrettably with some

redundant tilings. We clarify Davies’ obscure points, give a complete list, and show

that there exist ten sporadic and also ten series of such tilings, including some unfamiliar

twisted ones. We also give their figures, development maps in a way easy to under-

stand their mutual relations. In Appendix, we give curious examples of tilings on non-

compact spaces of constant positive curvature with boundary possessing a special 5-

valent vertex that never appear in the tiling of the usual sphere.

0. Introduction

In this paper, we give a complete classification of tilings of the 2-

dimensional sphere consisting of one congruent triangle. We consider this

problem as a purely combinatorial problem, not assuming a transitive group

action on the set of tiles.

Concerning this problem, Sommerville [9] gave a partial classification,

particularly he classified tilings by isosceles triangles. But for the scalene case,

he only treated a restricted case, i.e., under the condition of ‘‘regularity’’,

meaning that the corners at each vertex have the same angle.

Later, Davies [4] gave a classification without the assumption of ‘‘regu-

larity’’. But Davies only gave a rough outline of the proof of the classifica-

tion in [4], and detailed examinations are left to the readers. It seems to the

authors that to fill this blank space and reconstruct the complete proof is by

no means an easy (rather a quite hard) problem. In addition, Davies’ final

classification contains some duplicates (though his list covers all tilings without

any lack). For example, the tiling F48 in our notation (see Table in page

465) appears twice in his list, and the last example in [4; p. 50] is redun-

dant because TI24 is identical to I24. Also other duplicates exist such as

MTGII
12 ¼ TG12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ, etc. (For details, see the end of § 2 of
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this paper. Precise definition of these tilings will be given in § 2.) Moreover,

the numbers of faces and angles of triangles of some tilings are not explicitly

stated in [4]. And we regret to say that there remain some obscure points in

Davies’ classification. Hence, it is desirable to give a complete classification,

not containing redundant tilings, and also to give a complete proof. To settle

these unsatisfactory points and to clarify the whole situation is the main pur-

pose of the present paper.

After the complete classification (Theorem 1, Table), we know that there

exist ten sporadic and also ten series of tilings by congruent triangles. There

appear some unfamiliar twisted tilings, and we give their figures, development

maps and state mutual relations of these tilings in detail. Note that among

these tilings three of them are continuously deformable, and the numbers of

faces are multiples of 4, except one series of tilings. We also give a char-

acterization of triangles that can tile the whole sphere monohedrally (Corollary

3), and give a list of tilings with a given number of faces (Corollary 2).

In our previous paper [10], we gave a classification of tilings of the 2-

dimensional sphere consisting of congruent ‘‘right’’ triangles. The principle of

classification in this paper is almost same as that of [10]. But for the sake

of completeness, we give here a complete proof, not depending on the results

of [10]. We remark that Azevedo Breda’s classification of a special type of

monohedral tilings [1] can be also verified directly from our classification.

(Actually, tilings containing only even valent vertices are necessarily mono-

hedral f -tilings in the sense of [1], as a result of our classification. But, it

seems that the classification in [1] unfortunately lacks the tiling I16n ðnb 3Þ in

our notation.)

Now we explain the contents of this paper. In § 1, after some prelimi-

naries on notations and terminologies, we state our main result (Theorem 1,

Table). In addition, we state two corollaries obtained immediately from this

classification. In § 2, we give a detailed explanation of tilings in Table, give

their figures, development maps and state their mutual relations. We remark

that five regular polyhedrons are all related to each other through some

tilings in Table (Figure 21). In addition, we summarize special isomorphisms

between some tilings with small number of faces. (It seems to the authors that

the lack of such consideration is the principal defect in Davies’ ‘‘classification’’.)

The rest sections are devoted to the proof of Theorem 1. After treating a

preliminary case (equilateral triangles and the case where the number of faces

takes the smallest value four) in § 3, we give a classification by isosceles tri-

angles in § 4. This result was already proved by Sommerville [9]. But we give

here a complete proof because Sommerville [9; p. 90] stated only a brief outline

of the proof. The remaining scalene case is the most complicated. We carry

out the classification through § 5@§ 8. In § 5, we first classify the type of
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Table

V E a, b, g type of vertices [number]

�F4 4 6 aþ b þ g ¼ 2,
1
2 < a; b; g < 1

aþ b þ g [4]

F I
12 8 18 a ¼ 2

3 , b ¼ g ¼ 1
3 3a [4], 6b [4]

F II
12 8 18 a ¼ 2

3 , b ¼ g ¼ 1
3

3a ½2�; 2aþ 2b ½2�
aþ 4b ½2�; 6b ½2�

�

F III
12 8 18 a ¼ 2

3 , b ¼ g ¼ 1
3

3a ½1�; 2aþ 2b ½3�
aþ 4b ½3�; 6b ½1�

�

F24 14 36 a ¼ 2
3 , b ¼ g ¼ 1

4 3a [8], 8b [6]

F48 26 72 a ¼ 1
2 , b ¼ 1

3 , g ¼ 1
4

4a ½12�; 6b ½8�
8g ½6�

�

TF48 26 72 a ¼ 1
2 , b ¼ 1

3 , g ¼ 1
4

4a ½8�; 6b ½8�
8g ½2�; 2aþ 4g ½8�

�

F I
60 32 90 a ¼ 2

3 , b ¼ g ¼ 1
5 3a [20], 10b [12]

F II
60 32 90 a ¼ 2

5 , b ¼ g ¼ 1
3 5a [12], 6b [20]

F120 62 180 a ¼ 1
2 , b ¼ 1

3 , g ¼ 1
5

4a ½30�; 6b ½20�
10g ½12�

�

�G4n ðnb 2Þ 2nþ 2 6n
aþ b ¼ 1; g ¼ 1

n
;

1
2n < a; b < 2n�1

2n

2aþ 2b ½2n�
2ng ½2�

�

G4nþ2 ðnb 1Þ 2nþ 3 6nþ 3 a ¼ b ¼ 1
2 , g ¼ 2

2nþ1

4a ½2nþ 1�
ð2nþ 1Þg ½2�

�

TG8n ðnb 2Þ 4nþ 2 12n a ¼ b ¼ 1
2 , g ¼ 1

2n

4a ½4n� 2�
2aþ 2ng ½4�

�

�TG8nþ4 ðnb 1Þ 4nþ 4 12nþ 6 aþ b ¼ 1, g ¼ 1
2nþ1 ,

1
4nþ2 < a; b < 4nþ1

4nþ2

aþ b þ ð2nþ 1Þg ½4�
2aþ 2b ½4n�

�

MTGI
8nþ4 ðnb 1Þ 4nþ 4 12nþ 6 a ¼ nþ1

2nþ1 , b ¼ n
2nþ1 ,

g ¼ 1
2nþ1

aþ b þ ð2nþ 1Þg ½2�
aþ 3b þ g ½2�
2aþ 2b ½4n� 2�
2aþ 2ng ½2�

8>>><
>>>:

MTGII
8nþ4 ðnb 2Þ 4nþ 4 12nþ 6 a ¼ nþ1

2nþ1 , b ¼ n
2nþ1 ,

g ¼ 1
2nþ1

aþ 3b þ g ½4�
2aþ 2b ½4n� 4�
2aþ 2ng ½4�

8><
>:

H4n ðnb 3Þ 2nþ 2 6n a ¼ b ¼ n�1
2n , g ¼ 2

n
4aþ g [2n], ng [2]

TH8nþ4 ðnb 3Þ 4nþ 4 12nþ 6 a ¼ b ¼ n
2nþ1 , g ¼ 2

2nþ1

4aþ g ½4n�
2aþ ðnþ 1Þg ½4�

�

I8n ðnb 3Þ 4nþ 2 12n a ¼ 1
2 , b ¼ n�1

2n , g ¼ 1
n

4a ½2n�
4b þ 2g ½2n�
2ng ½2�

8><
>:

TI16nþ8 ðnb 2Þ 8nþ 6 24nþ 12 a ¼ 1
2 , b ¼ n

2nþ1 , g ¼ 1
2nþ1

4a ½4nþ 2�
4b þ 2g ½4n�
2b þ ð2nþ 2Þg ½4�

8><
>:

The subscript of each tiling indicates the number of faces.

The mark � indicates that the tiling is continuously deformable.
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vertices appearing in the tiling. And by using this result, in § 6 and § 7, we

classify monohedral tilings by scalene triangles containing an odd-valent vertex.

In the final section (§ 8), we classify tilings containing only even-valent vertices.

We remark that the result in § 5 (Proposition 11) is already stated in Davies’

paper [4; p. 44]. But to prove this result, some combinatorial considerations

are necessary in addition to Davies’ explanation.

In Appendix, we give some examples of curious tilings containing a special

5-valent vertex. To understand this curiosity, we must add some explanation

on the results of § 5. We may say that the determination of the type of vertices

carried out in § 5 is a local problem, because it concerns only partial tilings

around one point of the sphere. On the contrary, patching these local data

to construct a whole tiling is a global problem. From this viewpoint, a special

5-valent vertex 3aþ b þ g ¼ 2 ða > b > gÞ appeared in the local classification

(Proposition 11) possesses a quite delicate feature because this vertex never

appear in the actual tiling as a result of the classification. (The proof of this

fact requires a relatively long argument, essentially given in the proof of

Lemmas 13 and 14.) In Appendix, we give examples of tilings on non-

compact spaces of constant positive curvature with boundary which contain this

special 5-valent vertex in its interior. And so, we may say that the existence or

non-existence of this 5-valent vertex 3aþ b þ g ¼ 2 is a quite delicate ‘‘global’’

result, depending on the topology of the sphere. By considering a special case

of this tiling, we can construct a dihedral tiling on the sphere consisting of 10n

congruent triangles and two regular n-gons ðn ¼ 3@7Þ. The existence of such

curious examples indicates the di‰culty in classifying dihedral tilings of the 2-

dimensional sphere, though it is a quite interesting problem which deserve to be

investigated as a next problem.

1. Main results

In this section, we state our main theorem (Theorem 1) which gives a

classification of monohedral triangular tilings of the sphere and also state the

results immediately obtained from this theorem (Corollaries 2 and 3). We first

fix our notation.

We consider a tiling of the 2-dimensional sphere with radius ¼ 1, con-

sisting of one congruent spherical triangle (or its reflection). We assume that

no vertex of any triangle lies on the interior of an edge of any other triangle.

We call such a tiling monohedral. (For the usual terminology on tilings, see

the excellent book [8].) We say that two tilings are identical if they are

mapped to each other by a rotation or a reflection of R3. We denote by ap,

bp, gp the angles of the triangle in the tiling. In this paper, we always assume

that these angles satisfy the inequalities 0 < ap; bp; gp < p.
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If a vertex in the tiling is surrounded by angles ap, bp, gp with multi-

plicities k, l, m, respectively, we say that the type of this vertex is kaþ lbþ
mg ¼ 2. (Clearly, this vertex is (k þ l þm)-valent.)

Fig. 1

For simplicity, we often drop the symbol p in expressing the angles as in the

above figure. Note that in the expression kaþ lb þmg ¼ 2, we ignore the

order of angles appearing around the vertex. In general, there appear several

types of vertices in one tiling.

We denote by V , E, F the number of vertices, edges and faces of the tiling,

respectively. If one triangle tiles the whole sphere, we can easily see that the

inequality F b 4 holds by a combinatorial reason.

Now, under these notations and assumptions, we state our main theorem

of this paper. The meaning of the symbols in the left column of Table in

Introduction and the explicit construction of each tiling will be explained in the

next section.

Theorem 1. Monohedral tilings of the 2-dimensional sphere by a triangle

with angles ap, bp, gp ð0 < a; b; g < 1Þ are exhausted by Table in Introduction.

None of these tilings are isomorphic to each other except the trivial case given by

the exchange of angles in aþ b þ g ¼ 2 ðF4Þ, aþ b ¼ 1 ðG4n;TG8nþ4Þ.

Remark. Almost all tilings can be distinguished to each other by the data

given in Table. Only one exception is the case of TG12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ
and MTGI

12. These two tilings have completely the same data in Table, and

we must consider an additional combinatorial property to distinguish them.

For details, see the explicit construction and development maps given in the

next section.

Next, we give another classification, from the viewpoint of the number of

faces.

Corollary 2. The number of faces of monohedral tilings of the 2-

dimensional sphere by a triangle is a multiple of 4, except for G4nþ2 ðnb 1Þ. In

the case F 1 0 ðmod 4Þ, such tilings are exhausted by the following list. (The

right [ ] indicates the number of tilings):
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F ¼ 4 : �F4; ½1�

F ¼ 8 : �G8; ½1�

F ¼ 12 : F I
12;F

II
12 ;F

III
12 ; �G12; �TG12;MTGI

12;H12; ½7�

F ¼ 16 : �G16;TG16;H16; ½3�

F ¼ 20 : �G20; �TG20;MTGI
20;MTGII

20;H20; ½5�

F ¼ 24 : F24; �G24;TG24;H24; I24 ½5�

F ¼ 48 : F48;TF48; �G48;TG48;H48; I48; ½6�

F ¼ 60 : F I
60;F

II
60 ; �G60; �TG60;MTGI

60;MTGII
60;H60;TH60; ½8�

F ¼ 120 : F120; �G120;TG120;H120; I120;TI120; ½6�

F ¼ 8nþ 4

ðnb 3; n0 7Þ
: �G8nþ4; �TG8nþ4;MTGI

8nþ4;MTGII
8nþ4;H8nþ4;TH8nþ4; ½6�

F ¼ 16n

ðnb 2; n0 3Þ
: �G16n;TG16n;H16n; I16n; ½4�

F ¼ 16nþ 8

ðnb 2; n0 7Þ
: �G16nþ8;TG16nþ8;H16nþ8; I16nþ8;TI16nþ8: ½5�

(As in Table, the mark � indicates that it is continuously deformable. In this

list, we count it as ‘‘one’’ species.)

As another corollary, we have

Corollary 3. Only the following triangles can tile the whole sphere

monohedrally:

aþ b þ g ¼ 2
1

2
< ga ba a < 1

� �
½F ¼ 4�;

a ¼ 2

3
; b ¼ g ¼ 1

4
½F ¼ 24�;

a ¼ 2

3
; b ¼ g ¼ 1

5
½F ¼ 60�;

a ¼ 2

5
; b ¼ g ¼ 1

3
½F ¼ 60�;

a ¼ 1

2
; b ¼ 1

3
; g ¼ 1

4
½F ¼ 48�;

a ¼ 1

2
; b ¼ 1

3
; g ¼ 1

5
½F ¼ 120�;
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a ¼ b ¼ 1

2
; g ¼ 2

n
ðnb 3Þ ½F ¼ 2n�;

a ¼ b ¼ n� 1

2n
; g ¼ 2

n
ðnb 4Þ ½F ¼ 4n�;

a ¼ 1

2
; b ¼ n� 1

2n
; g ¼ 1

n
ðnb 3Þ ½F ¼ 8n�;

aþ b ¼ 1; g ¼ 1

n

1

2
< a <

2n� 1

2n
; nb 2

� �
½F ¼ 4n�:

Note that the first and the last triangles in this corollary are both deformable,

and the remaining ones are rigid. These two corollaries are the immediate

consequences of Theorem 1, and we leave the examination of these facts to the

readers.

Before giving the explicit construction of each tiling and the proof of

Theorem 1, we review some fundamental properties of spherical triangles which

we use in this paper.

Proposition 4 (cf. [12; p. 62]). The angles ap, bp, gp of a spherical

triangle satisfy the following inequalities:

aþ b þ g > 1;

aþ b < 1þ g; b þ g < 1þ a; gþ a < 1þ b:

Conversely, if a, b, g satisfy these conditions, then up to a motion, there exists

uniquely a spherical triangle with angles ap, bp, gp.

The area of this triangle is given by the formula

S ¼ pðaþ b þ g� 1Þ:
Hence, if this triangle tiles the whole sphere, the number of faces is equal to

4=ðaþ b þ g� 1Þ, which implies

aþ b þ g ¼ 1þ 4

F
:

We use this equality frequently in this paper.

We denote by a, b, c the lengths of edges opposite to the angles ap, bp, gp,

respectively.

Fig. 2
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Then, the following cosine rule holds:

cos a ¼ cos apþ cos bp cos gp

sin bp sin gp
;

cos b ¼ cos bpþ cos gp cos ap

sin gp sin ap
;

cos c ¼ cos gpþ cos ap cos bp

sin ap sin bp
:

These equalities indicate that the lengths a, b, c are uniquely determined by

three angles ap, bp, gp. By using these formulas, we can easily show that the

inequality a > b holds if and only if a > b, etc. We also use these formulas in

constructing explicit ‘‘models’’ of tilings on some spherical material.

2. Explicit construction of tilings

In this section, we explain the explicit construction of tilings in Table, give

their figures, development maps, and state their mutual relations. Note that

the construction of these tilings is already explained in Davies’ paper [4] (in a

somewhat di¤erent fashion, but unfortunately with some duplicates).

(1) G2n ðnb 3Þ and TG4n ðnb 3Þ.
Tilings G4n ða ¼ b ¼ 1=2; g ¼ 1=n; nb 2Þ and G4nþ2 ðnb 1Þ are sim-

ply expressed in the following figure, which we usually see as a figure of the

globe:

Fig. 3

In case F ¼ 4n, we can deform this tiling under the conditions aþ b ¼ 1 and

1=2n < a; b < ð2n� 1Þ=2n as in the following way:
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Fig. 4

(But in case F ¼ 4nþ 2, on the contrary, the above tiling G4nþ2 is rigid. The

inequality 1=2n < a; b < ð2n� 1Þ=2n follows from the condition 1þ 4
F
� a ¼

b þ g < 1þ a, etc.) In addition, if F ¼ 4n, we can ‘‘twist’’ the tiling G4n in the

following way. First, in case F 1 0 ðmod 8Þ, we consider the tiling G8n with

a ¼ b ¼ 1=2. Then we can rotate a hemisphere along one longitude and

obtain the following tiling TG8n.

Fig. 5

Next, in case F 1 4 ðmod 8Þ, we prepare two copies of the following hemi-

sphere of G8nþ4 ðaþ b ¼ 1; g ¼ 1=ð2nþ 1ÞÞ.

Fig. 6
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And join these two copies as follows. This tiling is TG8nþ4.

Fig. 7

Note that two Pi’s ði ¼ 1@4Þ in the above development map express the same

points in the sphere. It should be remarked that this tiling cannot be obtained

by a rotation of G8nþ4 along a great circle P1P2P3P4, unless a ¼ b ¼ 1=2.

Clearly, this tiling is continuously deformable.

(2) MTGI
8nþ4 ðnb 1Þ and MTGII

8nþ4 ðnb 2Þ.
We consider the special case of TG8nþ4 where a ¼ ðnþ 1Þ=ð2nþ 1Þ and

b ¼ n=ð2nþ 1Þ. In this case, there appear two ‘‘rectangles’’ at the opposite

side of the sphere:
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Fig. 8

(Here, we say that a quadrangle is a ‘‘rectangle’’ if the opposite edges have the

same lengths.) Then, since a ¼ b þ g, we may draw a reversed diagonal line in

each rectangle instead of the usual one.

Fig. 9

If we reverse one diagonal line in TG8nþ4, we obtain the tiling MTGI
8nþ4. And

if we reverse both diagonal lines in two rectangles, we obtain the tiling

MTGII
8nþ4. The development maps of these tilings are a little complicated,

which are expressed in the following form:
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Fig. 10

(As above, two Pi’s ði ¼ 1@6Þ express the same points in the sphere.)

(3) H4n ðnb 3Þ, TH8nþ4 ðnb 3Þ, I8n ðnb 3Þ and TI16nþ8 ðnb 2Þ.
Next, we consider the tiling G4n with a ¼ ðn� 1Þ=n and b ¼ g ¼ 1=n.

Then, since b ¼ g in this case, we can construct a tiling consisting of congruent
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rhombuses (¼quadrangles whose four edges have the same lengths) by deleting

suitable edges of G4n.

Fig. 11

Then, in this new tiling, by drawing a reversed diagonal line in each rhombus,

we obtain the tiling H4n:

Fig. 12

This tiling consists of isosceles triangles with a ¼ b ¼ ðn� 1Þ=2n and g ¼ 2=n.

The development map of this tiling is given as follows:

Tilings of the 2-dimensional sphere 475



Fig. 13

In addition, if we draw two diagonal lines in each rhombus, we obtain the

tiling I8n:

Fig. 14

Next, starting from the tiling TG8nþ4 with a ¼ 2n=ð2nþ 1Þ, b ¼ g ¼
1=ð2nþ 1Þ, we can repeat the same procedure as above. Then, we obtain new

tilings TH8nþ4 and TI16nþ8 as twisted versions of H8nþ4 and I16nþ8, respectively.
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Fig. 15

The development map of TH8nþ4 is expressed as follows:
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Fig. 16

(As before, two Pi’s ði ¼ 1@6Þ express the same points in the sphere. But we

remark that the surrounding hexagon P1P2P3P4P5P6 in TH8nþ4 does not con-

stitute a great circle.)

(4) For the remaining ten sporadic tilings F4@F120, we give here their

figures and (or) development maps.

Fig. 17
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Fig. 17 (continued)
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Fig. 17 (continued)

Explicit construction of these tilings can be read from the explanation below.

Note that the condition 1=2 < a; b; g in F4 follows from the condition 2� g ¼
aþ b < 1þ g, etc.

Next, we summarize typical features and relations of these tilings. We

obtain the most familiar triangular monohedral tilings by projecting the regular
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tetrahedron, octahedron and icosahedron to their circumspheres. These tilings

are F4 ða ¼ b ¼ g ¼ 2=3Þ, G8 ða ¼ b ¼ g ¼ 1=2Þ and H20, respectively.

Also by projecting the regular hexahedron to the circumsphere, we obtain

a tiling consisting of six squares on the sphere. We draw one diagonal line

in each square. Then, we obtain monohedral tilings consisting of isosceles

triangles with a ¼ 2=3; b ¼ g ¼ 1=3. Combinatorially, there exist just seven

tilings of this type: F I
12, F

II
12 , F

III
12 , G12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ, TG12 ða ¼ 2=3;

b ¼ g ¼ 1=3Þ, MTGI
12 and H12. Three of them are sporadic and we already

gave their development maps (Figure 17). We give here the remaining ones:

Fig. 18

Tilings of the 2-dimensional sphere 481



Fig. 18 (continued)

These four tilings are the special cases of the series of tilings listed in the lower

half of Table. We can easily check these identifications by comparing the

development maps of these tilings (or by making models on some spherical

materials).

Note that four 5-valent vertices in TG12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ lie in one

great circle. But the tiling MTGI
12 does not possess this property. Hence

TG12 0MTGI
12, though they have completely the same data in Table as stated

before. The tiling F I
12 can be also obtained by dividing each equilateral

triangle in F4 ða ¼ b ¼ g ¼ 2=3Þ into three congruent isosceles triangles.

Fig. 19

In a similar way, by dividing each square of regular hexahedron into four

isosceles triangles, we obtain the tiling I24.
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Fig. 20

In this way, we obtain a new tiling from the old one by dividing

equilateral or isosceles triangles (or regular polygons in regular polyhedrons).

We give here a diagram consisting of all relations of this type. (Davies [4] also

stated a similar result. But unfortunately, his list is not complete.) In this

diagram the symbol ‘‘A ! B’’ implies that the tiling B is obtained by dividing

A in a suitable way.
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Fig. 21
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(We consider TH20 ¼ H20, as explained below.) We remark that five regular

polyhedrons are all related to each other through some tilings, as indicated in

the above diagram.

The remaining sporadic tiling TF48 is obtained by rotating a hemisphere in

F48 along the equator through the angle p=4. The tiling F II
12 contains one great

circle, and if we rotate the hemisphere along this circle through the angle p, we

obtain the tiling H12.

For the ten series of tilings listed in the lower half part of Table, we can

also consider the case where the number n takes a small value outside of the

indicated range, such as TG8, MTGII
12, etc. But these tilings are identical to

other tilings listed in Table. We give here the list of such identical tilings. (It

seems to the authors that the lack of such consideration is the principal defect

of Davies’ classification in [4].)
0 TG8 ¼ G8 ða ¼ b ¼ g ¼ 1=2Þ (¼ Regular octahedron),
0 MTGII

12 ¼ TH12 ¼ TG12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ,
0 I16 ¼ TG16,
0 TH20 ¼ H20 (¼ Regular icosahedron),
0 TI24 ¼ I24.

For example, by writing a great circle passing through four 5-valent vertices in

the development maps of MTGII
12 and TH12, we can easily see that these two

tilings are identical to TG12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ. Remark that from the

construction, TI40 is not identical to I40, though TH20 ¼ H20. In a similar

way, we have TI24 ¼ I24 in spite of TH12 0H12.

3. Preliminary case

The rest of this paper is devoted to the proof of Theorem 1. We divide

the proof into several cases according as the type of triangles and the number

of faces. In this section, we treat the preliminary case: tilings with F ¼ 4 and

tilings by equilateral triangles. Classification of tilings by isosceles and scalene

triangles will be given in § 4 and § 5@§ 8, respectively.

Now we first show the following (maybe well known) proposition. We

give here a proof for the sake of completeness.

Proposition 5. (1) Monohedral tilings with F ¼ 4 are given by F4 with

aþ b þ g ¼ 2 and 1=2 < a; b; g < 1.

(2) Monohedral tilings by equilateral triangles are

F4 a ¼ b ¼ g ¼ 2

3

� �
; G8 a ¼ b ¼ g ¼ 1

2

� �
; H20:

These are the spherical projections of regular tetrahedron, octahedron and icosa-

hedron to their circumspheres.
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Proof. We first prove (2). Assume that the sphere is tiled by the fol-

lowing triangle:

Fig. 22

Let ka ¼ 2 be the type of vertices of this tiling. From the condition a < 1, we

have kb 3. And from the equality

aþ b þ g ¼ 3a ¼ 1þ 4

F
;

we have ðk � 6ÞðF þ 4Þ þ 24 ¼ 0, which implies k ¼ 3; 4; 5. For each case, we

have F ¼ 4; 8; 20, respectively, and it is clear that the corresponding spherical

tilings are just equal to the projections of regular tetrahedron, octahedron and

icosahedron to their circumspheres. In Table, they correspond to F4 ða ¼ b ¼
g ¼ 2=3Þ, G8 ða ¼ b ¼ g ¼ 1=2Þ and H20.

Next, we prove (1). Assume F ¼ 4, and we first consider the scalene case.

We may assume that a > b > g. Then, by using the cosine rule, we can show

that a > b > c. In particular, the lengths of three edges di¤er to each other.

Hence, two edges must contact in one of the following way:

Fig. 23

Using this fact, we can show that the development map of this tiling is uniquely

determined in the following way:
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Fig. 24

From Proposition 4 and the condition a > b > g, we have aþ b þ g ¼ 2 and

1=2 < g < b < a < 1. Conversely, from Proposition 4 again, it follows that if a,

b, g satisfy these conditions, there exists a spherical triangle with angles ap, bp,

gp, which tiles the whole sphere with F ¼ 4.

In the case of isosceles triangles, we may assume a0 b ¼ g. Then, from

the cosine rule, we have a0 b ¼ c, and the sphere must be tiled by the fol-

lowing rhombus:

Fig. 25

Hence the tiling is of the form

Fig. 26

This figure just coincides with Figure 24 if we drop the condition a > b > g and

instead, put b ¼ g. Hence, by including the equilateral case F4 ða ¼ b ¼ g ¼
2=3Þ stated above, the conditions on the angles are simply summarized in the
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form

aþ b þ g ¼ 2 and
1

2
< a; b; g < 1

if we drop the assumption on the order of the size of a; b; g. Thus, we obtain

all tilings with F ¼ 4, which just coincides with F4 in Table. q.e.d.

4. Case of isosceles triangles

In this section, we classify monohedral tilings by isosceles triangles with

F > 4. There are two types of isosceles triangles:

( I ) a > b ¼ g,

(II) a ¼ b > g.

A classification by these triangles is given by the following proposition. This

result was already obtained by Sommerville [9; p. 91@92], and a similar proof

was outlined there (but with some misprints). We give here the detailed proof

of this proposition for the sake of completeness. Note that among these

tilings, G4n and TG8nþ4 are deformable to tilings by scalene triangles.

Proposition 6 (cf. [9]). Monohedral tilings of the 2-dimensional sphere by

isosceles triangles with F > 4 are exhausted by:

ðIÞ G6;F
I
12;F

II
12 ;F

III
12 ;MTGI

12;H12;H16;F24; I24;F
I
60;F

II
60 ;

G4n a ¼ n� 1

n
; b ¼ g ¼ 1

n
; nb 3

� �
;

TG8nþ4 a ¼ 2n

2nþ 1
; b ¼ g ¼ 1

2nþ 1
; nb 1

� �
:

Fig. 27
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ðIIÞ G4n a ¼ b ¼ 1

2
; g ¼ 1

n
; nb 3

� �
;

G4nþ2 ðnb 2Þ; TG8n ðnb 2Þ;

TG8nþ4 a ¼ b ¼ 1

2
; g ¼ 1

2nþ 1
; nb 1

� �
;

H4n ðnb 6Þ; TH8nþ4 ðnb 3Þ:

(Remark that for the tilings G6, H12 and H16 in (I), the condition g > a ¼ b

holds instead of a > b ¼ g. See Table.)

We first consider the case (I). In this case, by using the cosine rule, we

can easily show that a > b ¼ c, and it is clear that the sphere is tiled by the

rhombus with angles ap, 2bp, ap, 2bp:

Fig. 28

Hence, the number of faces must be even, and we put F ¼ 2F 0. (F 0 expresses

the number of rhombuses.) In the following, we put B ¼ 2b. Then the whole

sphere is tiled by the rhombus with angles ap, Bp, ap, Bp, and these angles

satisfy the conditions:

aþ B ¼ 1þ 2

F 0 ; 0 < B < 2a < 2:

(Note that the condition B ¼ b þ b < 1þ a in Proposition 4 is automatically

satisfied under these conditions.) In particular, from these conditions, we have

F 0 þ 2

3F 0 < a < 1:

In addition, the inequality F 0 b 3 holds because F > 4.

We first determine the type of vertices appearing in the tiling.

Lemma 7. The type of vertices in the tiling by the rhombus with angles ap,

Bp, ap, Bp ð2a > B;F 0 b 3Þ is one of the following:
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3a ¼ 2;

4a ¼ 2;

5a ¼ 2;

2aþ B ¼ 2;

3aþ B ¼ 2;

lB ¼ 2 ðlb 2Þ;

aþmB ¼ 2 ðmb 2Þ:

Remark. Actually, among the above list, a vertex of type 3aþ B ¼ 2

does not appear in the tiling. We know this result after the classification given

in this section.

Proof. We assume that there exists a vertex of type kaþ lB ¼ 2 in the

tiling by rhombuses. Then, we have k0 l. In fact, if k ¼ l, we have

kaþ kB ¼ 2 ¼ k 1þ 2

F 0

� �
;

which implies ðk � 2ÞðF 0 þ 2Þ þ 4 ¼ 0. From this equality, we have k ¼ 1 and

F 0 ¼ 2, which contradicts the assumption F 0 b 3. Hence, from two equalities

kaþ lB ¼ 2 and aþ B ¼ 1þ 2=F 0, we have

a ¼ ð2� lÞF 0 � 2l

F 0ðk � lÞ ; B ¼ ðk � 2ÞF 0 þ 2k

F 0ðk � lÞ :

Now we consider two cases. If k > l, then from the condition

F 0 þ 2

3F 0 < a ¼ ð2� lÞF 0 � 2l

F 0ðk � lÞ ;

we have ðk þ 2l � 6ÞF 0 þ 2k þ 4l < 0. From this inequality, we have k þ 2la

5. Combining with the conditions k > l and a < 1, it follows that ðk; lÞ must

be equal to one of the following:

ð3; 0Þ; ð4; 0Þ; ð5; 0Þ; ð2; 1Þ; ð3; 1Þ:

If k < l, then from the condition a < 1, we have ðk � 2ÞF 0 þ 2l < 0, which

implies k ¼ 0; 1. Combining these results, it follows that the vertices must

be one of the following type: 3a ¼ 2, 4a ¼ 2, 5a ¼ 2, 2aþ B ¼ 2, 3aþ B ¼ 2,

lB ¼ 2, aþmB ¼ 2. Since B < 2, we have lb 2. In addition, the integer m

is greater than 1 because k ¼ 1 in this case. q.e.d.
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Now, we prove Proposition 6 (I). We divide the proof into four cases

according as the value of a.

(i) The case a ¼ 2=3.

If there exists a vertex of type 2aþ B ¼ 2, then we have a ¼ B ¼ 2=3

and F 0 ¼ 6. In this case, possible types of vertices are exhausted by 3a ¼ 2,

2aþ B ¼ 2, aþ 2B ¼ 2 and 3B ¼ 2. But, since a ¼ B, these types are the

same, and it is easy to see that this tiling is equal to the projection of the

regular hexahedron to the sphere. Hence, triangular tilings by isosceles tri-

angles are obtained by drawing six diagonal lines in each face. Thus, the

classification is purely reduced to the combinatorial examination, and the result

is given as follows:

Fig. 29

Note that the vertex of type 2aþ B ¼ 2 must appear from the assumption. By

drawing diagonal lines which divide the angle B in these five figures, we obtain

the tilings F II
12 , F III

12 , G12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ, TG12 ða ¼ 2=3; b ¼ g ¼ 1=3Þ
and MTGI

12, respectively.

Next, we consider the case where a vertex of type 2aþ B ¼ 2 does not

appear. Since a ¼ 2=3, a vertex of type 3aþ B ¼ 2 also does not exist. If a

vertex of type aþmB ¼ 2 exists, then we have B ¼ 4=3m. And from the

condition aþ B ¼ 1þ 2=F 0, we have
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m ¼ 4F 0

F 0 þ 6
< 4;

and hence m ¼ 2; 3. If m ¼ 3, we have B ¼ 4=9, and in this case, possible

types of vertices are exhausted by 3a ¼ 2 and aþ 3B ¼ 2. Starting from the

vertex aþ 3B ¼ 2, we draw a development map of this tiling. But, as the

following figure shows, this case cannot occur.

Fig. 30

(The numbers in the figure indicate the order of drawing.) Therefore, we have

m ¼ 2. In this case we have a ¼ B ¼ 2=3 again, and the tiling is obtained

by projecting the regular hexahedron to the sphere, as above. But, since a

vertex of type 2aþ B ¼ 2 does not exist, possible vertices are of type 3a ¼ 2,

aþ 2B ¼ 2 and 3B ¼ 2, and the vertex aþ 2B ¼ 2 must exist from the assump-

tion. In this situation, we can draw uniquely the following development map:

Fig. 31

By drawing diagonal lines which divide the angle B, we obtain the tiling H12.
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Next, we consider the case where neither vertex of type 2aþ B ¼ 2 nor

aþmB ¼ 2 appears in the tiling. In this case, possible types of vertices are

exhausted by 3a ¼ 2 and lB ¼ 2, and hence we have B ¼ 2=l. From the

equality aþ B ¼ 1þ 2=F 0, we have

l ¼ 6F 0

F 0 þ 6
< 6;

and hence l ¼ 2; 3; 4; 5. If l ¼ 2, then we have a ¼ 2=3, B ¼ 1, and we can

uniquely draw the development map with F 0 ¼ 3.

Fig. 32

Clearly, this tiling corresponds to G6 after a suitable exchange of angles. In

the same way, we can uniquely draw the development maps for the cases l ¼ 3,

4 and 5 as follows:

Fig. 33
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Fig. 33 (continued)

These tilings correspond to F I
12, F24 and F I

60, respectively.

(ii) The case a ¼ 1=2.

If a vertex of type 2aþ B ¼ 2 exists, then we have B ¼ 1, and this con-

tradicts the assumption 2a > B. If a vertex of type 3aþ B ¼ 2 exists, we have

B ¼ 1=2. From the equality aþ B ¼ 1þ 2=F 0, we have 2=F 0 ¼ 0, which is

also a contradiction. Hence, neither vertices of type 2aþ B ¼ 2 nor 3aþ B ¼
2 appears in the tiling. If a vertex of type aþmB ¼ 2 exists, we have

B ¼ 3=2m. Then, from the equality aþ B ¼ 1þ 2=F 0, we have

m ¼ 3F 0

F 0 þ 4
< 3;

which implies m ¼ 2. Hence, we have a ¼ 1=2, B ¼ 3=4 and F 0 ¼ 8. In this

situation, possible types of vertices are exhausted by 4a ¼ 2 and aþ 2B ¼ 2,

and the development map can be uniquely drawn as follows:
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Fig. 34

Then, it is easy to see that this tiling corresponds to H16 after a suitable

exchange of angles.

If a vertex of type aþmB ¼ 2 does not appear, possible types of vertices

are exhausted by 4a ¼ 2 and lB ¼ 2. In this case, we have B ¼ 2=l, and from

the equality aþ B ¼ 1þ 2=F 0, we have

l ¼ 4F 0

F 0 þ 4
< 4;

which implies l ¼ 2; 3. If l ¼ 2, we have B ¼ 1, and this contradicts the

assumption 2a > B. If l ¼ 3, then possible vertices are of type 4a ¼ 2 and

3B ¼ 2, and we can uniquely draw the following development map:

Fig. 35

By dividing the angle B, we obtain the tiling I24.

(iii) The case a ¼ 2=5.

If a vertex of type 2aþ B ¼ 2 exists, we have B ¼ 6=5, which contradicts

the assumption 2a > B. By the same reason, we can show the non-existence

Tilings of the 2-dimensional sphere 495



of a vertex of type 3aþ B ¼ 2. If a vertex of type aþmB ¼ 2 exists, then we

have B ¼ 8=5m. From the equality aþ B ¼ 1þ 2=F 0, we have

m ¼ 8F 0

3F 0 þ 10
<

8

3
;

which implies m ¼ 2. Then, we have B ¼ 4=5, which also contradicts the

assumption 2a > B. Hence, a vertex of type aþmB ¼ 2 does not exist.

Therefore, possible vertices are exhausted by 5a ¼ 2 and lB ¼ 2. From the

equalities B ¼ 2=l and aþ B ¼ 1þ 2=F 0, we have

l ¼ 10F 0

3F 0 þ 10
<

10

3
:

On the other hand, from the assumption 2a > B, we have 2l > 5, and hence

l ¼ 3. Then, possible vertices are of type 5a ¼ 2 and 3B ¼ 2, and we can

uniquely draw the following development map:

Fig. 36

This tiling corresponds to F II
60 .

(iv) The case a0 2
3 ;

1
2 ;

2
5 .

In this case, we first prepare the following lemma.

Lemma 8. Assume a0 2
3 ;

1
2 ;

2
5 . Then any monohedral tiling of the 2-

dimensional sphere by rhombuses with angles ap, Bp, ap, Bp ð2a > B;F 0 b 3Þ
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contains a vertex of type 2aþ B ¼ 2, but does not contain a vertex of type

3aþ B ¼ 2.

Proof. First, we assume that a vertex of type 3aþ B ¼ 2 exists. Then, a

vertex of type 2aþ B ¼ 2 cannot exist because a > 0. If there exists a vertex

of type aþmB ¼ 2, we have

a ¼ 2m� 2

3m� 1
; B ¼ 4

3m� 1
:

Then, from the condition aþ B ¼ 1þ 2=F 0, we have ð3�mÞF 0 ¼ 2ð3m� 1Þ >
0, which implies m ¼ 2. But in this case, we have a ¼ 2=5, which contradicts

the assumption a0 2=5. Therefore, a vertex of type aþmB ¼ 2 cannot exist.

Hence, possible types of vertices are exhausted by 3aþ B ¼ 2 and lB ¼ 2. If

a vertex lB ¼ 2 does not appear in the tiling, then all vertices are of type

3aþ B ¼ 2. But this case cannot occur because the number of angles a and B

appearing in the tiling must coincide. Hence, a vertex of type lB ¼ 2 exists,

and we have

a ¼ 2l � 2

3l
; B ¼ 2

l
:

From the equality aþ B ¼ 1þ 2=F 0, we have ð4� lÞF 0 ¼ 6l > 0. On the

other hand, from the assumption 2a > B, we have 2l > 5, and hence l ¼ 3.

Therefore, the types of vertices are 3aþ B ¼ 2 and 3B ¼ 2. Then, starting

from the vertex 3aþ B ¼ 2, we draw the development map as follows:

Fig. 37

As this figure shows, a contradiction occurs and this tiling cannot exist.

Hence, a vertex of type 3aþ B ¼ 2 does not exist.

Next, assume that a vertex of type 2aþ B ¼ 2 does not appear in the

tiling. Then, from Lemma 7, possible types of vertices are exhausted by
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lB ¼ 2 and aþmB ¼ 2 ðl;mb 2Þ. Clearly, a vertex of type aþmB ¼ 2 must

appear in the tiling. Then, starting from this vertex aþmB ¼ 2, we draw a

development map. But, as the following figure shows, this case cannot occur.

Fig. 38

Therefore, a vertex of type 2aþ B ¼ 2 must exist in the tiling. q.e.d.

Now, under this preparation, we complete the proof of Proposition 6

(I). We first consider the case where a vertex of type aþmB ¼ 2 exists.

Combining with the equality 2aþ B ¼ 2, we have

a ¼ 2m� 2

2m� 1
; B ¼ 2

2m� 1
:

Then, from the equality aþ B ¼ 1þ 2=F 0, we have F 0 ¼ 4m� 2. From the

assumption a0 2=3, we have m0 2, and hence mb 3. In this situation,

possible types of vertices are exhausted by

2aþ B ¼ 2; aþmB ¼ 2; ð2m� 1ÞB ¼ 2:

Then, starting from the vertex aþmB ¼ 2, we can essentially uniquely draw

the development map as follows:

Fig. 39
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(We start to draw this figure from the point P1. As before, join two figures

such that two Pi’s express the same point in the sphere.) By dividing the angle

B, we can easily see that this tiling corresponds to TG8nþ4 with a ¼ 2n=ð2nþ 1Þ
and b ¼ g ¼ 1=ð2nþ 1Þ, where we put n ¼ m� 1b 2.

Next, assume that a vertex of type aþmB ¼ 2 does not appear in the

tiling. In this case, possible types of vertices are 2aþ B ¼ 2 and lB ¼ 2. If a

vertex lB ¼ 2 does not appear in the tiling, we are lead to a contradiction by

the same reason as stated in the proof of Lemma 8. Hence, a vertex of type

lB ¼ 2 actually exists, and we have a ¼ ðl � 1Þ=l, B ¼ 2=l. From the equality

aþ B ¼ 1þ 2=F 0, we have F 0 ¼ 2l. Since a0 1=2; 2=3, we have l0 2; 3, and

hence lb 4. In this case, we can uniquely draw the development map as

follows:

Fig. 40

By dividing the angle B, we obtain the tiling G4n with a ¼ ðn� 1Þ=n and b ¼
g ¼ 1=n, where we put n ¼ lb 4.

Combining (i)@(iv), we complete the proof of Proposition 6 (I).

Next, we consider the case (II): a ¼ b > g. In this case, we can show

that a ¼ b > c, by using the cosine rule. Hence, the sphere is tiled by the

rhombus with angles gp, 2ap, gp, 2ap.

Fig. 41
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We put A ¼ 2a and F ¼ 2F 0, in this case. Then, from Proposition 4, these

angles satisfy the following conditions:

Aþ g ¼ 1þ 2

F 0 ; 0 < 2g < A < 1þ g < 2:

In particular, the angle g satisfies the inequality

1

F 0 < g <
F 0 þ 2

3F 0 :

Of course, we have F 0 b 3 from the assumption F > 4. Now, we prove the

following lemma.

Lemma 9. The type of vertices appearing in the tiling by the rhombus with

angles gp, Ap, gp, Ap ðA > 2g;F 0 b 3Þ is one of the following:

2A ¼ 2;

2Aþ g ¼ 2;

lg ¼ 2 ðlb 3Þ;

Aþmg ¼ 2 ðmb 2Þ:

Proof. Assume that there exists a vertex of type kAþ lg ¼ 2. Then, as

in the case of Lemma 7, we can show that k0 l. Then, combined with the

equality Aþ g ¼ 1þ 2=F 0, we have

A ¼ ð2� lÞF 0 � 2l

F 0ðk � lÞ ; g ¼ ðk � 2ÞF 0 þ 2k

F 0ðk � lÞ :

If k > l, then from the condition g < ðF 0 þ 2Þ=ð3F 0Þ, we have ð2k þ l � 6ÞF 0 þ
4k þ 2l < 0, which implies 2k þ la 5. Hence, by using the condition A < 2,

we have ðk; lÞ ¼ ð2; 0Þ; ð2; 1Þ. If k < l, then from the condition 1=F 0 < g, we

have ðk � 2ÞF 0 þ k þ l < 0, which implies k ¼ 0; 1. If k ¼ 0, then we have

lb 3 because g < 1. In case k ¼ 1, then from the assumption k > l, we have

lb 2. q.e.d.

Using this lemma, we prove Proposition 6 (II). We divide the proof into

two cases according as the value of A.

(i) The case A ¼ 1.

Since g > 0, a vertex of type 2Aþ g ¼ 2 cannot exist. If a vertex of type

Aþmg ¼ 2 appears in the tiling, we have g ¼ 1=m. Since 2g < A, we have

mb 3. In addition, from the equality Aþ g ¼ 1þ 2=F 0, we have F 0 ¼ 2m.

Then, possible types of vertices are exhausted by 2A ¼ 2, Aþmg ¼ 2 and
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2mg ¼ 2. Starting from the vertex Aþmg ¼ 2, we can uniquely draw the

development map as follows:

Fig. 42

(As before, we join two figures such that two Pi’s express the same point in the

sphere.) By dividing the angle A, we obtain the tiling TG8n or TG8nþ4 with

a ¼ b ¼ 1=2 and g ¼ 1=ð2nþ 1Þ, where we put m ¼ 2n ðnb 2Þ or m ¼ 2nþ 1

ðnb 1Þ, respectively.

If a vertex of type Aþmg ¼ 2 does not exist, then possible types of

vertices are exhausted by 2A ¼ 2 and lg ¼ 2, and both vertices must actually

appear. Then, we have g ¼ 2=l, and from the equality Aþ g ¼ 1þ 2=F 0, we

have F 0 ¼ l. In this case, from the condition 2g < A, we have lb 5, and we

can uniquely draw the following development map:

Fig. 43

By dividing the angle A as above, we obtain the tiling G4n with a ¼ b ¼ 1=2

and g ¼ 1=n or G4nþ2, where we put l ¼ 2n ðnb 3Þ or l ¼ 2nþ 1 ðnb 2Þ,
respectively.

(ii) The case A0 1.

Assume that a vertex of type 2Aþ g ¼ 2 does not exist in the tiling.

Then, possible types of vertices are exhausted by lg ¼ 2 and Aþmg ¼ 2.
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Since mb 2, both vertices must appear in the tiling by the same reason as

stated in the proof of Lemma 8. But, as the following figure shows, this tiling

cannot exist.

Fig. 44

Hence, a vertex of type 2Aþ g ¼ 2 must appear in the tiling. If a vertex of

type Aþmg ¼ 2 exists in the tiling, we have

A ¼ 2m� 2

2m� 1
; g ¼ 2

2m� 1

from these two equalities. Then, from the equality Aþ g ¼ 1þ 2=F 0, we have

F 0 ¼ 4m� 2. In addition, from the condition 2g < A, we have mb 4. In this

situation, possible types of vertices are exhausted by 2Aþ g ¼ 2, Aþmg ¼ 2

and ð2m� 1Þg ¼ 2. Then, as in the case of Figure 39, we can essentially

uniquely draw the following development map by starting from the vertex

Aþmg ¼ 2:

Fig. 45

By dividing the angle A, we obtain the tiling TH8nþ4, where we put n ¼
m� 1b 3.

If a vertex of type Aþmg ¼ 2 does not exist, then possible types of

vertices are exhausted by 2Aþ g ¼ 2 and lg ¼ 2. From the same reason as
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above, both vertices must actually appear. Then, from these two equalities, we

have A ¼ ðl � 1Þ=l and g ¼ 2=l. And from the equality Aþ g ¼ 1þ 2=F 0, we

have F 0 ¼ 2l. In this situation, we have lb 6 on account of the condition

2g < A, and we can uniquely draw the following development map:

Fig. 46

By dividing the angle A, we obtain the tiling H4n, where we put n ¼ lb 6.

Combining these results, we complete the proof of Proposition 6 (II).

5. Case of scalene triangles I: Determination of the type of vertices

Next, we consider monohedral tilings by scalene triangles with F > 4.

In this section, in order to classify these tilings, we first determine the type

of vertices appearing in the tiling as a preliminary step. In the subsequent

sections, we carried out the classification based on the results of this section.

In the following, we always assume 0 < g < b < a < 1, unless otherwise stated.

Fig. 47
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In this case, by using the cosine rule, we can show that a > b > c. Hence, for

example, the edge a must be touched to the other triangle in one of the fol-

lowing way:

Fig. 48

From Proposition 4, these angles a, b, g satisfy the following conditions:

aþ b þ g ¼ 1þ 4

F
;

2

F
< g < b < a < 1:

In addition, a satisfies the inequality a > 1=3 because 3a > aþ b þ g > 1.

Now, we determine the type of vertices appearing in the tiling. For this

purpose, we first consider the following purely combinatorial figure: Let P be

a point in the 2-dimensional plane, surrounded by n triangles ðnb 3Þ. We

assume that these triangles satisfy the following conditions:

(i) Three vertices of each triangle are marked by three symbols l, m and n

in some order.

(ii) The end points of two contact edges of two triangles are marked by

symbols in one of the following way (allowing the exchange of symbols l, m, nÞ:

Fig. 49

For example, we are considering a figure such as
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Fig. 50

where � indicates the point P. If P is surrounded by k l’s, l m’s and m n’s,

then we say that the type of this figure is klþ lmþmn. (We ignore the order

of symbols around P in this expression.) Under these conditions, we classify

possible types of this combinatorial figure. It should be remarked that the

symbols l, m, n do not express the angles of the triangle. But if the sphere is

tiled by one scalene triangle with angles ap, bp, gp, then we clearly obtain a

combinatorial figure satisfying the above two conditions (i), (ii) at each vertex

by replacing three angles by the symbols l, m, n. Thus, the above figure is

an abstract combinatorial object of the surroundings of a point of the tiling.

Now we prove the following lemma.

Lemma 10. The type of this figure is expressed in the form ð2pþ 1Þlþ
ð2qþ 1Þmþ ð2rþ 1Þn or 2plþ 2qmþ 2rn.

Proof. If P is surrounded by three triangles, then it is easy to see that the

figure is essentially in the following form:

Fig. 51

Hence, in this case, the type of this figure is lþ mþ n. In the 4-valent case,

after some examinations, we can show that the type of this figure is 4l or

2lþ 2m, by exchanging the symbols l, m, n suitably.
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Fig. 52

Hence, the lemma holds for these two cases.

Now, we consider the k-valent case ðkb 5Þ. If there exist two adjacent

triangles possessing the same symbols at P as in the following figure, we may

delete these two and join the remaining two edges, because both edges possess

the symbols l and n at their end points.

Fig. 53

Clearly, the resulting figure is ðk � 2Þ-valent. We repeat this procedure for

several times. Then, finally, we obtain a 3- or 4-valent figure, or a figure

whose adjacent symbols at P always di¤er. In the 3- or 4-valent case, the

initial vertex is conversely obtained by adding symbols 2l (or 2m, 2n) to

lþ mþ n, 4l, 2lþ 2m (or their exchanged ones). Hence, it must be of the

form ð2pþ 1Þlþ ð2qþ 1Þmþ ð2rþ 1Þn or 2plþ 2qmþ 2rn. In the latter case,

the same symbol does not appear adjacently around P, and hence, it must be of

the form:
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Fig. 54

In particular, this figure is of type kðlþ mþ nÞ for some kb 1. Hence, the

initial figure is obtained by adding 2l, 2m or 2n to kðlþ mþ nÞ for several

times, and thus we arrive at the same conclusion as above. This completes the

proof of the lemma. q.e.d.

Using this lemma, we prove the following proposition, giving a classifi-

cation of the type of vertices for the scalene case.

Proposition 11. The type of vertices appearing in the monohedral tiling of

the 2-dimensional sphere by scalene triangles with angles ap, bp, gp (2=F < g <

b < a < 1 and F > 4) must be one of the following:

aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 q; rb 0; ðq; rÞ0 ð0; 0Þ;

3aþ b þ g ¼ 2;

4a ¼ 2;

2aþ 2b ¼ 2;

2aþ 2sg ¼ 2 sb 1;

2tb þ 2ug ¼ 2 t; ub 1;

2vb ¼ 2 vb 2;

2wg ¼ 2 wb 2:

Proof. We first consider the odd valent case. Assume that there exists

an odd valent vertex in the tiling. Then, from Lemma 10, its type is expressed

as ð2pþ 1Þaþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 ðp; q; rb 0Þ. For some time, we

drop the assumption g < b < a, but instead, assume that pb qb rb 0. Then,

from the conditions aþ b þ g > 1 and ð2rþ 1Þg ¼ 2� ð2pþ 1Þa� ð2qþ 1Þb,
we have
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2rþ 1 < ð2rþ 1Þðaþ b þ gÞ

¼ ð2rþ 1Þaþ ð2rþ 1Þb þ ð2rþ 1Þg

¼ 2� 2ðp� rÞa� 2ðq� rÞb:

Hence, we have 0a 2ðp� rÞaþ 2ðq� rÞb < 1� 2r, which implies r ¼ 0.

Hence, reviving the condition g < b < a again, we have minfp; q; rg ¼ 0 and

we know that possible vertices are of type ð2pþ 1Þaþ ð2qþ 1Þb þ g ¼ 2,

ð2pþ 1Þaþ b þ ð2rþ 1Þg ¼ 2 and aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 ðp; q; rb 0Þ.
But a vertex of type aþ b þ g ¼ 2 cannot exist because aþ b þ g ¼ 1þ 4=F

< 2 from the assumption.

Now, assume that a vertex of type ð2pþ 1Þaþ ð2qþ 1Þb þ g ¼ 2 ðpb 1Þ
exists. Then, combining with the condition aþ b þ g ¼ 1þ 4=F , we have

ðp� qÞb þ pg ¼ ð2p� 1ÞF þ 8pþ 4

2F
;

ðq� pÞaþ qg ¼ ð2q� 1ÞF þ 8qþ 4

2F
;

paþ qb ¼ F � 4

2F
:

Now, assume qb 1. Then, from the second equality, we have

ð2q� pÞa > ðq� pÞaþ qg ¼ ð2q� 1ÞF þ 8qþ 4

2F
> 0;

which implies 2q > p. Next, by subtracting the third equality from the first,

we have

ðp� 2qÞb � pða� gÞ ¼ ðp� 1ÞF þ 4pþ 4

F
> 0;

and hence, ðp� 2qÞb > pða� gÞ > 0. From this inequality, we have p > 2q,

but this contradicts the above inequality 2q > p. Therefore, we have q ¼ 0.

Then, from the first and the third equalities, we have

a ¼ F � 4

2pF
; b þ g ¼ ð2p� 1ÞF þ 8pþ 4

2pF
:

Substituting these values to the inequality 2a > b þ g, we have ð2p� 3ÞF þ 8pþ
12 < 0, which implies p ¼ 1. Hence, the vertex must be of type 3aþ b þ g ¼ 2.

Next, we consider the vertex of type ð2pþ 1Þaþ b þ ð2rþ 1Þg ¼ 2

ðp; rb 1Þ. If this type exists, then combined with the equality aþ b þ g ¼
1þ 4=F , we have
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pb þ ðp� rÞg ¼ ð2p� 1ÞF þ 8pþ 4

2F
;

paþ rg ¼ F � 4

2F
;

ðr� pÞaþ rb ¼ ð2r� 1ÞF þ 8rþ 4

2F
:

Then, from the third equality, we have

ð2r� pÞa > ðr� pÞaþ rb ¼ ð2r� 1ÞF þ 8rþ 4

2F
> 0;

which implies 2r > p. Next, taking a di¤erence of the first and the second

equality, we have

ðp� 2rÞg� pða� bÞ ¼ ðp� 1ÞF þ 4pþ 4

F
> 0:

In particular, we have ðp� 2rÞg > pða� bÞ > 0, and hence p > 2r. This con-

tradicts the above inequality 2r > p, and therefore this case does not occur.

Combining these results, it follows that odd valent vertices are of type

3aþ b þ g ¼ 2 or aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 ðq; rb 0; ðq; rÞ0 ð0; 0ÞÞ.
Next, we consider the even valent case. From Lemma 10, it is of type

2paþ 2qb þ 2rg ¼ 2 ðp; q; rb 0Þ. Then, by the same argument as in the odd

valent case, we can prove minfp; q; rg ¼ 0, and hence, the type is 2paþ 2qb ¼
2, 2paþ 2rg ¼ 2 or 2qb þ 2rg ¼ 2. We first treat the case 2paþ 2qb ¼ 2

ðpb 1Þ. If q ¼ 0, then from the condition 1=3 < a < 1, we have p ¼ 2. In

case qb 1, combined with the equality aþ b þ g ¼ 1þ 4=F , we have

b ¼ 1� pa

q
; g ¼ ðp� qÞaF þ ðq� 1ÞF þ 4q

qF
:

Since b > g, we obtain the inequality

ðq� 2ÞF þ 4q < ðq� 2pÞaF :ð�Þ

Now assume q > 2p. Then from this inequality, we have

ðq� 2ÞF þ 4q

ðq� 2pÞF < a < 1;

from which we have ðp� 1ÞF þ 2q < 0. But this contradicts the assumption

p; qb 1, and hence, we have qa 2p. Then, from the above inequality ð�Þ
again, we have ðq� 2ÞF þ 4q < 0, which implies q ¼ 1. Thus, we have

b ¼ 1� pa; g ¼ ðp� 1ÞaF þ 4

F
;
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and hence, from the condition g < b < a, we have

1

pþ 1
< a <

F � 4

ð2p� 1ÞF :

From this inequality, we have ðp� 2ÞF þ 4pþ 4 < 0, and we arrive at the

conclusion p ¼ 1. Therefore, the vertex is of type 2aþ 2b ¼ 2.

Next, we consider the case 2paþ 2rg ¼ 2 ðp; rb 1Þ. In this case, we have

2 ¼ 2paþ 2rg > 2pa >
2p

3

because a > 1=3. Hence, we have p ¼ 1 or 2. Now assume p ¼ 2. Then we

have 4aþ 2rg ¼ 2. Combined with the equality aþ b þ g ¼ 1þ 4=F , we have

b ¼ ð2� rÞaF þ ðr� 1ÞF þ 4r

rF
; g ¼ 1� 2a

r
:

Then, from the condition a > b, we have 2ðr� 1ÞaF > ðr� 1ÞF þ 4r > 0.

From this inequality, we have rb 2 and

a >
ðr� 1ÞF þ 4r

2ðr� 1ÞF :

On the other hand, from the condition g > 2=F , we have a < ðF � 2rÞ=ð2F Þ.
Hence we have

ðr� 1ÞF þ 4r

2ðr� 1ÞF <
F � 2r

2F
;

from which the inequality r2 þ r < 0 follows. This is a contradiction, and

therefore the case p ¼ 2 does not occur. Hence we have p ¼ 1, and the vertex

is of type 2aþ 2rg ¼ 2 ðrb 1Þ.
For the third case 2qb þ 2rg ¼ 2, we can easily check that the pair ðq; rÞ

must satisfy the condition p; qb 1 or pb 2, q ¼ 0 or p ¼ 0, qb 2.

Combining these results, we complete the proof of Proposition 11.

q.e.d.

Remark. (1) As for two vertices aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 and

2tb þ 2ug ¼ 2 in the above list, there may appear several types of vertices in

one tiling because they contain two independent parameters. On the contrary,

as for the remaining vertices, the type of vertices is uniquely determined if they

exist. In fact, for example, if vertices of type 2aþ 2sg ¼ 2 and 2aþ 2s 0g ¼ 2

exist, we have clearly s ¼ s 0 and the type is uniquely determined.

(2) As a result of the classification that will be carried out in § 6@§ 8, we

know that the following types of vertices in Proposition 11 do not actually

Yukako Ueno and Yoshio Agaoka510



appear in the tilings by scalene triangles with F > 4:

aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 q; rb 1;

3aþ b þ g ¼ 2;

2b þ 2ug ¼ 2 u ¼ 1; 2;

4b þ 2ug ¼ 2 ub 2;

2tb þ 2ug ¼ 2 tb 3; ub 1;

4g ¼ 2:

Among these, the non-existence of a vertex of type 3aþ b þ g ¼ 2 is a quite

delicate result, depending on the topology of the sphere. For details, see

Appendix. But, if we consider a partial tiling around only one point of the

sphere, the above vertices can all exist. For example, a vertex of type

aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 ðq; rb 1Þ appears in the following way:

Fig. 55

(As for the vertex 3aþ b þ g ¼ 2, see Appendix.)

(3) Davies [4; p. 44] already obtained the same result as this proposi-

tion (but without giving a detailed proof ). There, he wrote that other types of

vertices are ‘‘prohibited by the conditions a > b > g and aþ b þ g > 1’’ (in our

notation). But actually, we need additional conditions to prove Proposition

11. In fact, for example, consider the case a ¼ 3=5, b ¼ 1=2 and g ¼ 3=10.

Then by putting F ¼ 10, these angles satisfy the conditions aþ b þ g ¼
1þ 4=F , 2=F < g < b < a < 1 and 2aþ b þ g ¼ 2. Hence, there may exist a

vertex of type 2aþ b þ g ¼ 2 in the tiling, and in order to exclude this type of

vertex, we need the combinatorial argument as in Lemma 10.

6. Case of scalene triangles II: Odd tilings (1)

Now, under these preliminaries, we classify monohedral tilings of the 2-

dimensional sphere by scalene triangles with F > 4. We carry out the clas-

sification by considering two cases. In § 6 and § 7, we treat the case where a
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tiling contains an odd valent vertex, and in § 8, we classify the remaining tilings

containing only even valent vertices. In the following, we say that a tiling is

odd if it contains an odd valent vertex, and even if all vertices are even valent.

The purpose of § 6 and § 7 is to prove the following proposition.

Proposition 12. Monohedral odd tilings of the 2-dimensional sphere by

scalene triangles with F > 4 are given by the following:

ðiÞ TG8nþ4 aþ b ¼ 1; g ¼ 1

2nþ 1
;
1

2
< a <

2n

2nþ 1
; nb 1

� �
;

ðiiÞ TG8nþ4 aþ b ¼ 1; g ¼ 1

2nþ 1
;

2n

2nþ 1
< a <

4nþ 1

4nþ 2
; nb 1

� �
;

ðiiiÞ MTGI
8nþ4 ðnb 2Þ;

ðivÞ MTGII
8nþ4 ðnb 2Þ:

We remark that for the tiling (ii) in the above list, we impose the condition

b < g < a instead of g < b < a in order to make the list in a consistent form.

Clearly, the boundary case a ¼ 2n=ð2nþ 1Þ between (i) and (ii) corresponds to

the isosceles triangle with b ¼ g (see Proposition 6 (I)). But to avoid con-

fusion, we always assume g < b < a in the following arguments as before.

In this section, to prove this proposition, we prepare four lemmas which

exclude several types of vertices in Proposition 11 for the odd case. And by

using these results, we prove Proposition 12 in the next section.

Lemma 13. Under the same conditions as in Proposition 12, the tiling must

contain a vertex of type aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 for some ðq; rÞ0 ð0; 0Þ.

Proof. Assume that there exists an odd tiling not containing a vertex

of type aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2. Then, by Proposition 11, this tiling

must contain a vertex of type 3aþ b þ g ¼ 2. Combined with the equality

aþ b þ g ¼ 1þ 4=F , we have

a ¼ F � 4

2F
; b þ g ¼ F þ 12

2F
:

In addition, from the condition 2a > b þ g, we have F > 20. Since a ¼
ðF � 4Þ=2F < 1=2, a vertex of type 4a ¼ 2 cannot exist in the tiling. A vertex

of type 2aþ 2b ¼ 2 also cannot exist because b < a < 1=2.

Therefore, from Proposition 11, possible types of vertices are exhausted by

3aþ b þ g ¼ 2;

2aþ 2sg ¼ 2 sb 1;

2tb þ 2ug ¼ 2 t; ub 0:
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In this situation, we draw the development map, starting from the vertex

3aþ b þ g ¼ 2. We remark that if a vertex contains the angles a and b, then it

must be of type 3aþ b þ g ¼ 2, and it is easy to see that three angles 3a must

appear adjacently around this vertex.

Fig. 56

Then, this figure shows that there exists a vertex containing the angles b þ 2g.

Hence, this tiling must contain a vertex of type 2tb þ 2ug ¼ 2 with t; ub 1.

Assume t ¼ u. Then, we have 1 ¼ tb þ tg ¼ tðF þ 12Þ=2F . From this

equality, we have ðt� 2ÞF þ 12t ¼ 0, which implies t ¼ 1 and F ¼ 12. This

contradicts F > 20, and therefore, we have t0 u. Then, from two equalities

b þ g ¼ ðF þ 12Þ=2F and tb þ ug ¼ 1, we have

b ¼ ð2� uÞF � 12u

2ðt� uÞF ; g ¼ ðt� 2ÞF þ 12t

2ðt� uÞF :

Now, we divide the situation into the following two cases (i) and (ii).

(i) The case there exists a vertex of type 2tb þ 2ug ¼ 2 satisfying

t > ub 1.

In this case, from the condition b > g, we have ðtþ u� 4ÞF þ 12tþ 12u <

0. Hence, we have tþ ua 3, which implies t ¼ 2 and u ¼ 1. Therefore, there

exists a vertex of type 4b þ 2g ¼ 2, and we have

a ¼ F � 4

2F
; b ¼ F � 12

2F
; g ¼ 12

F
:

In addition, from the condition b > g, we have F > 36.

Now, we determine remaining possible types of vertices 2tb þ 2ug ¼ 2 with

t; ub 0 and ðt; uÞ0 ð2; 1Þ. We express it as 2kb þ 2lg ¼ 2 to avoid con-

fusion. Substituting the above values of b and g into kb þ lg ¼ 1, we have

ðk � 2ÞðF � 12Þ þ 24ðl � 1Þ ¼ 0. If l ¼ 0, then we have ðk � 2ÞðF � 12Þ ¼ 24.

But this is impossible because F � 12 > 24. If l ¼ 1, then we have k ¼ 2 from

Tilings of the 2-dimensional sphere 513



the same reason. But, this contradicts the assumption ðk; lÞ0 ð2; 1Þ. Hence,

we have lb 2. In this case, we have clearly k ¼ 1 or 0 from the above

equality. Hence, remaining possible types of vertices 2kb þ 2lg ¼ 2 are

exhausted by 2b þ 2lg ¼ 2 ðlb 2Þ and 2mg ¼ 2 ðmb 2Þ. If a vertex of type

2b þ 2lg ¼ 2 actually exists, then substituting the above values of b, g, we have

F ¼ 24l � 12. If a vertex of type 2mg ¼ 2 actually exists, we have F ¼ 12m.

From the condition F > 36, l and m must satisfy the inequalities lb 3 and

mb 4. Now, we consider the following three cases.

(i-a) The case F 2 0 ðmod 12Þ. In this case, from the above argument,

it follows that possible types of vertices are exhausted by

3aþ b þ g ¼ 2;

2aþ 2sg ¼ 2;

4b þ 2g ¼ 2:

In addition, in case a vertex of type 2aþ 2sg ¼ 2 actually appears, we have

F ¼ 24s� 4, and hence sb 2. Now, starting from the vertex 3aþ b þ g ¼ 2,

we draw the development map as follows:

Fig. 57

The numbers in the figure indicate the order of drawing, as before. As stated

before, we can show that three a’s in 3aþ b þ g ¼ 2, two a’s in 2aþ 2sg ¼ 2

and four b’s in 4b þ 2g ¼ 2 must appear adjacently around a vertex. Then,

after drawing the development map surrounding the initial vertex as above,

a vertex containing the angles 2aþ 2g finally appears. This vertex must be of
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type 2aþ 2sg ¼ 2. But two a’s cannot be adjacent because sb 2. This is a

contradiction, and hence this tiling cannot exist. (It should be remarked that

the condition sb 2 in 2aþ 2sg ¼ 2 is essential. In fact, if s ¼ 1, we can

uniquely complete the development map without any contradiction, and obtain

the tiling MTGII
20. In this case, we have a ¼ 2=5, b ¼ 1=5, g ¼ 3=5, and of

course, these angles do not satisfy the assumption g < b < a.)

(i-b) The case F 1 0 ðmod 24Þ. In this case, we put F ¼ 24p ðpb 2Þ.
Then, we can easily show that the possible types of vertices are exhausted by

3aþ b þ g ¼ 2, 4b þ 2g ¼ 2 and 4pg ¼ 2. Then, as the following development

map shows, this tiling also cannot exist.

Fig. 58

(i-c) F 1 12 ðmod 24Þ. In this case, we put F ¼ 24p� 12 ðpb 3Þ.
Then, by the same arguments as above, we can show that possible types

of vertices are exhausted by 3aþ b þ g ¼ 2, 4b þ 2g ¼ 2, 2b þ 2pg ¼ 2 and

ð4p� 2Þg ¼ 2. In this situation, if the tiling does not contain a vertex of type

2b þ 2pg ¼ 2, then we can show the non-existence of this tiling completely in

the same way as the above case (i-b). Hence, we may assume that there exists

a vertex of type 2b þ 2pg ¼ 2 ðpb 3Þ. Then, starting from this vertex, we

draw the following development map.
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Fig. 59

Then, a vertex containing the angles aþ 2b appears, and this is a contradiction.

Hence, we conclude that this case also does not occur.

Combining these results, it follows that a tiling cannot exist in the case (i).

(ii) The case where all vertices of type 2tb þ 2ug ¼ 2 with t; ub 1 satisfy

the inequality u > tb 1.

In this case, from the condition

g ¼ ðt� 2ÞF þ 12t

2ðt� uÞF >
2

F
;

we have ðt� 2ÞF þ 8tþ 4u < 0. Hence, we have t ¼ 1, ub 2, and

b ¼ ðu� 2ÞF þ 12u

2ðu� 1ÞF ; g ¼ F � 12

2ðu� 1ÞF :

In particular, the coe‰cient of b in 2tb þ 2ug with t; ub 1 contains only one

parameter, and hence the vertex of this type is uniquely limited to the case

2b þ 2ug ¼ 2. Therefore, possible vertices are exhausted by 3aþ b þ g ¼ 2,

2aþ 2sg ¼ 2, 2b þ 2ug ¼ 2, 2lb ¼ 2 and 2mg ¼ 2. Now, starting from the

vertex 3aþ b þ g ¼ 2, we draw the development map as follows:
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Fig. 60

(Note that ub 2.) Then, a vertex containing 3b appears, and hence a vertex

of type 2lb ¼ 2 must exist in the tiling. From the condition 1=2 > a > b ¼
1=l, we have lb 3, and from the equality

b ¼ ðu� 2ÞF þ 12u

2ðu� 1ÞF ¼ 1

l
;

we have fðl � 2Þðu� 2Þ � 2gF þ 12lu ¼ 0. Hence, we have ðl � 2Þðu� 2Þ < 2,

from which we have u ¼ 2 or l ¼ u ¼ 3 because lb 3 and ub 2.

If u ¼ 2, then we have

F ¼ 12l; a ¼ 3l � 1

6l
; b ¼ 1

l
; g ¼ l � 1

2l
;

and a vertex of type 2aþ 2sg ¼ 2 cannot exist in the tiling. In the case

l ¼ u ¼ 3, we have F ¼ 108, a ¼ 13=27, b ¼ 1=3, g ¼ 2=9, and a vertex of type

2aþ 2sg ¼ 2 also cannot exist. Hence, a vertex containing a is necessarily of

type 3aþ b þ g ¼ 2. In this situation, we continue to draw the development

map in Figure 60 as follows:

Fig. 61
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Then, there appears a vertex containing 3b þ g, which is a contradiction.

Hence, a tiling of this type does not exist.

In conclusion, this tiling cannot exist for both cases (i) and (ii), and

therefore, a monohedral odd tiling must contain a vertex of type

aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2. q.e.d.

Next, we prove the following lemma.

Lemma 14. Under the same conditions as in Proposition 12, a vertex of

type 3aþ b þ g ¼ 2 does not exist in the tiling.

Proof. Assume there exists a vertex of type 3aþ b þ g ¼ 2 in the tiling.

By Lemma 13, there is a vertex of type aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2

ððq; rÞ0 ð0; 0ÞÞ. Hence, combined with the equality aþ b þ g ¼ 1þ 4=F , we

have

a ¼ qb þ rg ¼ F � 4

2F
; b þ g ¼ F þ 12

2F
:

If q ¼ r, then from these equalities, we have ðq� 1ÞF þ 12qþ 4 ¼ 0, which

implies q ¼ 0 and F ¼ 4. But this contradicts the assumption F > 4. Hence,

we have q0 r, and

b ¼ ð1� rÞF � 12r� 4

2ðq� rÞF ; g ¼ ðq� 1ÞF þ 12qþ 4

2ðq� rÞF :

If q > r, then from the inequality b > g, we have ðqþ r� 2ÞF þ 12qþ 12rþ
8 < 0, and hence, qþ ra 1. This implies q ¼ 1 and r ¼ 0. Then, we have

a ¼ b ¼ ðF � 4Þ=2F , which contradicts the assumption a > b. Therefore, we

have q < r. Then, from the condition g > 2=F , we obtain the inequality

ðq� 1ÞF þ 8qþ 4rþ 4 < 0, and hence q ¼ 0. Since the vertex aþ bþ
ð2rþ 1Þg ¼ 2 contains only one parameter r, other types of odd valent vertex

cannot exist in the tiling. Hence, we conclude that there are just two types of

odd valent vertices: aþ b þ ð2rþ 1Þg ¼ 2 and 3aþ b þ g ¼ 2.

Now, under this situation, we have

a ¼ F � 4

2F
; b ¼ ðr� 1ÞF þ 12rþ 4

2rF
; g ¼ F � 4

2rF
:

From the condition a > g, we have rb 2. And since b < a < 1=2, vertices of

type 4a ¼ 2 and 2aþ 2b ¼ 2 cannot exist in the tiling. Hence, possible types

of vertices are exhausted by
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aþ b þ ð2rþ 1Þg ¼ 2 rb 2;

3aþ b þ g ¼ 2;

2aþ 2sg ¼ 2 sb 1;

2tb þ 2ug ¼ 2 t; ub 0:

Then, starting from the vertex aþ b þ ð2rþ 1Þg ¼ 2, we draw the develop-

ment map as follows. Note that 2rþ 1 g’s must appear adjacently around this

vertex.

Fig. 62

Then, since a vertex containing the angles aþ 2b cannot exist, we have y ¼ b

in this figure. In addition, a vertex containing the angles 3a must be of type

3aþ b þ g ¼ 2, and we can uniquely continue to draw the development map as

follows:

Fig. 63

But finally, we arrive at a contradiction as in the above figure. Therefore, a

vertex of type 3aþ b þ g ¼ 2 cannot exist in the tiling. q.e.d.

Remark. To prove the non-existence of a vertex 3aþ b þ g ¼ 2, we

developed complicated arguments in Lemmas 13 and 14, especially in Figure
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57. If we ignore the topology of the sphere, but instead, consider a non-

compact space of constant positive curvature with boundary, we can construct

a new type of tilings on this space containing a vertex 3aþ b þ g ¼ 2 in its

interior. For details, see Appendix.

Next, we prove the following lemma.

Lemma 15. Under the same conditions as in Proposition 12, a vertex of

type 4a ¼ 2 does not exist in the tiling.

Proof. Assume a ¼ 1=2, and we show that a contradiction necessarily

occurs, after a similar argument as above. By Lemma 13, there is a vertex of

type aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 ððq; rÞ0 ð0; 0ÞÞ. Then, combining with the

equality aþ b þ g ¼ 1þ 4=F , we have

b þ g ¼ F þ 8

2F
; qb þ rg ¼ F � 4

2F
:

If q ¼ r, then from these equalities, we have ðq� 1ÞF þ 8qþ 4 ¼ 0, which

implies q ¼ 0, F ¼ 4. This contradicts the assumption F > 4, and hence q0 r.

Then, we have

b ¼ ð1� rÞF � 8r� 4

2ðq� rÞF ; g ¼ ðq� 1ÞF þ 8qþ 4

2ðq� rÞF :

Now, we consider two cases.

(i) The case where there exists a vertex of type aþ ð2qþ 1Þbþ
ð2rþ 1Þg ¼ 2 satisfying q > rb 0.

In this case, from the condition b > g, we have ðqþ r� 2ÞF þ 8qþ 8rþ
8 < 0, which implies qþ ra 1. Therefore, we have q ¼ 1, r ¼ 0, i.e., there

exists a vertex of type aþ 3b þ g ¼ 2. In addition, we have b ¼ ðF � 4Þ=2F ,
g ¼ 6=F , and a vertex of type 2aþ 2b ¼ 2 does not exist because b < a ¼ 1=2.

Now, we show that an odd valent vertex other than aþ 3b þ g ¼ 2 does

not exist in the tiling. Assume there exists a vertex of type aþ ð2k þ 1Þbþ
ð2l þ 1Þg ¼ 2 with ðk; lÞ0 ð1; 0Þ. Then, we have clearly l0 0 because aþ 3bþ
g ¼ 2. Substituting the above values of a, b and g into aþ ð2k þ 1Þbþ
ð2l þ 1Þg ¼ 2, we have ðk � 1ÞðF � 4Þ þ 12l ¼ 0. Since F > 4 and l > 0, we

have k ¼ 0 and F ¼ 12l þ 4. Hence, the type of this vertex is aþ bþ
ð2l þ 1Þg ¼ 2, and we have

a ¼ 1

2
; b ¼ 3l

6l þ 2
; g ¼ 3

6l þ 2
:

In addition, from the condition b > g, we have lb 2. It is clear from the

above argument that odd valent vertices are limited to aþ 3b þ g ¼ 2 and

aþ b þ ð2l þ 1Þg ¼ 2.
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In this situation, we can easily see that vertices of type 2aþ 2sg ¼ 2 and

2tb þ 2ug ¼ 2 cannot exist in the tiling. Therefore, possible types of vertices

are exhausted by aþ 3b þ g ¼ 2, aþ b þ ð2l þ 1Þg ¼ 2 ðlb 2Þ and 4a ¼ 2.

Starting from the vertex aþ 3b þ g ¼ 2, we draw the development map. Then,

as the following figure shows, a contradiction occurs, and this tiling does not

exist.

Fig. 64

Therefore, it follows that an odd valent vertex other than aþ 3b þ g ¼ 2 does

not exist in the tiling.

Then, from the above arguments, possible types of vertices are now

exhausted by

aþ 3b þ g ¼ 2;

4a ¼ 2;

2aþ 2sg ¼ 2 sb 1;

2tb þ 2ug ¼ 2 t; ub 0:

Starting from the vertex aþ 3b þ g ¼ 2, we draw the following development

map.

Fig. 65
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Then, there appears a vertex containing the angles aþ 2g. Hence, a vertex

of type 2aþ 2sg ¼ 2 actually exists in the tiling. Substituting a ¼ 1=2 and

g ¼ 6=F to this equality, we have F ¼ 12s, and

b ¼ F � 4

2F
¼ 3s� 1

6s
; g ¼ 1

2s
:

From the condition a > g, we have sb 2. If a vertex of type 2tb þ 2ug ¼ 2

exists, then we have ð3s� 1Þðt� 2Þ ¼ 2� 3u, and from this equality, we can

easily show that t ¼ 0 and u ¼ 2s. Therefore, possible types of vertices are

restricted to

aþ 3b þ g ¼ 2;

4a ¼ 2;

2aþ 2sg ¼ 2;

4sg ¼ 2

ðsb 2Þ. We continue to draw the development map in Figure 65 as follows.

(Remind that in the vertex of type 2aþ 2sg ¼ 2, 2s g’s must appear adjacently.)

Fig. 66

Then, a vertex containing b þ 2g appears. But this is a contradiction, and

hence we conclude that a tiling of this type does not exist.

(ii) The case where all vertices of type aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2

satisfy r > qb 0.

From the condition

g ¼ ðq� 1ÞF þ 8qþ 4

2ðq� rÞF >
2

F
;
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we have ðq� 1ÞF þ 4qþ 4rþ 4 < 0. Hence, we have q ¼ 0 and rb 1. And

in particular, a vertex of type aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 is uniquely limited

to the case aþ b þ ð2rþ 1Þg ¼ 2. It is clear that remaining possible vertices

are 4a ¼ 2, 2aþ 2sg ¼ 2, 2tb þ 2ug ¼ 2. By starting from the vertex aþ bþ
ð2rþ 1Þg ¼ 2, we draw the development map as follows:

Fig. 67

Then, as this figure shows, a contradiction occurs at the right point because

2rþ 1 g’s must appear adjacently in the vertex aþ b þ ð2rþ 1Þg ¼ 2. Hence, a

tiling of this type also cannot exist.

Therefore, in any case we arrive at a contradiction, and hence we have

a0 1=2. In particular, a vertex of type 4a ¼ 2 does not appear in the tiling.

q.e.d.

Remark. In our previous paper [10], we already proved Lemma 15

essentially. In fact, we showed in [10] that the vertices appearing in the tilings

by congruent ‘‘right’’ scalene triangles are always even valent, as a result of the

classification. We give here a new proof of this fact for the sake of com-

pleteness.

Finally, we prepare the following lemma, which is a refinement of Lemma

13. We impose the same condition as in Proposition 12.

Lemma 16. Let aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 ððq; rÞ0 ð0; 0ÞÞ be a type of

a vertex appearing in the tiling. Then, we have q ¼ 0 or r ¼ 0.

Proof. The vertex of type aþ ð2qþ 1Þb þ ð2rþ 1Þg ¼ 2 with ðq; rÞ0 ð0; 0Þ
can be expressed in the following form:

Fig. 68
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And it is easy to see that the remaining angle denoted by the arrow must be

filled by several copies of the following two figures:

Fig. 69

By Proposition 11, Lemmas 14 and 15, we know that a vertex containing the

angle 2a must be of type 2aþ 2b ¼ 2 or 2aþ 2sg ¼ 2 ðsb 1Þ. Consequently,

the arrowed angle in Figure 68 is filled by the following figures:

Fig. 70

In this situation, if q; rb 1, then these two figures must contact at some place,

and a vertex containing the angles 2aþ b þ g appears as in the following figure.
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Fig. 71

But, this is a contradiction, and therefore we have q ¼ 0 or r ¼ 0. q.e.d.

7. Case of scalene triangles III: Odd tilings (2)

Under these preliminaries, we prove Proposition 12 in this section. We

divide the proof into two cases (i) and (ii).

(i) The case there exists a vertex of type aþ b þ ð2rþ 1Þg ¼ 2 ðrb 1Þ.
In this case, from the arguments in the proof of Lemma 16, this vertex is

expressed in the following form:

Fig. 72

In particular, a vertex of type 2aþ 2b ¼ 2 actually exists, and hence, combined

with the equalities aþ b þ ð2rþ 1Þg ¼ 2, aþ b þ g ¼ 1þ 4=F , we have

aþ b ¼ 1; g ¼ 1

2rþ 1
; F ¼ 8rþ 4:

In addition, from the condition a > b > g, we have 1=2 < a < ð2rÞ=ð2rþ 1Þ.
In this situation, possible types of vertices are exhausted by
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aþ b þ ð2rþ 1Þg ¼ 2 rb 1;

aþ ð2qþ 1Þb þ g ¼ 2 qb 1;

2aþ 2b ¼ 2;

2aþ 2sg ¼ 2 sb 2;

2tb þ 2ug ¼ 2 t; ub 0:

(The inequality sb 2 follows immediately from the condition b > g.) Then,

starting from the vertex aþ b þ ð2rþ 1Þg ¼ 2, we can uniquely draw the

development map as follows:

Fig. 73

The vertex A in this figure cannot be of type aþ ð2qþ 1Þb þ g ¼ 2 because

ð2qþ 1Þ b’s must appear adjacently. Hence this vertex is of type aþ bþ
ð2rþ 1Þg ¼ 2. In this way, we can uniquely continue to draw the development

map, and finally, we obtain the following figure:

Fig. 74
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The number of triangles appearing in this figure is 8rþ 2, and we must divide

the quadrangle situated outside of this figure into two triangles. This quad-

rangle can be represented in the following form:

Fig. 75

One way to draw a diagonal line is given by the following:

Fig. 76

And it is easy to see that the resulting tiling can be represented as follows:

Fig. 77
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This tiling is TG8rþ4 with

aþ b ¼ 1; g ¼ 1

2rþ 1
;

1

2
< a <

2r

2rþ 1
; rb 1:

If a, b, g satisfy the relation a ¼ b þ g, then we have

a ¼ rþ 1

2rþ 1
; b ¼ r

2rþ 1
; g ¼ 1

2rþ 1
;

and in this special case we can draw the opposite diagonal line in the quad-

rangle in Figure 75.

Fig. 78

In this case, from the condition b > g, we have rb 2. The resulting tiling can

be expressed in the following form:

Fig. 79

This figure coincides with Figure 10 (above), and hence this tiling is

MTGI
8rþ4 ðrb 2Þ.
(ii) The case where a vertex of type aþ b þ ð2rþ 1Þg ¼ 2 ðrb 1Þ does

not exist.

In this case, by Lemmas 13 and 16, a vertex of type aþ ð2qþ 1Þb þ g ¼ 2

ðqb 1Þ necessarily exists, and it is expressed in the following form:
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Fig. 80

In this situation, possible types of vertices are given by

aþ ð2qþ 1Þb þ g ¼ 2;

2aþ 2b ¼ 2;

2aþ 2sg ¼ 2;

2tb þ 2ug ¼ 2:

In particular, from the above figure, we know that a vertex of type 2aþ 2sg ¼
2 actually exists.

Now, we first consider the case where a vertex of type 2aþ 2b ¼ 2 exists.

In this case, from the condition b > g, we have sb 2. If qb 2, then the fol-

lowing two figures must contact at some place:

Fig. 81

Then, a vertex containing 2aþ 2g appears, and this vertex must be of type

2aþ 2sg ¼ 2 ðsb 2Þ. But 2s g’s must appear adjacently around this vertex,

which is a contradiction. Therefore, we have q ¼ 1. Then, from the equalities

aþ 3b þ g ¼ 2, 2aþ 2b ¼ 2, 2aþ 2sg ¼ 2 and aþ b þ g ¼ 1þ 4=F , we have
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a ¼ sþ 1

2sþ 1
; b ¼ s

2sþ 1
; g ¼ 1

2sþ 1
; F ¼ 8sþ 4:

In this case, starting from the vertex aþ 3b þ g ¼ 2, we can uniquely draw the

development map as follows:

Fig. 82

This tiling is MTGII
8sþ4 ðsb 2Þ.

Next, we consider the case where a vertex of type 2aþ 2b ¼ 2 does not

appear in the tiling. In this case, possible types of vertices are

aþ ð2qþ 1Þb þ g ¼ 2;

2aþ 2sg ¼ 2;

2tb þ 2ug ¼ 2:

As we indicated above, there exists a vertex of type 2aþ 2sg ¼ 2. If sb 2,

then starting from the vertex aþ ð2qþ 1Þb þ g ¼ 2, we can draw the develop-

ment map as follows:

Fig. 83

Then, a vertex containing the angles 3a appears, and this is a contradiction.

Hence, we have s ¼ 1. Combined with the equalities aþ ð2qþ 1Þb þ g ¼ 2
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and aþ b þ g ¼ 1þ 4=F , we have b ¼ 1=ð2qþ 1Þ, g ¼ 1� a and F ¼ 8qþ 4.

Then, from the condition b > g > 2=F , we have

2q

2qþ 1
< a <

4qþ 1

4qþ 2
:

In this situation, starting from the vertex aþ ð2qþ 1Þb þ g ¼ 2, we can

uniquely draw the development map as follows:

Fig. 84

By exchanging the angles b and g, this tiling corresponds to TG8qþ4 with

aþ b ¼ 1; g ¼ 1

2qþ 1
;

2q

2qþ 1
< a <

4qþ 1

4qþ 2
and qb 1:

Combining these results, we complete the proof of Proposition 12.

q.e.d.

8. Case of scalene triangles IV: Even tilings

In this last section, we classify monohedral tilings by scalene triangles with

F > 4, consisting of only even-valent vertices. The results are summarized in

the following proposition.

Proposition 17. Monohedral even tilings of the 2-dimensional sphere by

scalene triangles with F > 4 are given by the following:

ðiÞ F48; TF48; F120;

ðiiÞ G4n aþ b ¼ 1; g ¼ 1

n
;
1

2
< a <

n� 1

n
; nb 3

� �
;
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ðiiiÞ G4n aþ b ¼ 1; g ¼ 1

n
;
n� 1

n
< a <

2n� 1

2n
; nb 2

� �
;

ðivÞ I8n ðnb 4Þ;

ðvÞ TI16nþ8 ðnb 2Þ:

Note that in the case (iii), the inequality b < g < a holds instead of g < b < a.

But in the following proof, we always assume g < b < a as before, unless

otherwise stated.

Proof. We divide the proof into the following four cases:

(a) The case a ¼ 1=2 and the angle a appears only in vertices of type

4a ¼ 2.

(b) The case a ¼ 1=2 and there is a vertex containing a which is not of

type 4a ¼ 2.

(c) The case a0 1=2 and there is a vertex of type 2aþ 2b ¼ 2.

(d) The case a0 1=2 and a vertex of type 2aþ 2b ¼ 2 does not exist.

(Note that the cases (a) and (b) are already treated in our previous paper

[10]. But we give here a new proof for the sake of completeness.)

(a) In this case, we can use the results in Propositions 5 and 6. In fact,

since the angle a ¼ 1=2 appears only in the vertex of type 4a ¼ 2, the sphere is

tiled by the following rhombus:

Fig. 85

By deleting a horizontal line in this figure, we obtain a tiling on the sphere

consisting of isosceles or equilateral triangles with angles b, b, 2g. These

angles satisfy the condition 1
2 � 2g < b < 1

2 . In case b0 2g, this triangle is

isosceles and by using Proposition 6, we can easily list up the isosceles triangles

satisfying the above condition. They are exhausted by I24, F II
60 , H4n ðn ¼ 4;

nb 6Þ and TH8nþ4 ðnb 3Þ. And by dividing these tilings, we obtain the

tilings F48, F120, I8n ðn ¼ 4; nb 6Þ and TI16nþ8 ðnb 3Þ, respectively. These

tilings satisfy the assumption in Proposition 17.

In the special case b ¼ 2g, this triangle is equilateral whose angles are

smaller than 1=2. Then, by Proposition 5, this triangle is restricted to the one

in H20. By dividing equilateral triangles in H20 into two isosceles triangles,
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we obtain combinatorially two types of tilings: I40 and TI40. We can easily

verify this fact by considering the existence or non-existence of a vertex of type

10g ¼ 2. Therefore, in conclusion, we obtain the tilings F48, F120, I8n ðnb 4Þ
and TI16nþ8 ðnb 2Þ in the case (a).

(b) In this case, since a ¼ 1=2 and a > b, a vertex of type 2aþ 2b ¼ 2

cannot exist. Hence, from Proposition 11, possible types of vertices are

exhausted by

4a ¼ 2;

2aþ 2sg ¼ 2 sb 1;

2tb þ 2ug ¼ 2 t; ub 0:

From the assumption, a vertex of type 2aþ 2sg ¼ 2 actually exists, and hence,

we have g ¼ 1=2s ðsb 2Þ.
Now, we show that there exists a vertex of type 2tb þ 2ug ¼ 2 with tb 3.

Assume that a vertex of this type does not exist. Then, since there is a vertex

containing the angle b, a vertex of type 4b þ 2ug ¼ 2 or 2b þ 2ug ¼ 2 must exist

in the tiling. We assume that a vertex of type 4b þ 2ug ¼ 2 exists. Then, com-

bined with the equality aþ b þ g ¼ 1þ 4=F , we have b ¼ ð2s� uÞ=4s and

ðu� 2ÞF þ 16s ¼ 0. And from the second equality we have u ¼ 0 or 1. But,

if u ¼ 0, we have b ¼ 1=2, which is a contradiction. Hence, u ¼ 1 and we

have

a ¼ 1

2
; b ¼ 2s� 1

4s
; g ¼ 1

2s
; F ¼ 16s:

In this case, it is easy to check that possible types of vertices are exhausted by

4a ¼ 2;

2aþ 2sg ¼ 2 sb 2;

4b þ 2g ¼ 2;

4sg ¼ 2:

Starting from the vertex 2aþ 2sg ¼ 2, we draw the development map:

Fig. 86
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(Note that two a’s in 2aþ 2sg ¼ 2 must appear adjacently.) But, as this figure

shows, a contradiction occurs, and therefore a vertex of type 4b þ 2ug ¼ 2

cannot exist. Hence, a vertex of type 2b þ 2ug ¼ 2 necessarily exists, and pos-

sible types of vertices are exhausted by

4a ¼ 2;

2aþ 2sg ¼ 2 sb 2;

2b þ 2ug ¼ 2;

4sg ¼ 2:

Then, starting from the vertex 2aþ 2sg ¼ 2, we draw the development map:

Fig. 87

But a vertex containing the angles aþ b þ g cannot exist, and this is a contra-

diction. Therefore, as a conclusion, there exists a vertex of type 2tb þ 2ug ¼ 2

satisfying tb 3.

Then, from the equalities a ¼ 1=2, g ¼ 1=2s ðsb 2Þ, 2tb þ 2ug ¼ 2 ðtb 3Þ
and aþ b þ g ¼ 1þ 4=F , we have b ¼ ð2s� uÞ=2st, ðst� 2s� tþ uÞF þ 8st ¼
0. In particular, we have st� 2s� tþ u ¼ ðs� 1Þðt� 2Þ þ u� 2 < 0. Since

sb 2 and tb 3, we have u ¼ 0, s ¼ 2, t ¼ 3. This implies a ¼ 1=2, b ¼ 1=3,

g ¼ 1=4 and F ¼ 48. Then, possible types of vertices are 4a ¼ 2, 2aþ 4g ¼ 2,

6b ¼ 2, 8g ¼ 2. Starting from the vertex 2aþ 4g ¼ 2, we can uniquely draw

the development map as follows:
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Fig. 88

This tiling is TF48.

(c) Next we consider the case a0 1=2 and there exists a vertex of type

2aþ 2b ¼ 2. In this case, from Proposition 11, possible types of vertices are

2aþ 2b ¼ 2;

2aþ 2sg ¼ 2;

2tb þ 2ug ¼ 2:

It is easy to see that the vertex of type 2aþ 2b ¼ 2 must be expressed in the

following form

Fig. 89

Since a vertex containing the angles aþ b is necessarily of type 2aþ 2b ¼ 2,

this tiling must be obtained by joining the following figures:
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Fig. 90

Hence, this tiling is G4n for some n. We have clearly aþ b ¼ 1, g ¼ 1=n

and from the condition g < b < a, the inequality 1=2 < a < ðn� 1Þ=n ðnb 3Þ
follows.

(d) Assume a0 1=2 and a vertex of type 2aþ 2b ¼ 2 does not exist. In

this case, possible types of vertices are

2aþ 2sg ¼ 2;

2tb þ 2ug ¼ 2:

Clearly, both types must exist in the tiling. Now assume sb 2. Then starting

from the vertex 2aþ 2sg ¼ 2, we draw the following development map:

Fig. 91

Then, a contradiction occurs, and hence we have s ¼ 1. Then, as in the

above case (c), we can easily see that this tiling is G4n ðnb 2Þ with aþ g ¼ 1,

b ¼ 1=n. From the conditions g < b and aþ b < 1þ g, we have ðn� 1Þ=n <

a < ð2n� 1Þ=2n. By exchanging the angles b and g, we obtain the tiling (iii).

Combining these results, we complete the proof of Proposition 17.

q.e.d.

By Propositions 5, 6, 12 and 17, we have completed the proof of Theo-

rem 1.
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Appendix

In this appendix, we give examples of tilings on non-compact spaces

of constant positive curvature with boundary possessing a five valent vertex

3aþ b þ g ¼ 2 in its interior. And as its special case, we construct dihedral

tilings on the usual 2-dimensional sphere, consisting of 10n congruent triangles

and two regular n-gons (3a na 7).

First, we put b ¼ 3a� 1, g ¼ 3� 6a, where a satisfies the conditions 3=7 <

a < 1=2. Then, we can easily show that these angles satisfy the conditions

1 < aþ b þ g; aþ b < 1þ g; b þ g < 1þ a; gþ a < 1þ b:

Hence by Proposition 4, there exists a triangle on the sphere with angles ap, bp,

gp. Note that this triangle is scalene unless a ¼ 4=9, and the largest angle is

ap.

In this situation, we consider the following figure on the sphere consisting

of ten congruent triangles.

Fig. 92

Clearly a, b, g satisfies the conditions

3aþ b þ g ¼ 2; 4b þ 2g ¼ 2; 2aþ 2g < 2;

and hence we can connect these figures repeatedly along the double lines

indicated in the above figure. Then, we obtain a tiling on the infinitely

spreaded strip, which is a non-compact (simply connected) space of constant

positive curvature with boundary. (The symbols N and S indicate the north
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and the south poles, respectively.) As the above figure shows, this tiling con-

tains a vertex of type 3aþ b þ g ¼ 2 in its interior.

This tiling is deformable because a can move in the range 3=7 < a < 1=2

ða0 4=9Þ. In general, this tiling does not close after connecting these figures

on the sphere. But in special cases, these figures constitute a closed dihedral

tiling on the sphere.

Proposition A. The tiling closes after connecting the above figure n times

if and only if the angle a satisfies the following equality.

cos 2p
n
þ cos2ð5a� 2Þp

sin2ð5a� 2Þp
¼ cosð3a� 1Þpþ cos ap cosð3� 6aÞp

sin ap sinð3� 6aÞp :

This equation on a possesses a solution in the interval 3=7 < a < 1=2 ða0 4=9Þ
only in the cases n ¼ 3; 4; 5; 6; 7. In these closed cases, the complementary set in

the sphere consists of two regular n-gons. Hence the sphere is tiled by 10n

congruent triangles and two regular n-gons, giving a dihedral tiling with 10nþ 2

faces ð3a na 7Þ.

Proof. Clearly, in case the tiling closes, one of the complementary set is

expressed in the following form:

Fig. 93

The interior angle of this figure is equal to 2p� ð2aþ 2gÞp ¼ ð10a� 4Þp.
Therefore, by using the cosine rule, we have

cos b ¼
cos 2p

n
þ cos2ð5a� 2Þp

sin2ð5a� 2Þp
:

On the other hand, from the cosine rule for the initial triangle, we have
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cos b ¼ cos bpþ cos ap cos gp

sin ap sin gp

¼ cosð3a� 1Þpþ cos ap cosð3� 6aÞp
sin ap sinð3� 6aÞp :

Therefore, we obtain the desired equality in Proposition A. We can show that

two functions

f ðxÞ ¼
cos 2p

n
þ cos2ð5x� 2Þp

sin2ð5x� 2Þp
;

gðxÞ ¼ cosð3x� 1Þpþ cos xp cosð3� 6xÞp
sin xp sinð3� 6xÞp

are both decreasing in the interval 3=7 < x < 1=2, and the equation f ðxÞ ¼ gðxÞ
admits a solution if and only if f 1

2

� �
< limx!1=2 gðxÞ, i.e., cos 2p

n
< 2

3 .

Therefore, we have n ¼ 3; 4; 5; 6; 7. In addition, by substituting the value

a ¼ 4=9, we know that a ¼ 4=9 is not a solution of this equation. (The length

b increases as a goes to 1=2, and its limit is lima!1=2 b ¼ cos�1 2
3

� �
> 0.

Therefore, if n is su‰ciently large, the value of b exceeds (length of the

equator)=n ¼ 2p=n, which implies that n must have an upper bound. By the

above argument, we showed that this upper bound is 7.) q.e.d.

As an example, we give here a figure of this closed tiling in the case n ¼ 5,

where a takes value a ¼ 0:4691 . . . : The 8-gons surrounded by thick lines are

the figure indicated in Figure 92.

Fig. 94

We remark that in the case 2=5 < a < 3=7, we can also construct a tiling

completely in the same way as above. But in this case, the largest angle is

gp. In the boundary case a ¼ 2=5, we have the equality 2aþ 2g ¼ 2, and we

obtaine a closed tiling on the sphere consisting of 20 congruent triangles. We
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can easily check that this tiling just coincides with MTGII
20, corresponding to the

case n ¼ 2 in Proposition A.
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