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We consider the problem of estimating the predictive density of future observations from a non-parametric
regression model. The density estimators are evaluated under Kullback–Leibler divergence and our focus
is on establishing the exact asymptotics of minimax risk in the case of Gaussian errors. We derive the
convergence rate and constant for minimax risk among Bayesian predictive densities under Gaussian priors
and we show that this minimax risk is asymptotically equivalent to that among all density estimators.
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1. Introduction

Consider the canonical non-parametric regression setup

Y(ti) = f (ti) + σεi, i = 1, . . . , n, (1.1)

where f is an unknown function in L2[0,1], ti = i/n and the εi ’s are i.i.d. standard Gaussian
random variables. We assume the noise level σ is known and, without loss of generality, set
σ = 1 throughout.

Based on observing Y = (Y (t1), . . . , Y (tn)), estimating f or various functionals of f has been
the central problem in non-parametric function estimation. The asymptotic optimality of estima-
tors is usually associated with the optimal rate of convergence in terms of minimax risk. A huge
body of literature has been devoted to the evaluation of minimax risks under L2 loss over certain
function spaces; see, for example, Pinsker [21], Ibragimov and Has’minskii [16], Golubev and
Nussbaum [14], Efroimovich [8], Belitser and Levit [3,4] and Goldenshluger and Tsybakov [13].
An excellent survey of the literature in this area can be found in Efromovich [9].

Sometimes, instead of estimating f itself, one is interested in making statistical inference
about future observations from the same process that generated Y(t). A predictive distribution
function assigns probabilities to all possible outcomes of a random variable. It thus provides
a complete description of the uncertainty associated with a prediction. The minimaxity of pre-
dictive density estimators has been studied for finite-dimensional parametric models; see, for
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example, Liang and Barron [18], George, Liang and Xu [11], Aslan [2] and George and Xu
[12]. However, so far, few results have been obtained on predictive density estimation for non-
parametric models. The major thrust of this paper is to establish the asymptotic minimax risk
for predictive density estimation under Kullback–Leibler loss in the context of non-parametric
regression. Our result closely parallels the well-known work by Pinsker [21] for non-parametric
function estimation under L2 loss and provides a benchmark for studying the optimality of den-
sity estimates for non-parametric regression.

Let Ỹ = (Ỹ (u1), . . . , Ỹ (um))t denote a vector of future observations from model (1.1) at lo-
cations {uj }mi=1. To evaluate the performance of density prediction across the whole curve, we
assume that the uj ’s are equally spaced dense (that is, m ≥ n) grids in [0,1]. Given f , the condi-
tional density p(ỹ|f ) is a product of N(ỹj ;f (uj )), where N(·;μ) denotes a univariate Gaussian
density function with mean μ and unit variance. Based on observing Y = y, we estimate p(ỹ|f )

by a predictive density p̂(ỹ|y), a non-negative function of ỹ that integrates to 1 with respect to ỹ.
Common approaches to constructing p̂(ỹ|y) includes the “plug-in” rule that simply substitutes

an estimate f̂ for f in p(ỹ|f ),

p(ỹ|f̂ ) =
n∏

j=1

N(ỹj ; f̂ (uj )), (1.2)

and the Bayes rule that integrates f with respect to a prior π to obtain

∫
p(ỹ|f )π(f |y)df =

∫
p(y|f )p(ỹ|f )π(f )df∫

p(y|f )π(f )df
. (1.3)

We measure the discrepancy between p(ỹ|f ) and p̂(ỹ|y) by the average Kullback–Leibler (KL)
divergence

R(f, p̂) = 1

m
E

Y,Ỹ |f log
p(Ỹ |f )

p̂(Ỹ |Y)
. (1.4)

Assuming that f belongs to a function space F , such as a Sobolev space, we are interested in
the minimax risk

R(F ) = min
p̂

max
f ∈F

R(f, p̂). (1.5)

It is worth observing that in this framework, the densities of future observations (Ỹ1, . . . , Ỹm)

are estimated simultaneously by p̂(ỹ|y). An alternative approach is to estimate the densities
individually by {p̂(ỹj |y)}mj=1 with risk

1

m

m∑
j=1

E
Y,Ỹ |f log

p(Ỹj |f (uj ))

p̂(Ỹj |Y)
. (1.6)
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When the uj ’s are equally spaced and m goes to infinity, the risk above converges to

∫ 1

0
E

Y,Ỹ |f log
p(Ỹ |f (u))

p̂(Ỹ |Y)
du,

which can be interpreted as the integrated KL risk of prediction at a random location u in [0,1].
This individual prediction problem can be studied in our simultaneous prediction framework with
p̂(ỹ|y) restricted to a product form, that is, p̂(ỹ|y) = ∏m

j=1 p̂(ỹj |y). For example, the plug-in
estimator (1.2) has such a product form and it is easy to check that its individual estimation risk
(1.6) is the same as its simultaneous estimation risk (1.4). In general, simultaneous prediction
considers a broader class of p̂ than the one considered by individual prediction. Therefore, si-
multaneous prediction is more efficient since the corresponding minimax risk (1.5) is less than
or equal to the one with individual prediction. This is distinct from estimating f itself under L2

loss where, due to the additivity of L2 loss, simultaneous estimation and individual estimation
are equivalent.

This paper is organized as follows. In Section 2, we show that the problem of predictive density
estimation for a non-parametric regression model can be converted to the one for a Gaussian
sequence model with a constrained parameter space. Direct evaluation of the minimax risk is
difficult because of the constraint on the parameter space. Therefore, in Section 3, we first derive
the minimax risk over a special class of p̂ that consists of predictive densities under Gaussian
priors on the unconstrained parameter space R

n. Then, in Section 4, we show that this minimax
risk is asymptotically equivalent to the overall minimax risk. Finally, in Section 5, we provide
two explicit examples of minimax risks over L2 balls and Sobolev spaces.

2. Connection to Gaussian sequence models

Let {φi}∞i=1 be the orthonormal trigonometric basis of L2[0,1], that is,

φ0(t) ≡ 1,

{
φ2k−1 = √

2 sin(2πkx),

φ2k = √
2 cos(2πkx),

k = 1,2, . . . .

Then, f = ∑∞
i=1 θiφi , where θi = ∫ 1

0 f (t)φi(t)dt is the coefficient with respect to the ith basis
element φi . A function space F corresponds to a constraint on the parameter space of θ . In this
paper, we consider function spaces whose parameter spaces � have ellipsoid constraints, that is,

�(C) =
{

θ :
∞∑
i=1

a2
i θ

2
i ≤ C

}
, (2.1)

where a1 ≤ a2 ≤ · · · and an → ∞.
We approximate f by a finite summation fn = ∑n

i=1 θiφi . The bias incurred by estimating
p(ỹ|fn) instead of p(ỹ|f ) can be expressed as

Bias(f,fn) = 1

m
E

Ỹ |f log
p(Ỹ |f )

p(Ỹ |fn)
= 1

2m

m∑
j=1

[f (uj ) − fn(uj )]2 = 1

2m

∞∑
i=n+1

θ2
i .
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This bias is often negligible compared to the prediction risk (1.4); for example, it is of order
O(n−2α) for Sobolov ellipsoids �(C,α), as defined in (5.3). Therefore, from now on, we set
f = fn.

Let θ = (θ1, θ2, . . . , θn)
t , 	A be a n × n matrix whose (i, j)th entry equals φj (ti) and 	B

be a m × n matrix whose (i, j)th entry equals φj (ui). Then, Y |θ and Ỹ |θ are two independent
Gaussian vectors with Y |θ ∼ N(	Aθ, In) and Ỹ |θ ∼ N(	Bθ, Im), where In denotes the n × n

identity matrix. Note that since the ti ’s and uj ’s are equally spaced, we have 	t
A	A = nIn and

	t
B	B = mIn. Defining

X = 1

n
	t

AY and X̃ = 1

m
	t

BỸ , (2.2)

it is then easy to check that X and X̃ are independent and that

X|θ ∼ N(θ, vnIn) and X̃|θ ∼ N(θ, vmIn), (2.3)

where vn = 1/n and vm = 1/m. We refer to the model above as a Gaussian sequence model
since its number of parameters is increasing at the same rate as the number of data points.

Consider the problem of predictive density estimation for the Gaussian sequence model (2.3).
Let p̂(x̃|x) denote a predictive density function of x̃ given X = x. The incurred KL risk is defined
to be

R(θ, p̂) = 1

m
E

X,X̃|θ log
p(X̃|θ)

p̂(X̃|X)

and the corresponding minimax risk is given by

R(�) = inf
p̂

sup
θ∈�(C)

R(θ, p̂). (2.4)

The following theorem states that the two minimax risks, the one associated with (Y, Ỹ ) from
a non-parametric regression model and the one associated with (X, X̃) from a normal sequence
model, are equivalent.

Theorem 2.1. R(F ) = R(�), where R(F ) is defined in (1.5) and R(�) in (2.4).

Proof. See the Appendix. �

Remark. The idea of reducing a non-parametric regression model to a Gaussian sequence model
via an orthonormal function basis has been widely used for non-parametric function estimation.
Early references include Ibraginov and Has’minskii [15], Efromovich and Pinsker [10] and ref-
erences therein. For recent developments, see Brown and Low [6], Nussbaum [19,20] and John-
stone [17]. Our proof of Theorem 2.1, given in the Appendix, implies that simultaneous estima-
tion of predictive densities in these two models are equivalent. However, this equivalence does
not hold for the individual estimation approach described in Section 1 because the product form
of the density estimators, that is, p̂(ỹ|y) = ∏

j p̂(ỹj |y), is not retained under the transformation.
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3. Linear minimax risk

Direct evaluation of the minimax risk (2.4) is difficult because the parameter space �(C) is con-
strained. In this section, we first consider a subclass of density estimators that have simple forms
and investigate the minimax risk over this subclass. In next section, we then show that the mini-
max risk over this subclass is asymptotically equivalent to the overall minimax risk R. Such an
approach was first used in Pinsker [21] to establish a minimax risk bound for the function estima-
tion problem. It inspired a series of developments, including Belitser and Levit [3,4], Tsybakov
[22] and Goldenshluger and Tsybakov [13].

Recall that in the problem of estimating the mean of a Gaussian sequence model under L2

loss, diagonal linear estimators of the form θ̂i = cixi play an important role. Indeed, Pinsker [21]
showed that when the parameter space (2.1) is an ellipsoid, the minimax risk among diagonal
linear estimators is asymptotically minimax among all estimators. Moreover, the results in Dia-
conis and Ylvisaker [7] imply that if such a diagonal linear estimator is Bayes, then the prior π

must be a Gaussian prior with a diagonal covariance matrix. Similarly, in investigating the min-
imax risk of predictive density estimation, we first restrict our attention to a special class of p̂

that are Bayes rules under Gaussian priors over the unconstrained parameter space R
n. Due to

the above connection, we call these predictive densities linear predictive densities and call the
minimax risk over this class the linear minimax risk, even though ‘linear’ does not have any
literal meaning in our setting.

Under a Gaussian prior πS(θ) = N(0, S), where S = diag(s1, . . . , sn) and si ≥ 0 for i =
1, . . . , n, the linear predictive density p̂S is given by

p̂S(x̃|x) =
∫

Rn

p(x̃|θ)πS(θ |x)dθ =
∫

Rn p(x|θ)p(x̃|θ)πS(θ)dθ∫
Rn p(x|θ)πS(θ)dθ

. (3.1)

Note that p̂S is not a Bayes estimator for the problem described in Section 2 because the prior
distribution N(0, S) is supported on R

n instead of on the ellipsoidal space �. Nonetheless, p̂S is
a valid predictive density function.

The following lemma provides an explicit form of the average KL risk of p̂S .

Lemma 3.1. The average Kullback–Leibler risk (1.4) of p̂S is given by

R(θ, p̂S) = n

2m
log

vn

vn+m

+ 1

2m

n∑
i=1

[
log

vn+m + si

vn + si
+ vn+m + θ2

i

vn+m + si
− vn + θ2

i

vn + si

]
, (3.2)

where vn+m = 1/(n + m).

Proof. Let p̂U denote the posterior predictive density under the uniform prior πU ≡ 1, namely,

p̂U (x̃|x) =
(

1

2πvn+m

)n/2

exp

(
−‖x̃ − x‖2

2vn+m

)
.



548 X. Xu and F. Liang

Then, by [11], Lemma 2, the average KL risk of p̂S is given by

R(θ, p̂S) = R(θ, p̂U ) − 1

m
E logmS(W ;vn+m) + 1

m
E logmS(X;vn), (3.3)

where

W = vmX + vnX̃

vn+m

∼ N(θ, vn+mI)

and mS(x;σ 2) denotes the marginal distribution of X|θ ∼ Nn(θ,σ 2I ) under the normal prior πS .
It is easy to check that

R(θ, p̂U ) = 1

m
E log

p(x̃|θ)

p̂U (x̃|x)
= n

2m
log

vn

vn+m

(3.4)

and

E logmS(W ;vn+m) = − n

2m

n∑
i=1

log[2π(vn+m + si)] − 1

2m

n∑
i=1

vn+m + θ2
i

vn+m + si
, (3.5)

E logmS(X;vn) = − n

2m

n∑
i=1

log[2π(vn + si)] − 1

2m

n∑
i=1

vn + θ2
i

vn + si
. (3.6)

The lemma then follows immediately by combining equations (3.3)–(3.6). �

We denote the linear minimax risk over all p̂S by RL(�), that is,

RL(�) = inf
S

sup
θ∈�(C)

R(θ, p̂S). (3.7)

This linear minimax risk is not directly tractable because the inside maximization is over a con-
strained space �(C). In the following theorem, we first show that we can switch the order of inf
and sup in equation (3.7) and then evaluate RL using the Lagrange multiplier method.

The following notation will be useful throughout. Let λ̃(C, vn, vn+m) denote a solution of the
equation

n∑
i=1

a2
i

[
(vn − vn+m)

√
1 + 4λ̃/a2

i

vn − vn+m

− (vn + vn+m)

]
+

= 2C, (3.8)

where [x]+ = sup(x,0), and let θ̃2
i be

θ̃2
i = 1

2

[
(vn − vn+m)

√
1 + 4λ̃/a2

i

vn − vn+m

− (vn + vn+m)

]
+

(3.9)

for i = 1,2, . . . , n.
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Theorem 3.2. Suppose that the parameter space �(C) is an ellipsoid, as defined in (2.1).
The linear minimax risk is then given by

RL(�) = inf
S

sup
θ∈�(C)

R(θ, p̂S) = sup
θ∈�(C)

inf
S

R(θ, p̂S) (3.10)

= n

2m
log

vn

vn+m

+ 1

2m

n∑
i=1

log
vn+m + θ̃2

i

vn + θ̃2
i

, (3.11)

where θ̃2
i is defined as in (3.9). The linear minimax estimator p̂

Ṽ
is the Bayes predictive density

under a Gaussian prior

π
Ṽ
(θ) = N(0, Ṽ ), where Ṽ = diag(θ̃2

1 , θ̃2
2 , . . . , θ̃2

n), (3.12)

namely,

p̂
Ṽ
(x̃|x) = N(θ

Ṽ
,�

Ṽ
),

with

θ
Ṽ

=
(

θ̃2
1

θ̃2
1 + vn

x1, . . . ,
θ̃2
n

θ̃2
n + vn

xn

)′
,

�
Ṽ

= diag

(
θ̃2

1 vn

θ̃2
1 + vn

+ vm, . . . ,
θ̃2
nvn

θ̃2
n + vn

+ vm

)
.

Proof. We first prove equality (3.11). It is easy to check that for any fixed θ , R(θ, p̂S) achieves
its minimum at S = diag(θ2

1 , . . . , θ2
n), and

inf
S

R(θ, p̂S) = n

2m
log

vn+m

vn

+ 1

2m

n∑
i=1

log
vn+m + θ2

i

vn + θ2
i

.

To calculate the maximum of the above quantity over θ ∈ �(C), one needs to solve

sup

{
n∑

i=1

log
vn+m + θ2

i

vn + θ2
i

:
n∑

i=1

a2
i θ

2
i ≤ C

}
.

With the Lagrangian

L =
n∑

i=1

log
vn+m + θ2

i

vn + θ2
i

− 1

λ

(
n∑

i=1

a2
i θ

2
i − C

)
,

simple calculation reveals that the maximum is attained at θ̃i given by (3.9).
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Next, we prove equality (3.10), that is, that the order of inf and sup can be exchanged. Note
that for any diagonal matrix S̃, we have

sup
θ∈�(C)

R(p̂
S̃
, θ) ≥ inf

S
sup

θ∈�(C)

R(p̂S, θ) ≥ sup
θ∈�(C)

inf
S

R(p̂S, θ). (3.13)

Therefore, if there exists an S̃ such that

sup
θ∈�(C)

R(p̂
S̃
, θ) − sup

θ∈�(C)

inf
S

R(p̂S, θ) ≤ 0,

then all of the inequalities in (3.13) become equalities.
If we let S̃ = diag(θ̃2

1 , . . . , θ̃2
n), then

R(p̂
S̃
, θ) − sup

θ∈�(C)

inf
S

R(p̂S, θ) = 1

2m

n∑
i=1

(vn − vn+m)(θ2
i − θ̃2

i )

(vn + θ̃2
i )(vn+m + θ̃2

i )

= 1

2m

∑n
i=1 a2

i θ
2
i − C

λ̃
,

where the second equality holds because
∑n

i=1 a2
i θ̃

2
i = C and θ̃2

i is a solution to

∂L
∂θ2

i

= vn − vn+m

(vn + θ2
i )(vn+m + θ2

i )
− a2

i

λ̃
= 0.

Since θ ∈ �(C) implies that
∑n

i=1 a2
i θ

2
i ≤ C, we have

sup
θ∈�(C)

R(p̂
S̃
, θ) − sup

θ∈�(C)

inf
S

R(p̂S, θ) ≤ 1

2m

C − C

λ̃
= 0,

which completes the proof. �

Remark. Note that a1 ≤ a2 ≤ · · ·, so we have θ̃2
i = 0 for i > N , where

N = sup

{
i :a2

i ≤ λ̃

(
1

vm+n

− 1

vn

)
= mλ̃

}
. (3.14)

This implies that the prior distribution corresponding to the linear minimax estimator, that is,
πṼ

(θ) = ∏n
i=1 N(0, θ̃2

i ), puts a point mass at zero for θi for all i > N .

4. Asymptotic minimax risk

In this section, we turn to establishing the asymptotic behavior of the minimax risk R(�) over
all predictive density estimators. By definition, R(�) ≤ RL(�). We extend the approach in [3]
to show that the difference between R(�) and RL(�) vanishes as the number of observations n
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goes to infinity. Therefore, the overall minimax risk is asymptotically equivalent to the linear
minimax risk. This also implies that the Gaussian prior π

Ṽ
defined in (3.12) is asymptotically

least favorable.
The following lemma provides a lower bound for the overall minimax risk R(�) under some

conditions.

Lemma 4.1. Let {s2
i }ni=1 be a sequence such that for some α > 0,

n∑
i=1

a2
i s

2
i +

[
−8α

(
n∑

i=1

a4
i s

4
i

)
logvn

]1/2

≤ C. (4.1)

Then, as n → ∞, the minimax risk R(�) has the following lower bound:

R(�) ≥ n

2m
log

vn

vn+m

+ 1

2m

n∑
i=1

log
vn+m + s2

i

vn + s2
i

+ O(vα
n ).

Proof. See the Appendix. �

Note that, as shown in the proof, for a posterior density with a Gaussian prior πS = N(0, S),
where S = diag(s1, . . . , sn), condition (4.1) guarantees πS to have most of its mass inside �, in
the sense that πS(�c) ≤ v2α

n for some α > 0.
With the lower bound in the above lemma, we are ready to prove the main result in this pa-

per, which shows that the overall minimax risk R(�) is asymptotically equivalent to the linear
minimax risk RL(�).

Theorem 4.2. Suppose that � is the ellipsoid defined in (2.1) and θ̃2 is defined in (3.9). If
m = O(n) and

log(1/vn)

n∑
i=1

a4
i θ̃

4
i = o(1), as vn → 0, (4.2)

then

lim
vn→0

R(�)

RL(�)
= 1. (4.3)

Proof. By definition, R(�) ≤ RL(�). So, to prove this theorem, it suffices to show that as
vn → 0,

R(�) ≥ RL(�)
(
1 − o(1)

)
.

For a fixed constant α > 1, let γ = 1
C

[8α log(1/vn)
∑n

i=1 a4
i θ̃

4
i ]1/2 and let b2

i = θ̃2
i (1 + γ )−1

for i = 1, . . . , n. It is easy to check that the sequence {bi}ni=1 satisfies the condition (4.1). There-
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fore, by Theorem 4.1,

R(�) ≥ n

2m
log

vn

vn+m

+ 1

2m

n∑
i=1

log
vn+m + b2

i

vn + b2
i

+ O(vα
n )

(4.4)

= RL(�) − 1

2m

n∑
i=1

log
(vn + b2

i )(vn+m + θ̃2
i )

(vn+m + b2
i )(vn + θ̃2

i )
+ O(vα

n ) as vn → 0.

Next, we will derive the convergence rate of RL(�) and show that the other terms are of smaller
order.

Using the fact that θ̃2
i = 0 for i > N (see (3.14)), we can rewrite RL(�) as

RL(�) = n

2m
log

vn

vn+m

+ 1

2m

N∑
i=1

log
vn+m + θ̃2

i

vn + θ̃2
i

+ 1

2m

n∑
i=N

log
vn+m

vn

= 1

2m

N∑
i=1

log
(vn+m + θ̃2

i )vn

(vn + θ̃2
i )vn+m

= 1

2m

N∑
i=1

log

(
1 + (vn − vn+m)θ̃2

i

(vn + θ̃2
i )vn+m

)
.

When m = O(n), we have vn − vn+m = O(vn) and vn + vn+m = O(vn). Therefore, by means of
a Taylor expansion,

RL = O

(
1

2m

N∑
i=1

(vn − vn+m)θ̃2
i

(vn + θ̃2
i )vn+m

)
≥ O

(
1

m

)
. (4.5)

Similarly, since bi = θ̃2
i = 0 for i > N , the second term in (4.4) can be written as

1

2m

n∑
i=1

log
(vn + b2

i )(vn+m + θ̃2
i )

(vn+m + b2
i )(vn + θ̃2

i )
= 1

2m

N∑
i=1

log
(vn + b2

i )(vn+m + θ̃2
i )

(vn+m + b2
i )(vn + θ̃2

i )
.

For every 1 ≤ i ≤ N , we have

log
(vn + b2

i )(vn+m + θ̃2
i )

(vn+m + b2
i )(vn + θ̃2

i )
= log

( [(1 + γ )vn + θ̃2
i ](vn+m + θ̃2

i )

[(1 + γ )vn+m + θ̃2
i ](vn + θ̃2

i )

)

= log

(
1 + γ

(vn − vn+m)θ̃2
i

(vn + θ̃2
i )(vn+m + θ̃2

i ) + γ vn(vn+m + θ̃2
i )

)

≤ log

(
1 + γ

(vn − vn+m)θ̃2
i

(vn + θ̃2
i )vn+m

)
.
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Again using a Taylor expansion, as well as the condition that γ = o(1), we obtain

1

2m

n∑
i=1

log

(
1 + γ

(vn − vn+m)θ̃2
i

(vn + θ̃2
i )vn+m

)
= O

(
γ

2m

n∑
i=1

(vn − vn+m)θ̃2
i

(vn + θ̃2
i )vn+m

)
= o(RL). (4.6)

Finally, since m = O(n), by choosing α > 1, the last term in (4.4) satisfies

vα
n = o(1). (4.7)

Combining (4.4)–(4.7), the theorem then follows. �

5. Examples

In this section, we apply Theorems 3.2 and 4.2 to establish asymptotic behaviors of minimax
risks over some constrained parameter spaces. In particular, we consider the asymptotics over L2

balls and Sobolev ellipsoids.

Example 1. Suppose that m = n and θ is restricted in an L2 ball,

�(C) =
{

θ :
n∑

i=1

θ2
i ≤ C

}
. (5.1)

The L2 ball can be considered as a variant of the ellipsoid (2.1) with a1 = a2 = · · · = an = 1
and an+1 = an+2 = · · · = ∞. Although the values of the ai ’s here depend on n, the proofs of
the above theorems are still valid. It is easy to see that N defined in (3.14) is equal to n and that
θ̃2

1 = θ̃2
2 = · · · = θ̃2

n = C/n. Therefore,

(logn)

n∑
i=1

a4
i θ̃

4
i = (logn) · C2

n
= o(1).

By Theorem 4.2, the minimax risk among all predictive density estimators is asymptotically
equivalent to the minimax risk among linear density estimators. Furthermore, by Theorem 3.2,

lim
n→∞R(�(C)) = lim

n→∞RL(�(C)) = 1

2
log 2 + 1

2
log

1/(2n) + C/n

1/n + C/n
= 1

2
log

1 + 2C

1 + C
.

Note that this minimax risk is strictly smaller than the minimax risk over the class of plug-in
estimators since, for any plug-in density p̂(x̃|θ̂ ),

R(θ, p̂) = 1

n
E log

p(x̃|θ)

p(x̃|θ̂ )
= 1

n
E

[
−‖x − θ‖2 − ‖x − θ̂‖2

2/n

]
= 1

2
E‖θ̂ − θ‖2 (5.2)

and by Pinsker’s theorem, the minimax risk of estimating θ under squared error loss is C/(1+C),
which is larger than log 1+2C

1+C
, by the fact that x > log(1 + x) for any x > 0.
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Example 2. Suppose that m = n and θ is restricted in a Sobolev ellipsoid

�(C,α) =
{

θ :
∞∑
i=1

a2
i θ

2
i ≤ C

}
, (5.3)

where a2i = a2i−1 = (2i)α(α > 0) for i = 1,2, . . . . Then, by (3.14), we have a2
N/λ̃n ∼

N2α/λ̃n → 1 as n → ∞. Substituting this relation into equation (3.8) yields

2C ∼
N∑

i=1

i2α

(
1

2n

√
1 + 8λ̃ni−2α − 3

2n

)

= 1

2n

N∑
i=1

i2α
(√

1 + 8N2αi−2α − 3
)(

1 + o(1)
)
.

Using the Taylor expression

√
1 + 8N2αi−2α =

∞∑
k=0

2
√

2(−1)k(2k)!
(1 − 2k)k!232k

(
i

N

)(2k−1)α

and the asymptotic relation

N∑
i=1

ir = Nr+1

r + 1

(
1 + o(1)

)
as N → ∞, r > −1,

we obtain

N = Mn1/(2α+1)
(
1 + o(1)

)
and λ̃ = Mn−2α/(2α+1)

(
1 + o(1)

)
,

where

M =
[

4C
/( ∞∑

k=0

2
√

2(−1)k(2k)!
(1 − 2k)k!232k

· 1

(2k + 1)α + 1
− 3

2α + 1

)]1/(2α+1)

.

Note that, by (3.9),

θ̃2
i = 1

2

[
1

2n

√
1 + 8

(
N

i

)2α

− 3

2n

]
+

(
1 + o(1)

)
.

Therefore,

(logn)

N∑
i=1

a4
i θ̃

4
i = O

(
(logn) · N4α+1

n2

)
= O

(
(logn) · n−1/(2α+1)

) = o(1).
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By Theorem 4.2, the minimax risk among all predictive density estimators is asymptotically
equivalent to the minimax risk among the linear density estimators. Furthermore, by Theo-
rem 3.2,

RL(�(C,α)) = 1

2
log 2 + 1

2n

N∑
i=1

log
1/(2n) + θ̃2

i

1/n + θ̃2
i

+ n − N

2n
log

1

2

= 1

2n

N∑
i=1

log
1/n + 2θ̃2

i

1/n + θ̃2
i

= 1

2n

N∑
i=1

log

(
1 + θ̃2

i

1/n + θ̃2
i

)
.

It is difficult to calculate an explicit form of the optimal constant for the minimax risk due to
the log function, but we can get an accurate bound for it. By Taylor expansion, there exists
x∗
i ∈ (0,1), i = 1,2, . . . ,N , such that

RL(�(C,α)) = 1

2n

N∑
i=1

(
1

1 + x∗
i

θ̃2
i

1/n + θ̃2
i

)
∈

(
1

4n

N∑
i=1

θ̃2
i

1/n + θ̃2
i

,
1

2n

N∑
i=1

θ̃2
i

1/n + θ̃2
i

)
.

Moreover,

N∑
i=1

θ̃2
i

1/n + θ̃2
i

=
N∑

i=1

1/(4n)
√

1 + 8(N/i)2α − 3/(4n)

1/n + 1/(4n)
√

1 + 8(N/i)2α − 3/(4n)
= K · N,

where

K = 1 + 1

2(2α + 1)
− 1

2

∞∑
k=0

2
√

2(−1)k(2k)!
(1 − 2k)k!232k

· 1

(2k + 1)α + 1
.

Therefore,

lim
n→∞n2α/(2α+1)R(�(C,α)) = lim

n→∞n2α/(2α+1)RL(�(C,α)) ∈ ( 1
4KM, 1

2KM
)
, (5.4)

that is, the convergence rate is n−2α/(2α+1) and the convergence constant is between 1
4KM

and 1
2KM .

As in Example 1, we compare the asymptotics of this minimax risk with the one over the
class of plug-in estimators, where the latter can be easily computed by (5.2) and the results in
[21]. Direct comparison reveals that the convergence rates of both minimax risks are n2α/(2α+1)

and the convergence constants can both be written in the form C1/(2α+1)f (α), where f (α) is
a function depending only on α. Although it is hard to obtain an explicit representation for the
convergence constant for the overall minimax risk, our simulation result in Figure 1 shows that
it is strictly smaller than that over the class of plug-in estimators.



556 X. Xu and F. Liang

Figure 1. Convergence constants of the overall minimax risk (the lower red line) and the minimax risk over
the class of plug-in estimators (the upper red line). Here, the sample size n = 10 000 000 and C = 1.

Appendix: Proofs

In this appendix, we provide the proofs of Theorem 2.1 and Lemma 4.1.

Proof of Theorem 2.1. Let � be an m × m matrix whose (i, j)th entry equals φj (ui). Since
the φj ’s form an orthogonal basis for L2 and the ui ’s are equally spaced, we have �t� = Im.
Consider the transformation 1

m
�t Ỹ . Since the first n columns of � are 	B , the first n elements of

the transformed vector are just X̃, defined in (2.2), and we denote the remaining (m−n) elements
by Z̃. It is easy to check that X̃|θ ∼ Nn(θ, 1

m
In) and Z̃ ∼ Nm−n(0, 1

m
Im−n) are independent

multivariate Gaussian variables, and the target density function p(ỹ|f ) satisfies

p(ỹ|f ) = p(x̃, z̃|θ)Jx̃,z̃(ỹ), (A.1)

where Jx̃,z̃(ỹ) is the Jacobian for this transformation. Similarly, any predictor density estimator
p̂(ỹ|y) can be rewritten as

p̂(ỹ|y) = p̂(x̃, z̃|x)Jx̃,z̃(ỹ), (A.2)
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where X is a transformation of Y defined in (2.2). Note that the two predictive density functions
on the left and right sides of the above equation may have different functional forms; however,
to simplify the notation, we use the same symbol p̂ to represent them when the context is clear.

Now, the average KL risk can be represented as

R(f, p̂) = E
Y,Ỹ |f log

p(Ỹ |f )

p̂(Ỹ |Y)
(A.3)

= E
X,X̃,Z̃|θ log

p(X̃, Z̃|θ)

p̂(X̃, Z̃|X)
,

where the second equality follows from (A.1) and (A.2). Since X̃ and Z̃ are independent, we can
split p(x̃, z̃|θ) as

p(x̃, z̃|θ) = p(x̃|θ)p(z̃), (A.4)

where p(z̃) has a known distribution Nm−n(0, Im−n) Moreover, to evaluate the minimax risk, it
suffices to consider predictive density estimators in the form

p̂(x̃, z̃|x) = p̂(x̃|x)p(z̃) (A.5)

because any predictive density p̂(x̃, z̃|x) can be written as p̂(x̃, z̃|x) = p̂(x̃|x)p̂(z̃|x, x̃), and if
p̂(z̃|x, x̃) is equal to p(z̃), then this density estimator is dominated by p̂(x̃|x)p(z̃), due to the
non-negativity of KL divergence.

Combining (A.3)–(A.5), we have

R(f, p̂) = E
X,X̃|θ log

p(X̃|θ)

p̂(X̃;X)
= R(θ, p̂).

Consequently, the minimax risk in the non-parametric regression model is equal to the minimax
risk in the Gaussian sequence model. �

Proof of Lemma 4.1. Let Q be the collection of all (generalized) Bayes predictive densities.
Then, by [5], Theorem 5, Q is a complete class for the problem of predictive density estimation
under KL loss. Therefore, the minimax risk among all possible density estimators is equivalent
to the minimax risk among (generalized) Bayes estimators, namely,

R(�) = inf
p̂

sup
θ∈�

R(θ, p̂) = inf
p̂∈Q

sup
θ∈�

R(θ, p̂).

Consider a Gaussian distribution πS = N(0, S), where S = diag(s2
1 , . . . , s2

n) and the si ’s satisfy
condition (4.1). Then,

R(�) = inf
p̂∈Q

sup
θ∈�

R(θ, p̂) (A.6)

≥ inf
p̂∈Q

∫
�

R(θ, p̂)πS(θ)dθ
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≥ inf
p̂∈Q

∫
Rn

R(θ, p̂)πS(θ)dθ − sup
p̂∈Q

∫
�c

R(θ, p̂)πS(θ)dθ

≥ inf
p̂∈Q

∫
Rn

R(θ, p̂)πS(θ)dθ − sup
p̂∈Q

∫
�c

R(θ, p̂)πS(θ)dθ. (A.7)

The first term of (A.7) is the Bayes risk under πS over the unconstrained parameter space R
n.

It is achieved by the linear predictive density p̂S ; see [1]. Therefore,

inf
p̂∈Q

∫
Rn

R(θ, p̂)πS(θ)dθ =
∫

Rn

R(θ, p̂S)πS(θ)dθ

(A.8)

= n

2m
log

vn

vn+m

+ 1

2m

n∑
i=1

log
vn+m + s2

i

vn + s2
i

.

To bound the second term of (A.7), note that for any Bayes predictive density p̂π ∈ Q,

R(θ, p̂π ) = 1

m
E

X,X̃|θ log
p(X̃|θ)∫

�
p(X̃|θ ′)π(θ ′|X)dθ ′

≤ 1

m
E

X,X̃|θ
∫

�

log
p(X̃|θ)

p(X̃|θ ′)
π(θ ′|X)dθ ′ (A.9)

= 1

m
EX|θ

∫
�

‖θ − θ ′‖2

2vm

π(θ ′|X)dθ ′

≤ 1

mvm

EX|θ
∫

�

(‖θ‖2 + ‖θ ′‖2)π(θ ′|X)dθ ′ (A.10)

≤ 1

mvm

(
‖θ‖2 + C

a2
1

)
, (A.11)

where (A.9) is due to Jensen’s inequality, (A.10) is due to ‖θ −θ ′‖2 ≤ 2‖θ‖2 +2‖θ ′‖2 and (A.11)
is due to ∫

�

‖θ ′‖2π(θ ′|x)dθ ′ ≤ sup
θ ′∈�

‖θ ′‖2

≤ 1

a2
1

sup
θ∈�

n∑
i=1

a2
i θ

′2
i = C

a2
1

.

Therefore,

sup
p̂∈Q

∫
�c

R(θ, p̂)πS(θ)dθ ≤ 1

mvm

[∫
�c

‖θ‖2πS(θ)dθ + C

a2
1

πS(�c)

]
, (A.12)
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where πS(�c) = ∫
�c πS(θ)dθ . Using the Cauchy–Schwarz inequality, we can further bound the

right-hand side of (A.12) as follows:

1

mvm

[∫
�c

‖θ‖2πS(θ)dθ + C

a2
1

πS(�c)

]

≤ 1

mvm

[
n∑

i=1

(∫
�c

θ4
i πS(θ)dθ

)1/2√
πS(�c) + C

a2
1

πS(�c)

]

= 1

mvm

[√
3
√

πS(�c)

n∑
i=1

s2
i + C

a2
1

πS(�c)

]

≤ 1

mvm

[√
3

C

a1

√
πS(�c) + C

a1
πS(�c)

]
.

Then, by [3], Proposition 2, which states that if ε1, . . . , εm are independent Gaussian random
variables with Eεk = 0 and Eε2

k = σ 2
k , then

P

(
m∑

k=1

ε2
k > Q

)
≤ exp

{
− (Q − ∑m

k=1 σ 2
k )2

4
∑m

k=1 σ 4
k

}
,

we have

√
πS(�c) =

[
P

(
n∑

i=1

a2
i θ

2
i > C

)]1/2

≤ vα
n , (A.13)

due to condition (4.1).
Combining (A.7), (A.8), (A.12) and (A.13), the theorem then follows immediately. �
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