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STUDY OF SOME SUBCLASSES OF UNIVALENT FUNCTIONS AND
THEIR RADIUS PROPERTIES

S. PonNusaMy AND S. K. SAHOO

Abstract

An analytic function f(z) =z + az? + - in the unit disk A = {z: |z| < 1} is said

to be in %(A,u) if
ptl
10(5g)

for some 2 >0 and > —1. For —1 <o <1, we introduce a geometrically motivated
9 (a)-class defined by

'(2) #(2)
V(oc):{feV:’ 71‘§Re —o,z€AD,
! 12 1@
where & represents the class of all normalized univalent functions in A. In this paper,
the authors determine necessary and sufficient coefficient conditions for certain class of
functions to be in .%,(a). Also, radius properties are considered for .%,(a)-class in the

<1 (<1

. . o1
class . In addition, we also find disks |z| < r:=r(4,u) for which —f(rz) € %(2, u)
whenever f €.%. In addition to a number of new results, we also present several new
sufficient conditions for f to be in the class %(4, u).

1. Introduction and preliminaries

Denote by .o/ the class of all functions f, normalized by f(0)=0=
f'(0) — 1, that are analytic in the unit disk A= {ze C:|z|] < 1}, and by & the
class of univalent functions f €.oZ. Denote by &* the subclass consisting of
functions f in % that are starlike (with respect to origin), i.e. tw € f(A) whenever
te0,1] and we f(A). Analytically, f €. if and only if Re(zf"(z)/f(z)) = 0
in A. A simple generalization of % is the so-called class of all starlike func-
tions of order «, 0 < o < 1, denoted by ¥*(«). Indeed, f € .¥*(a) if and only
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if Re(zf'(2)/f(z)) = o in A. We set ¥*(0) =", A function f € ./ is said to

be in #(4,u) if
1
1)

for some A >0 and x> —1. We set %(4,1) =%(4), and #(1) =%. In [10],
the authors studied a subclass 2(24) of % (1), consisting of functions f for which

)

We have the strict inclusion 2(2) ¢ % < &, see [1, 7, 13]. Moreover, a close
connection between the classes 2(21) and % (1) is given by 2(2) < %(4), see |9,
10]. In [8, 14, 15, 16], the authors considered the problem of finding conditions
on A and p so that each function in (4, ) is starlike or in some subsets of ..
For example, Ponnusamy and Singh [15] have shown that

< (2 <1)

<2) (2 <1).

l—p

U lyp) =" if u<0and 0 <A<
(=) + 12

=:2"(n)

and in [8], Obradovi¢ proved that the above inclusion continues to hold for
0 < <1 and with the same bound for A. The sharpness part of these results
may be obtained as a consequence of results from [21]. However, it is not
known whether each function f in %(1,u) (or more generally, #(2,u) with
A(u) <A <1) is univalent in A for certain values of u in the open interval
(0,1). On the other hand, according to a result due to Aksentiev [1] (see also
Ozaki and Nunokawa [13] for a reformulated version as given by %), we have the
inclusion #(7) = & for 0 <. <1. We see that the Koebe function z/(1 — z)*
belongs to # but does not belong to ¥ *(«) for any o > 0. In fact, the bounded
function z4 z?/2 belongs to % but not in #*(a) for any o> 0. That is,
U ¢ F* (o) for any o> 0. Thus, # & & and the inclusion is strict as func-
tions in % are not necessarily in 4. Further work on these classes, in-
cluding some interesting generalizations of these classes, may be found in [9,
12, 17).
A function f e .%*(a) is said to be in 7 *(«) if it can be expressed as

o0

@) =z lalz*.

k=2

Functions of this form are discussed in detail by Silverman [23] and others [24].
In this paper we shall be mainly concerned with functions f € .o/ of the form

(1.1) (ﬁ)ﬂzwibﬂ", zeA,
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where (z/f(z))" represents principal powers. The class of functions f of this
form for which b, > 0 is especially interesting and deserves separate attention.
We remark that if f € .% then z/f(z) is nonvanishing and hence, f € ¥ may be
expressed as

f(z) =—=, where g(z) =1+ chz”, zeA.
n=1

These two representations are convenient for our investigation. Finally, we
introduce a subclass %, (o), —1 < o < 1, of starlike functions in the following way

[19]:
Fp(a) = {fey. e —1‘<Re OB EA}.

Geometrically, f € ¥,(x) if and only if the domain values of zf'(z)/f(z), z € A,
is the parabolic region (Im w)> < (1 —«)2Rew — (1+0a)]. In [19], Renning
has shown that the class %,(«) must contain non-univalent functions if o < —1,
and S(a) c " if -1 <a<1. We set ¥,(0)=,. The class of uniformly
convex functions was introduced by Goodman in [4] (see also [5] where Goodman
studied the class of uniformly starlike functions). Later Renning [20] studied
these classes along with the class #,. Moreover, from the work of Renning [20],
it follows easily that f(z) = z + a,z" is in ¥,(«) if and only if (2n — 1 — a)|a,| <
1 —a.

Let # and % be two subclasses of .«7. If for every f e Z, rf(rz) e % for
r < rg, and ry is the largest number for which this holds, then we say that ry is the
% radius (or the radius of the property connected to %) in #. There are many
results of this type in the theory of univalent functions. For example, the ¥,
radius in .%* was found by Renning in [20] to be 1/3. Also, 2(2) radius in %
has been obtained by Obradovi¢ and Ponnusamy in [11] and is given by 2/3. At
this place, it is appropriate to recall here the following result:

1
THEOREM A [20, Theorem 4|. If f e, then —f(rz) e &, if and only if
0<r<0.33217.... r

2. Lemmas

For the proof of our results, we need the following result (see [3, Theorem
11 in p. 193 of Vol-2]) which reveals the importance of the area theorem in the
theory of univalent functions.

LemMmA 1. Let u>0 and f e be in the form (1.1). Then we have

o0

S 1= wlbl* < g

n=1
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Next we recall well-known coefficient condition that is sufficient for functions
to be in #(1) or #(21) or & *(a), respectively.

LEMMA 2 [12].  Let ¢(z) =14 Y_,°, byz" be a non-vanishing analytic function
in A and f(z) =z/¢(z). Then if >, ,(n—1)|b,| < A, we have
(@) fen(2)
V2P =1l
(b) feUX)NF" for 0 <A< 5 =2.(f);
(c) Further, if > n(n—1)|b,| <24, then we have f e 2(27).

In [18], it was shown that if ¢(z) =1+ >_,”, b,z" is a non-vanishing analytic

function in A and f(z) =z/¢(z), then f e & (a), 0 <o <1, whenever

D (k=1 +o)lb| <

e {l—oc—(l—oc)|b1| if0<a<1/2
k=2 1

— o — oby] if 1/2<a<l.

3. Coefficient conditions for functions in %) ()

THEOREM 1. If a function f of the form (1.1) with b, >0 and p >0 is in
(), we then have

0

(3.1) 2n—u(l —a))b, < u(1 —a).

n=1

Proof. Let fe%,(a). Now, it is easy to see that

oo () -l G) - G )

Using the identity (3.2), we have

o) oo )

) ()

(a)

Since f is in the form (1.1), the last inequality may be equivalently written
as

<
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1| =322 nbuz" <Rel1 1 >0 nb,z"
w\l+ 30 byz" wl+>7 bzt
If ze A is real and tends to 1~ through reals, then from the last inequality we
have
1 > i by <1—g 1 2wt 1ty
H 1+Zf;1bn N u 1"‘220:1[% ’
from which we obtain the desired inequality (3.1). O

The case u=1 leads to

COROLLARY 1. Let fe%y(a) be such that z/f(z) =1+, byz" with
b, > 0. Then we have

[o'e]
Z Cn—14a)b, <1—a.

n=1
THEOREM 2. Let z/f(z) be a nonvanishing analytic function of the form (1.1)
with > 0. Then the condition

o0

(33) > @n 4 u(l =) |by| < u(1—2)

n=1

is sufficient for f to be in the class 5,(a).

Proof. As in the proof of Theorem 1, we notice that

()

is equivalent to

ooy nbyz" S nbyz"
_Lun=17Tn= 1 — o) — Re| —&n=1"7n=
1Y, bﬂ'—M %)~ Re 1+ 57 bzt
Thus, to show that f is in &,(a), it suffices to show that the quotient
D "
1+ ZZC:I b,z

lies in the parabolic region
(Im w)? < u(1 — o)[u(1 — o) + 2 Re wl.

Geometrically, this condition holds if we can show that
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S | _p-0

3.4 5

(3.4) 1+ >0 bz~ 2

From the condition (3.3), we obtain that
> n+p(l =)yl 2" < u(1 — )
n=1

and so

n=1 n=1

in|b 2" < 1_ - i\b,zl 2|
g G}

In view of this inequality, we deduce that

S nbez" | p(1 - ) <1 — Y 1] |z”> _u(l-9)

L2 bz ™ 2 L =320 1bal 12" 2
which is exactly the inequality (3.4) and therefore, f € %), (x). O

COROLLARY 2. Let z/ f (z) be a nonvanishing analytic function in A of the
Jorm z/f(z) =1+ > " buz". Then the condition

0

S @nt+l-a)lb,<1-a

n=1
is sufficient for f to be in the class S,(a).

The case =0 of Corollaries 1 and 2 has been obtained recently by
Obradovi¢ and Ponnusamy [11].

4. Radius problems

1
THEOREM 3. If f €% is given by (1.1) with 0 < u < 1, then —f(rz) € ¥,()
for 0 <r <ry, where ry is the root of the integral equation

4r2(1 + p(2 — w)(1 —rz))+r2ﬂ2(3_oc)zj1 dr (1—0)%

4.1 =
( ) (1 _ V2)2 1 —u 0 1 — r2¢1/(-p) M

Proof. Let fe& be given by (1.1) with 0 <u< 1. Then z/f(z) is
nonvanishing in A and for 0 <r <1, we have
"

z

i =14 (bir)z 4 (bar*)z* + - -
;f(rz)
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(4.2) S:=>"@n+p(l — o) |bulr" < p(1 — )

n=1

1 .
for some r, then ;f (rz) € (), by Theorem 2. Now, using the Cauchy-
Schwarz inequality and Lemma 1, we see that

$ =3 b P

=1 n:lni'u

. NN
:\/ﬁ< 4(n+,u(2—cx))r2"+,u2(3—oc)zz r )

e = SR E N A

(1—- r2)2 1 —pu o 1 —r2el/(-u

In particular, if the last expression is less than or equal to u(1 — o), then (4.2)
holds which gives the condition (4.1). O

In the case 4 = 1, Theorem 3 takes the following form which needs a special
attention as we see that the radius quantity depends on the second coefficient of
the given function f.

THEOREM 4. If f e is of the form z/f(z) =1+ >, byz", then ff(rz) €

Fp(a) for 0 < r <1y, where ro, which depends on the second coefficient of f, is the
root of the equation

4rt(14+ (3 —a)(1 —1?))

(1— 1)’ = (-2 In(l =) = (1 -2~ (3= 2)(r/2)If" ()"

Proof. Note that, for f e satisfying z/f(z) =1+ .7, b,z", we have

n=1

by = —f"(0)/2. Proceeding exactly as in the proof of Theorem 3 (but with
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1= 1) and by considering summation to run from 2 to oo, we obtain the required
conclusion. So we omit the details. O

We remark that, the case o« =0 of Theorem 4 is due to Obradovi¢ and
Ponnusamy in [11].

Now we prove a generalized version of Lemma 2(a) which is useful to prove
our next results.

LeMMA 3. Let 0<oa <1 and ¢(z) =1+, buz" be a non-vanishing
analytic function in A satisfying the coefficient condition

o0

(4.3) D (= 1+ a)|b| < A1 - a).

n=1
Then the function [ defined by the equation (z/f(z))' ™ = ¢(z) is in U}, 1 — o).
Proof. Let f be given by (z/f(z))' ™™ = ¢(z), where ¢(z) # 0 in A, and we

choose here the principal branch so that (z/f(z))' ™ at z=0is 1. Then the
power series representation of ¢ and the coefficient condition (4.3), lead to

2—o 0
z , 1 &
— z)—1| = |- n—1+a)b,z"| <A
‘(f@) 1) ’ =Y )
and therefore, by the definition of the class, f is in (4,1 — a). O

The following result determines the %(4,u) radius in &.

THEOREM 5. Suppose that fe S, 0<a<1, >0 and
/21 —a)

[\/(a +222(1 = ) + 4231 — 22 (1 = 22) + (o 223(1 — )]

Ty ) =

12"

1

Then we have ;f(rz) €U(A,1 —a) for

(4.4) 0<r<ry;.

In particular, lf(rz) eU(1,1—ao) for 0 <r<+/(1-0)/(2—ua).
r

Proof. Let fe.%. Then z/f(z) #0 in A. So, we may consider f in the
form

(4.5) ( f§2)>” 1+ f:l byz".

Now, Lemma 1 gives
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Zn—l+o¢|b| <l-ua.

n=1

On the other side, for 0 <r <1, we obtain from (4.5) that

1—o

z 0
i =1+ ;(bnr )z

According to Lemma 3, it suffices to verify the inequality

Zn—1+oc|b < A1 —a)

n=1

for 0<r<r,,. Now, as before, we have

» N 2, 1/2
Z(n—l+oc)|bnr”|£<2(n—l+oc|b) ( (n—1+a)r )

n=1 n=1 =1

1/2
<Vl]-ua rt + o r /
a (l—rz)2 1—r2

—Vi= a(l—rﬂ) (24 (1 —o)r?)"?

< A1 —a),
if 17rr2 o+ (1 —o)r2 < vV/1—o. Note that
1—}’2 o+ (1—a)r? <AVl —a
—r
is equivalent to (4.4), and so we complete the proof. O

5. Conditions for functions to be in % (4,u)

To present our next result, we consider the class of functions of Bazilevi¢
type, see [6, 22]. The result is simple and surprising as it identifies a subclass

which lies in %(4,u). This generalizes the result of Obradovi¢ and Ponnusamy,
see [11, Theorem 5.

THEOREM 6. Let 0 <u<1. If fe% is given by (1.1) with b, >0, and
pu—1
satisfies the condition that Re (f’(z) (f(z)) ) >0. Then feU(l,un).
z
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Proof. Using the equation (3.2), we notice that

Re <f'(z) <@)ﬂ_l> S0eRre—LE) o

L+ 3000 (1= n/pbuz"
Re = 3
(1 + Zn:1 an”)

Since b, > 0, allow z — 1~ along the real axis, we get

Re L= Zn:I(Z//‘_ i)bn
(142221 bn)

=

>0

— )

which gives that

8

(n *:u)bn su

n=1
and so by Lemma 3, we have f e %(1,u). O
THEOREM 7. Let 0 < u < 1. A function f of the form (1.1) with b, > 0 and
z/f(z) #0, is in U(1,u) if and only if

(5.1) i(ﬂ—u)bn <.

n=1

Proof. 1In view of Lemma 3, it suffices to prove the necessary part. To do
this, we let f e %(1,u) and f is of the form (1.1). Then using (3.2), we get

i) o1 - |G 25 ) -]+

Because b, > 0, choosing values of z on the real axis and then letting z — 1~
through real values, we obtain the coefficient condition (5.1). O

o0

<1

(n — p)byz"
1

n=

The following result gives a sufficient condition for starlike functions of order
o to be in the class % (4, u).
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THEOREM 8. If f € 9*(a) is of the form (1.1) with b, >0 and u > 0, then

(52) S 0 — (1 — )b < (1 — ).

n=1

In particular, fe€U(l —a,p).

Proof. 1t is easy to see that

#'(2)
: #/'(2) e
fed (a) = Re >0 |—n—| < L
() EXCIN
f(2)
Now, using this relation and the identity (3.2), we have the following
() A=y
o L & <{<z>> ﬂ
z d( z
Tortim| o) <k (7)
— _Ele I’lann <1
2u(1 = o) (14 30,0 buz") — 32,0 mbyz"|

Since b, > 0, if z — 1~ along the real axis, we see from the last inequality that

nb,,

NgE

1

(n - 2u(1 — )b,

<1

M%ﬁ

2pu(1 — o) —

I
=

n

%

This gives the desired inequality (
Finally, since n —u <n— u(l

> -

n=1

2).
o), we have

(n = p(1 = 2))by < (1 — ).

IA
s

From Lemma 3, we conclude that f € #(1 — o, u). O
As a consequence of Theorem 8, we next see that 7 *(a) < % (1 — «).
COROLLARY 3. If f(z) =z = 7, |ay|z" is in &*(a), then fe€WU(1— ).

Proof. Let f e %*(a) be of the form f(z) =z -, |a,|z". Then z/f(z)
is nonvanishing in the unit disk and so it can be expressed as
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z 1
- :1+b2+b22+...’
f(Z) 1_|a2|Z—|a3‘22—... 1 2
where b, >0 for all neN. Then by Theorem 8, f € %(l —u). 0

From [12], we collect the following result.
LemmA 4. Let 0< A, y<1 and feU(L). Define

. —177(0)] cos(my/4) + sin(xy/4),/16 cos?(my/4) — |/7(0)
Y= 2 cos(my/4)

and let };/’ be given by the inequality

sin(ry/2)V4 — 22 = (|f"(0)] + I/ — (11"(0)] + ) + 4 cos(my/2).
Then
() few(t)= fe, for 0<A<i/2,
(i) feu()= feR, for 0<i<i)2,
where

R, = {f e.of :|arg f'(z)| < %y} and

. y
7, ={r et et @) < 5.
Using the containment results of Lemma 4 and Corollary 3, one can derive a
number of interesting results. For instance, we obtain the following:

COROLLARY 4. If 0<y <1 and f(z)=z-3 " ;|a,|z" € 5”*(1 —sin 72)),

then feR, In particular, if f"(0)=0, then fe%*(1/2) implies that
Re f'(z) = 0.

COROLLARY 5. If 0<y <1 and f(z)=z-3 , 5|as|z" € &1 —sin % ,
then f €%, In particular, if f"(0)=0, then fe%*(1/2) implies that
larg(z/"(2)/f (2))| < =/3.

6. Conclusion

To present a meromorphic analog of the class (1), we recall, for example,
the following result.

LemMa 5 [17, Theorem 1.2]. If feu () and a=|f"(0)|/2 <1, then
feF*(0) whenever 0 < /. < A(0), where
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V(1 =26)(2 —a?—26) —a(l —26) . l+a

2(1=90) FO0=<0<37
1-6(1+a) . 1+a

1496 4 3+aS <1+a'

6.1)  A0) =

In particular,
feu), f"0)=0= fes* whenever 0 <\ <1/V2.
After the paper was submitted to the journal, Fournier and Ponnusamy [2]
settled the question of sharpness of the bound for A for which (1) = ¥*. As

a motivation for our next result, we consider the class, denoted by X, of all
functions of the form

FO=0+Y al™

n=0
that are analytic and univalent for || > 1. Thus

1 z

F(1/z) 1+57  caiz"

FeXse fes, f(z)=

Also, we note that

/ =V #f'(z) _(1/2)F'(1/2)
razg) —ram me ZE-G0EE
Consequently, for 0 <1 <1, fe#(2) if and only if |F'({) — 1] < 4 for |{| > 1.
Similarly, for 0 <o <1, fe %" (o) if and only if

{F'(9)
Re( FO > >a for [{] > 1.

The class of all such functions satisfying the later condition is denoted by
¥*(o). Thus, Lemma 5 takes the following form:

THEOREM 9. Let F({) =+ >, o cul" be analytic and univalent for (| > 1.
If F satisfies the condition

IF'{O =1 <4 for ¢ >1

and a =|—cy| <1, then F € *(0) whenever 0 < 1 < A(9), wheref& is given by
(6.1). In particular, for co =0, F € £*(0) whenever 0 <A<1/v2

In view of the above observations, we can state a number of results for
various subclasses of the class of meromorphic univalent functions.
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