ON INVARIANT CLOSED GEODESICS UNDER ISOMETRIES

By Minoru Tanaka

§0. Introduction

It is an interesting problem to estimate the number of distinct closed geodesics on a compact Riemannian manifold. In [2] Gromoll and Meyer proved the existence of infinitely many geometrically distinct closed geodesics on a compact Riemannian manifold satisfying a certain topological condition. Recently Grove [5] extended their result by means of invariant closed geodesics under involutive isometries. In this paper we will prove a more general theorem than their results. Let M be a connected Riemannian manifold and h an isometry on the manifold M. A geodesic $\gamma: \boldsymbol{R} \rightarrow M$ is called an invariant geodesic under h if there exists some nonnegative constant θ such that $h(\gamma(t))=\gamma(t+\theta)$ for all $t \in \boldsymbol{R}$. Two such geodesics γ_{1}, γ_{2} are said to be geometrically distinct if $\gamma_{1}(\boldsymbol{R}) \neq$ $\gamma_{2}(\boldsymbol{R})$. Let $C^{0}(M, h)$ be the topological space of all continuous curves $\sigma:[0,1]$ $\rightarrow M$ satisfying $h(\sigma(0))=\sigma(1)$ with the compact open topology. Now we will state our main theorem.

Main Theorem. Let M be a compact simply connected Riemannian manifold and f an isometry satisfying $f^{s}=i d$. for some prime integer s. Then there exist infinitely many geometrically distinct invariant closed geodesics under f if the sequence of the Betti numbers for the space $C^{0}(M, f)$ is not bounded.

Note. If $s=1$, i.e., $f=i d$. , (resp. $s=2$) in our main theorem then we obtain the result of Gromoll and Meyer (resp. Grove).

§1. Preliminaries

Let (M,\langle,$\rangle) be an n+1$ ($\geqq 2$) dimensional compact Riemannian manifold, and h an isometry on the manifold M. A continuous curve $\gamma:[0,1] \rightarrow M$ will be called an H^{1}-curve when it is absolutely continuous and $\int_{0}^{1}\langle\dot{\gamma}, \gamma\rangle d t<\infty$, where $\dot{\gamma}$ denotes the velocity vector of γ. For each H^{1}-curve γ. a continuous vector field X along the curve γ will be called an H^{1}-vector field along γ when it is absolutely continuous and $\int_{0}^{1}\left\langle X^{\prime}, X^{\prime}\right\rangle d t<\infty$, where X^{\prime} denotes the covariant de-
rivative of X along γ. Let $\Omega(M, h)$ be the set of H^{1}-curves σ from the unit interval I into M satisfying $h(\sigma(0))=\sigma(1)$. For each $\sigma \in \Omega(M, h)$, let $T_{\sigma} \Omega(M, h)$ be the set of H^{1}-vector fields X along the curve σ satisfying $h_{*}(X(0))=X(1)$, where h_{*} denotes the differential of the map h. The inner product on $T_{\sigma} \Omega(M, h)$ is defined by

$$
\begin{equation*}
\ll X, Y \gg=\int_{0}^{1}\left(\langle X, Y\rangle+\left\langle X^{\prime}, Y^{\prime}\right\rangle\right) d t \quad \text { for } X, Y \in T_{a} \Omega(M, h) . \tag{1}
\end{equation*}
$$

By this inner product $T_{\sigma} \Omega(M, h)$ becomes a Hilbert space. $\Omega(M, h)$ has a structure of Riemannian Hilbert manifold [3]. The model spaces of $\Omega(M, h)$ are given by $\left\{T_{\sigma} \Omega(M, h) ; \sigma \in \Omega(M, h)\right\}$ and the Riemannian structure is given by (1). For each $\sigma \in \Omega(M, h)$ we can regard the model space $T_{\sigma} \Omega(M, h)$ as the tangent space of $\Omega(M, h)$ at σ. On $\Omega(M, h)$ we have the energy function E^{h} : $\Omega(M, h) \rightarrow \boldsymbol{R}$ defined by

$$
E^{h}(\sigma)=1 / 2 \int_{0}^{1}\langle\dot{\sigma}, \dot{\sigma}\rangle d t \quad \text { for } \sigma \in \Omega(M, h) .
$$

The following are well known facts.
(a) $E^{h}: \Omega(M, h) \rightarrow \boldsymbol{R}$ is a smooth function and satisfies condition (C) of Palais and Smale (see [3]).
(b) $\sigma \in \Omega(M, h)$ is a critical point for E^{h} if and only if σ is a geodesic on M satisfying $h_{*} \dot{\sigma}(0)=\dot{\sigma}(1)$ (see [3]). Particularly $\sigma \in \Omega(M, \imath d$.) is a critical point for $E^{\imath d}: \Omega(M, i d.) \rightarrow \boldsymbol{R}$ if and only if σ is a closed geodesic in M.
(c) The Hessian H_{c} of E^{h} at a critical point c is given by

$$
H_{c}(X, Y)=\int_{0}^{1}\left(\left\langle X^{\prime}, Y^{\prime}\right\rangle-\langle R(X, \dot{c}), \dot{c} Y\rangle\right) d t
$$

where R denotes the curvature tensor of M.
For each $\sigma \in \Omega(M, h)$ we always assume that σ is naturally defined on \boldsymbol{R}, i.e.,

$$
\begin{equation*}
\sigma(t)=h^{[t]}(\sigma(t-[t])) \quad \text { for } t \in \boldsymbol{R} \tag{2}
\end{equation*}
$$

where $[t]$ denotes the greatest integer $\leqq t$.
Let g be an isometry on M such that $g^{s}=\imath d$. for some positive integer s, and $S O(2)$ the parameter circle $[0, s] /\{0, s\}$. We may regard $S O(2)$ as an operation on $\Omega(M, g)$ as follows;

$$
\begin{gathered}
S O(2) \times \Omega(M, g) \longrightarrow \Omega(M, g), \\
(\alpha, \sigma) \longmapsto \alpha(\sigma), \text { where } \alpha(\sigma)(t)=\sigma(t+\alpha) .
\end{gathered}
$$

Note that $\sigma(t+s)=\sigma(t)$ for all $t \in \boldsymbol{R}$ and $\sigma \in \Omega(M, g)$. This action is continuous and for each $\alpha \in S O(2), \alpha: \Omega(M, g) \rightarrow \Omega(M, g)$ is an isometry [4]. A critical point c for E^{g} in $\Omega(M, g)$ lies always on a critical submanifold of $\Omega(M, g)$,
$S O(2) c$ when c is non constant, i.e., $E^{g}(c) \neq 0$. Now we shall construct a tubular neighborhood \mathscr{D} of $S O(2) c$. We can take for \mathscr{D} the diffeomorphic image of a sufficiently small tubular neighborhood of the zero section in the normal bundle η of $S O(2) c$ by the induced map from the exponential map exp of M, i.e., the map $\overline{\exp }: \Re \rightarrow \Omega(M, g)$ with $Y \mapsto \exp \circ Y$ is a local diffeomorphism along the zero section of Ω. So the normal space Ω_{c} over c is the tangent space of the fiber \mathscr{D}_{c} at c and $\alpha\left(\mathscr{D}_{c}\right)=\mathscr{D}_{\alpha(c)}$ for $\alpha \in S O(2)$. Let $E_{c}{ }^{g}$ be the restriction of the energy E^{g} to \mathscr{D}_{c}. For the Hessian \widetilde{H}_{c} of $E_{c}{ }^{g}$ at c we obtain immediately $\widetilde{H}_{c}=H_{c} \mid \Re_{c} \oplus \Re_{c}$. The next lemma is essentially proved by Gromoll and Meyer [2].
Lemma 1. Let $c \in \Omega(M, g)$ be a non constant critical point. Then the operator $A_{c}: T_{c} \Omega(M, g) \rightarrow T_{c} \Omega(M, g)$ defined by

$$
《 A_{c} X, Y \gg=H_{c}(X, Y)
$$

admıts a decomposition $A_{c}=\imath d+k$ with a compact operator k. Clearly the corresponding operator \tilde{A}_{c} for \tilde{H}_{c} is also of the form $\tilde{A}_{c}=\imath d+\tilde{k}$, where \tilde{k} is compact.

In general let \jmath be a smooth $\left(C^{\infty}\right)$ function defined on some open neighborhood of the origin in a Hilbert space (H,\langle,$\rangle) such that the origin 0$ is an isolated critical point of \jmath, and $j(0)=0$. Let $d^{2} \jmath_{0}$ be the Hessian for \jmath at the origin, and we assume that the operator $A: H \rightarrow H$ defined by $\langle A x, y\rangle=d^{2}{ }_{0}(x, y)$ admits a decomposition $A=\imath d+K$, where K is a compact operator. We put $N=\operatorname{ker} A$ and $E=N^{\perp}$, the orthogonal complement in H, so that $H=E \oplus N$. The next "splitting lemma" is due to Gromoll and Meyer [1].

Lemma 2. (Splitting lemma) Let j satısfy the assumptıons as above. Then there exist an origin preserving diffeomorphism Φ of some neighborhood of 0 in H into H and an origin preserving smooth map h defined in some netghborhood of 0 in N into E such that $\jmath \circ \Phi(x, y)=\langle P x, P x\rangle-\langle(I-P) x,(I-P) x\rangle+j(h(y), y)$ with an orthogonal projection $P: E \rightarrow E$.

Corollary 3. The function \jmath satisfies condition (C) of Palais and Smale in some neighborhood of the origin.

Proof. Let $\left\{\sigma_{n}\right\}$ be any sequence such that the gradient vector of \jmath at σ_{n}, $\nabla_{J_{n}}$, tends to zero as $n \rightarrow \infty$. We set $\left(x_{n}, y_{n}\right)=\Phi^{-1}\left(\sigma_{n}\right)$. If the points σ_{n} are in a sufficiently small neighborhood of the origin, the points y_{n} are in a bounded set. Since N is a finite dimensional linear subspace, $\left\{y_{n}\right\}$ has a convergent subsequence. On the other hand, by the splitting lemma

$$
P_{E}\left(\nabla(\jmath \circ \Phi)_{(x, y)}\right)=2(2 P-I) x,
$$

where P_{E} denotes the orthogonal projection to E in H. Hence

$$
2\|x\|=2\|(2 P-I) x\| \leqq\left\|\boldsymbol{\nabla}(j \circ \Phi)_{(x, y)}\right\| \leqq\left\|\Phi_{*(x, y)}\right\| \cdot\left\|\boldsymbol{V}_{\jmath_{\boldsymbol{Q}(x, y)}}\right\|,
$$

where $\|\cdot\|$ denotes the norm induced by the inner product \langle,$\rangle . So if \nabla_{J_{\sigma_{n}} \rightarrow 0,}$ then x_{n} tends to zero. Therefore the sequence $\left\{\sigma_{n}\right\}$ has a convergent subsequ-
ence.
(q. e. d.)

Using Lemma 1 and Corollary 3, we have
Proposition 4. If cis an isolated critucal point of $E_{c}{ }^{g}$ and \mathscr{D}_{c} is sufficiently small, then condition (C) holds for $E_{c}{ }^{g}$.

Now we will define a local homological invariant $\mathscr{H}\left(E^{g}, S O(2) c\right)$ of the energy E^{g} at the isolated critical orbit $S O(2) c$ by using the construction and the notation of [1]. Choose a sufficiently small tubular neighborhood \mathscr{D} such that $E_{c}{ }^{g}$ satisfies condition (C) and such that c is an isolated critical point of $E_{c}{ }^{g}$ (see p. 502 in [2]). Thus we can define a local homological invariant of $E_{c}{ }^{g}$ at c;

$$
\mathscr{H}\left(E_{c}{ }^{g}, c\right)=H_{*}\left(W_{c}, W_{c}{ }^{-}\right),
$$

where W_{c} and $W_{c}{ }^{-}$are admissible regions for the function $E_{c}{ }^{g}$ on the fiber \mathscr{D}_{c} at c (see [1]). For convenience we use singular homology with a field of characteristic zero. We define a local homological invariant $\mathscr{H}\left(E^{g}, S O(2) c\right)$ of the energy E^{g} at the isolated critical orbit $S O(2) c$ by

$$
\mathscr{H}\left(E^{g}, S O(2) c\right)=H_{*}\left(W, W^{-}\right) \text {where } W=S O(2) W_{c} \text { and } W^{-}=S O(2) W_{c}^{-} .
$$

It does not depend on the choice of the \mathscr{D} and admissible regions $W_{c}, W_{c}{ }^{-}$.
The next lemma is proved by Gromoll and Meyer [2].
Lemma 5. Let b be the only critical value of the energy $E^{g}: \Omega(M, g) \rightarrow \boldsymbol{R}$ in $[b-\varepsilon, b+\varepsilon]$ for some $\varepsilon>0$. Assume that the critical set in $\left(E^{g}\right)^{-1}(b)$ consists of finitely many critical orbits $S O(2) c^{1}, \cdots, S O(2) c^{r}$. Then

$$
H_{*}\left(\Omega^{b+\varepsilon}(M, g), \Omega^{b-s}(M, g)\right)=\sum_{\imath=1}^{r} \mathscr{G}\left(E^{g}, S O(2) c^{i}\right),
$$

where $\Omega^{b \pm \varepsilon}(M, g)=\left(E^{g}\right)^{-1}[0, b \pm \varepsilon]$.
Let $a<b$ be regular values of the energy E^{g} such that the critical orbits in $\left(E^{g}\right)^{-1}[a, b]$ consist of finitely many critical orbits $S O(2) c^{1}, \cdots, S O(2) c^{r}$. Then we have the Morse inequalities from Lemma 5;
(3) $\quad b_{k}\left(\Omega^{b}(M, g), \Omega^{a}(M, g)\right) \leqq \sum_{i=1}^{r} B_{k}\left(c^{\imath}, g\right)$,
where $\quad b_{k}\left(\Omega^{b}(M, g), \Omega^{a}(M, g)\right)=\operatorname{dim} H_{k}\left(\Omega^{b}, \Omega^{a}\right)$
and

$$
B_{k}\left(c^{2}, g\right)=\operatorname{dim} \mathscr{A}_{k}\left(E^{g}, S O(2) c^{2}\right) .
$$

If we define a map π of $\left(S O(2) \times W_{c}, S O(2) \times W_{c}{ }^{-}\right.$) onto (W, W^{-}) by ($\left.\alpha, e\right) \mapsto$ $\alpha(e)$, then the map π is a covering map. Put $\Gamma=\{\alpha \in S O(2) ; \alpha(c)=c\}$, which is called the isotropy group at c. We can regard Γ as covering transformations on $\left(S O(2) \times W_{c}, S O(2) \times W_{c}{ }^{-}\right)$by $(\alpha, e) \rightarrow\left(\alpha \beta^{-1}, \beta(e)\right)$ for each $\beta \in \Gamma$. Since

$$
\left(W, W^{-}\right)=\left(S O(2) \times W_{c}, S O(2) \times W_{c}^{-}\right) / \Gamma,
$$

we have

$$
\begin{equation*}
H_{*}\left(W, W^{-}\right) \subset H_{*}\left(S O(2) \times W_{c}, S O(2) \times W_{c}^{-}\right) \tag{4}
\end{equation*}
$$

By the künneth formula

$$
\begin{equation*}
\mathscr{H}\left(E^{g}, S O(2) c\right) \subset H_{*}(S O(2)) \otimes \mathscr{H}\left(E_{c}{ }^{g}, c\right) . \tag{5}
\end{equation*}
$$

Let λ be the index of c in $\Omega(M, g)$. Using the shifting theorem [1]

$$
\mathscr{A}_{k+\lambda}\left(E_{c}{ }^{g}, c\right)=\mathscr{A}_{k}{ }^{0}\left(E_{c}{ }^{g}, c\right),
$$

where $\mathscr{A}_{k}{ }^{0}$ denotes the characteristic invariant.
The last equality and (5) give

$$
\begin{equation*}
\mathscr{A}_{k}\left(E^{g}, S O(2) c\right) \subset \mathscr{A}_{k-\lambda}{ }^{0}\left(E_{c}^{g}, c\right) \oplus \mathscr{A}^{0}{ }_{k-\lambda-1}\left(E_{c}{ }^{g}, c\right) . \tag{6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
B_{k}(c, g) \leqq B_{k-\lambda}{ }^{0}(c, g)+B_{k-\lambda-1}^{0}(c, g), \tag{7}
\end{equation*}
$$

where $B_{k}{ }^{0}(c, g)=\operatorname{dim} \mathscr{G}_{k}{ }^{0}\left(E_{c}{ }^{g}, c\right)$.

§2. Estimations of the indexes and nullities of all the critical orbits

For each $\sigma \in \Omega(M, g)$ and non zero integer m, we define a curve

$$
\sigma_{m} \in \Omega\left(M, g^{m}\right) \quad \text { by } \quad \sigma_{m}(t)=\sigma(m t) .
$$

Note that each element in $\Omega(M, g)$ is assumed to be a map from \boldsymbol{R} into M by (2). Then we can define the interation map $m: \Omega(M, g) \rightarrow \Omega\left(M, g^{m}\right)$ by $\sigma \mapsto \sigma_{m}$ for each non zero integer m. The next theorem is important for us. It is essentially proved by Gromoll and Meyer [2].

Theorem 6. Let $S O(2)$ c be a non constant critical orbit in $\Omega(M, g)$ such that $S O(2) c_{m}$ is an isolated critical orbit in $\Omega\left(M, g^{m}\right)$ and $\nu(c, g)=\nu\left(c_{m}, g^{m}\right)$ for some non zero integer m. Then $\mathscr{H}_{k}{ }^{0}\left(E_{c}{ }^{g}, c\right)=\mathscr{H}_{k}{ }^{0}\left(E_{c m}{ }^{g}{ }^{g}, c_{m}\right)$ for all all k. Here $\nu(c, g)$ (resp. $\nu\left(c_{m}, g^{m}\right)$) denotes the nullity of the critical submanıfold $S O(2) c$ (resp. $S O(2)$ $\left.c_{m}\right)$ in $\Omega(M, g)\left(r e s p . ~ \Omega\left(M, g^{m}\right)\right)$.

Let f be an isometry on M with an order s, and we assume that s is prime. Now we will study the indexes and nullities of all the critical orbits in $\Omega(M, f)$ generated by the iteration of a critical point. Let σ be a non constant critical point. Since $f(\sigma(t))=\sigma(t+1)$ and $f^{s}=\imath d$, then $\sigma(t+s)=\sigma(t)$, that is, c is a closed geodesic with the fundamental period s / m, where m is some positive integer. For a critical point $\gamma \in \Omega(M, f)$ there are the following possibilities.

1) $\gamma(t)=p$ for all $t \in[0,1]$ where the point p is a fixed point of f.
2) The fundamental period of a critical point is $1 / m_{0}$ for some positive integer m_{0}.
3) The fundamental period of a critical point is s / m_{0} for some positive integer m_{0} with $\left(m_{0}, s\right)=1$.

A critical point of type 1) is constant. The other critical points are non constant. At first we will study a critical point c of type 3). Since m_{0} and s are relatively prime, there exist some integers n_{0} and k_{0} satisfying $m_{0} n_{0}=1+s k_{0}$, hence $n_{0}=1 / m_{0}+\left(s / m_{0}\right) k_{0}$. If we set $\bar{c}(t)=c\left(t / m_{0}\right)$ for $t \in[0,1]$ and $g=f^{n_{0}}$, then \bar{c} is a critical point for E^{g} and the fundamental period of \bar{c} is s. Clearly for each integer m and r with $m s+r m_{0} \neq 0, \bar{c}_{m s+r m_{0}}$ is a critical point for $E^{f r}$. The critical orbits $S O(2) \bar{c}_{m s+m_{0}}, m \in \boldsymbol{Z}$, are all the orbits in $\Omega(M, f)$ generated by the closed geodesic c. We may assume $1 \leqq m_{0}<s$ without loss of generality.

Let $V_{\bar{c}}$ be the vector space of smooth vector fields along \bar{c} orthogonal to
\bar{c}. A linear map $L_{\bar{c}}: V_{\bar{c}} \rightarrow V_{\bar{c}}$ is defined by $L_{\bar{c}} X=-X^{\prime \prime}-R(X, \bar{c}) \bar{c}$. Let $\lambda\left(\bar{c}_{m s+r m_{0}}\right.$, $\left.f^{r}\right)$ and $\nu\left(\bar{c}_{m s+r m_{0}}, f^{r}\right)$ be the index and the nullity of the submanifold

$$
S O(2) \bar{c}_{m s+r m_{0}} \text { in } \Omega\left(M, f^{r}\right)
$$

respectively. We have

$$
\begin{gathered}
\lambda\left(\bar{c}_{m s+m_{0}}, f\right)=\sum_{\mu<0} \operatorname{dim}\left\{X \in V_{\bar{i}} ; L_{\bar{c}} X=\mu X, X\left(t+m s+m_{0}\right)=f_{*}(X(t))\right. \\
\text { for all } t \in \boldsymbol{R}\}, \\
\nu\left(\bar{c}_{m s+r m_{0}}, f^{r}\right)=\operatorname{dim}\left\{X \in V_{\bar{c}} ; L_{\bar{c}} X=0, X\left(t+m s+r m_{0}\right)=f_{*}^{r}(X(t))\right. \\
\text { for all } t \in \boldsymbol{R}\}
\end{gathered}
$$

(See Theorem 2.3 in [6, p. 45].)
Let us complexify $V_{\bar{c}}$ and write it as $V_{\bar{c}}$ again. We also extend f_{*}, g and $L_{\bar{c}}$ to \boldsymbol{C}-linear maps and write them as $f_{*}, g_{*}, L_{\bar{c}}$ again respectively. For a complex number $\omega \in S^{1} \subset \boldsymbol{C}$, a real number μ and a non zero integer m, let $S_{\bar{c}}\left[\mu, m, \omega g_{*}{ }^{m}\right]$ denote the vector space of complex vector fields Y in $V_{\bar{c}}$ satisfy. ing $L_{\bar{c}} Y=\mu Y$ and $Y(t+m)=\omega g_{*}{ }^{m}(Y(t))$.

Lemma 7. $S_{\bar{c}}\left[\mu, m, g{ }^{m}\right]=\underset{\omega^{m}=1}{\bigoplus} S_{\bar{c}}\left[\mu, 1, \omega g_{*}\right]$.
Proof. It is trivial that $S_{\bar{c}}\left[\mu, m, g_{*}{ }^{m}\right]{\underset{\omega}{ }{ }^{m}=1}_{\bigoplus}^{\oplus} S_{\bar{c}}\left[\mu, 1, \omega g_{*}\right]$. We assume that m is positive. We can prove the lemma analogously for negative intgers. For any $Y \in S_{\bar{c}}\left[\mu, m, g_{*}{ }^{m}\right]$ and ω with $\omega^{m}=1$, we set

$$
Y_{\omega}(t)=1 / m \sum_{l=0}^{m-1} \omega^{-l} g_{*}^{-l+1}(Y(t+l-1)) .
$$

Clearly, $L_{\bar{c}} Y_{\omega}=\mu Y_{\omega}$ and $Y=\sum_{\omega^{m}=1} \omega Y_{\omega}$. From the definition of Y_{ω},

$$
\begin{aligned}
Y_{\omega}(t+1) & =1 / m\left[\sum_{l=0}^{m-1} \omega^{-l} g_{*}^{-l+1}(Y(t+l))\right] \\
& =\omega / m\left[g_{*}\left(\sum_{l=0}^{m-1} \omega^{-l-1} g_{*}^{-l}(Y(t+l))\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \omega / m\left[g _ { * } \left(\sum_{l=1}^{m-1} \omega^{-l} g_{*}{ }^{-l+1}(Y(t+l-1))\right.\right. \\
& \left.\left.+\omega^{-m} g_{*}-m+1(Y(t+m-1))\right\}\right] \\
= & \omega g_{*}\left(Y_{\omega}(t)\right)
\end{aligned}
$$

Hence $Y_{\omega} \in S_{c}\left[\mu, 1, \omega g_{*}\right]$.
(q. e. d.)

Since $\quad f^{r}=g^{m s+r m_{0}}, S_{\bar{c}}\left[\mu, m s+r m_{0}, f_{*}^{r}\right]=\underset{\omega^{m s+r m_{0}}}{\bigoplus_{c}} S_{\bar{c}}\left[\mu, 1, \omega g_{*}\right]$.
Putting $\Lambda_{\bar{c}}(\omega)=\sum_{\mu<0} \operatorname{dim}_{c} S_{\bar{c}}\left[\mu, 1, \omega g_{*}\right]$ and $N_{\bar{c}}(\omega)=\operatorname{dim}_{c} S_{\bar{c}}\left[0,1, \omega g_{*}\right]$, we obtain

$$
\begin{align*}
& \lambda\left(\bar{c}_{m s+m_{0}}, f\right)=\sum_{\omega^{m s+m_{0}}=1} \Lambda_{\bar{c}}(\omega), \\
& \nu\left(\bar{c}_{m s+r m_{0}}, f^{r}\right)=\sum_{\omega^{m s}+r m_{0}=1} N_{\bar{c}}(\omega) . \tag{8}
\end{align*}
$$

It follows that $\lambda\left(\bar{c}_{m s+m_{0}}, f\right)$ and $\nu\left(\bar{c}_{m s+r m_{0}}, f^{r}\right)$ are completely determined by the nonnegative integer valued functions $\Lambda_{\bar{c}}(\cdot)$ and $N_{\bar{c}}(\cdot)$ on the unit circle respectively.

Let E denote the complexification of the orthogonal complement of $\dot{\bar{c}}(0)$ in the tangent space $M_{\bar{c}(0)}$ at $\bar{c}(0)$. Then so called Poincaré map P is defined in the following;

$$
P: E \oplus E \longrightarrow E \oplus E, \quad(u, v) \longmapsto\left(g_{*}^{-1}(Y(1)), g_{*}^{-1}\left(Y^{\prime}(1)\right)\right),
$$

where Y is the unique complex Jacobi field (i.e. $L_{\bar{c}} Y=0$) satisfying $Y(0)=u$ and $Y^{\prime}(0)=v$. Since $N_{\bar{c}}(z)=\operatorname{dim}_{c} \operatorname{ker}(P-z)$ and $\operatorname{dim}_{c}(E \oplus E)=2 n$, we obtain

Lemma 8. $\quad N_{\bar{c}}(z)=0$ except for at most $2 n$ points which will be called Poinc. aré pornts.

The next theorem is contained in Theorem 3.1 and 3.2 of M. Morse [6, p. 91].

Theorem 9. Let J be a bounded interval such that the end points are not in the engenvalues of $L_{\bar{c}}$ subject to the boundary condition $Y(t+1)=z g_{*}(Y(t))$. Then there is a neighborhood U of z in S^{1} such that the end points of J are not in the eigenvalues of $L_{\bar{c}}$ subject to $Y(t+1)=\omega g_{*}(Y(t))$ for $\omega \in U$ and

$$
\sum_{\mu \in J} \operatorname{dim}_{c} S_{\bar{c}}\left[\mu, 1, \omega g_{*}\right]=\sum_{\mu \in J} \operatorname{dim}_{c} S_{\bar{c}}\left[\mu, 1, z g_{*}\right] .
$$

It follows from Theorem 9 that

$$
\Lambda_{\bar{c}}(\cdot) \text { is locally constant except possibly at Poincaré points, }
$$

$$
\begin{equation*}
\text { and } \lim _{z \rightarrow 2_{0}} \Lambda_{\bar{c}}(z) \geqq \Lambda_{\bar{c}}\left(z_{0}\right) \text {. } \tag{9}
\end{equation*}
$$

By using Lemma 8, (8) and (9) we obtain the following two lemmas.
Lemma 10. Either $\lambda\left(\bar{c}_{m s+m_{0}}, f\right)=0$ for all m or there are positive numbers a and ε such that for any integers $m_{1} \geqq m_{2} \geqq 0$

$$
\lambda\left(\bar{c}_{m_{1} s+m_{0}}, f\right)-\lambda\left(\bar{c}_{m_{2} s+m_{0}}, f\right) \geqq\left(m_{1}-m_{2}\right) \varepsilon-a
$$

and such that for any negative integers $m_{1} \leqq m_{2}$

$$
\lambda\left(\bar{c}_{m_{1} s+m_{0}}, f\right)-\lambda\left(\bar{c}_{m_{2} s+m_{0}}, f\right) \geqq\left(m_{2}-m_{1}\right) \varepsilon-a
$$

The proof of Lemma 10 is analogous to that of Lemma 1 in [2].
Lemma 11. There exast positive integers k_{1}, \cdots, k_{q} and sequences $m_{\jmath}{ }^{2} \in \boldsymbol{Z}, \imath>0$, $\jmath=1, \cdots, q$, such that the numbers $m_{\jmath}{ }^{2} k_{\jmath}$ are mutually distinct, $\left\{m_{\jmath}{ }^{2} k_{j}\right\}=\left\{m s+m_{0}\right.$; $m \in \boldsymbol{Z}\}$ and

$$
\nu\left(\bar{c}_{m_{\jmath} \imath_{j}}, f\right)=\nu\left(\bar{c}_{k_{j}}, f^{r}\right) \text { where } r \cdot m_{\jmath}{ }^{2} \equiv 1 \bmod s .
$$

Outline of proof. We can prove analogously to Lemma 2 in [2] that there exist positive integers $\bar{k}_{1}, \cdots, \bar{k}_{l}$ and sequences $\bar{m}_{\jmath}{ }^{\imath} \in \boldsymbol{Z}, \imath>0, \jmath=1, \cdots, l$, such that the numbers $\bar{m}_{j}{ }^{2} \bar{k}$, are mutually distinct, $\left\{\bar{m}_{j}{ }^{\prime} \bar{k}_{j}\right\}=\boldsymbol{Z}-\{0\}$ and

$$
\sum_{\omega^{\bar{m}_{j}^{2} \overline{z_{j}}}=1} N_{\bar{c}}(\omega)=\sum_{\omega^{\bar{k}_{j}}=1} N_{\bar{c}}(\omega) .
$$

Choose some elements $k_{1}, \cdots k_{q}$ (resp. $m_{j}{ }^{i}$) from the set $\left\{\bar{k}_{1}, \cdots \bar{k}_{l}\right\}$ (resp. $\left\{\bar{m}_{j}{ }^{2}\right.$; $\imath>0, \jmath=1, \cdots, l\}$) to satisfy $\left\{m_{\jmath}{ }^{\imath} k_{j}\right\}=\left\{m s+m_{0} ; m \in \boldsymbol{Z}\right\}$. We can checkeasily by using (8) that $\nu\left(\bar{c}_{m_{j} \imath_{j}}, f\right)=\nu\left(\bar{c}_{k_{j}}, f^{r}\right)$ holds.
(q. e. d.)

Combining Theorem 6 and Lemma 11 we obtain
Corollary 12. Let c be a critical point in $\Omega(M, f)$ of type 3) and we assume that all the critical orbits $S O(2) \bar{c}_{m s+m_{0}}, m \in \boldsymbol{Z}$, are isolated in $\Omega(M, f)$. Then there exists some constant B such that $B_{k}{ }^{0}\left(\bar{c}_{m s+m_{0}}, f\right) \leqq B$ for all k and m. Furthermore there exists a number k_{0} such that $B_{k}{ }^{0}\left(\bar{c}_{m s+m_{0}}, f\right)=0$ for $k>k_{0}$ and all m.

Note that $\nu\left(\bar{c}_{m s+m_{0}}, f\right) \leqq 2 n$ for all m. Hence we can take the number k_{0} to be not greater than $2 n$.

Combining (7), Lemma 10 and Corollary 12 we obtain
Corollary 13. Under the hypotheses of Corollary 12, for the resulting constants B and $k_{0}, B_{k}\left(\bar{c}_{m s+m_{0}}, f\right)$ are unformly bounded by $2 B$. Moreover, given $k>k_{0}+1$, the number of orbits $S O(2) \bar{c}_{m s+m_{0}}$ such that $B_{k}\left(\bar{c}_{m s+m_{0}}, f\right) \neq 0$ is bounded by a constant C which does not depend on k.

The proof of the above corollary is the same as that of Corollary 2 in [2].
Next we will prove analogous corollaries to Corollary 12 and Corollary 13 for a critical point c of type 2). If we set $\bar{c}(t)=c\left(t / m_{0}\right)$, then \bar{c} is critical for E^{f}. The fundamental period of \bar{c} is 1 , and the orbits $S O(2) \bar{c}_{m}, m \in \boldsymbol{Z}-\{0\}$, are all the critical orbits in $\Omega(M, f)$ generated by c. Therefore we may assume
that the critical point \bar{c} is c, that is, $m_{0}=1$. Let V_{c} be a vector space of smooth vector fields along c which are orthogonal to c. A linear map $L_{c}: V_{c} \rightarrow V_{c}$ is defined by

$$
L_{c} X=-X^{\prime \prime}-R\left(X^{\prime}, \dot{c}\right) \dot{c} .
$$

Complexify V_{c} and write it as V_{c} again. We also extend f_{*} and L_{c} to \boldsymbol{C}-linear maps, and write them as f_{*}, L_{c} again respectively. For each non zero integer m, real number μ and $\omega \in S^{1} \subset \boldsymbol{C}$, let $S_{c}\left[\mu, m, \omega f_{*}\right]$ be the set of complex vector fields $X \in V_{c}$ satisfying $L_{c} X=\mu X$ and $X(t+m)=\omega f_{*}(X(t))$.

Lemma 14. The next equalities hold for any integer $r, m(\neq 0)$ and real μ.

$$
S_{c}\left[\mu, m, f_{*}^{r}\right]=\underset{\omega^{n}(\underset{c}{ }=1}{\oplus} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap S_{c}\left[\mu, m, f_{*}^{r}\right],
$$

$$
S_{c}\left[\mu, 1, \omega f_{*}\right] \cap S_{c}\left[\mu, m, f_{*}^{r}\right]=S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{m-r}-\omega^{-m}\right),
$$

where the linear map $f_{*}: V_{c} \rightarrow V_{c}$ is defined by $\left(f_{*} X\right)(t)=f_{*}(X(t))$.

$$
S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{m-r}-\alpha^{-1}\right)=\underset{z^{m-r=\alpha-1}}{\oplus} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right),
$$

where we set $\omega^{m}=\alpha$.
Proof. If $|m s|=1$, then $s=1$ and $m= \pm 1$. Since $S_{c}[\mu, 1, \imath d]=.S_{c}[\mu,-1, \imath d$.$] ,$ the first equality is trivial. If $|m s| \geqq 2$, for any $Y \in S_{c}\left[\mu, m, f_{*}{ }^{r}\right]$ and ω with $\omega^{m s}=1$, we set $Y_{\omega}(t)=1 /|m s| \sum_{q=0}^{|m s|-1} \omega^{-q} f_{*}^{-q+1}(Y(t+q-1))$. It is easy to check that $Y_{\omega} \in S_{c}\left[\mu, 1, \omega f_{*}\right] \cap S_{c}\left[\mu, m, f_{*}^{r}\right]$ and that $Y=\sum_{\omega^{n}=1} \omega Y_{\omega}$ (see Lemma 7). Thus the first equality holds since it is trivial that

$$
S_{c}\left[\mu, m, f_{*}^{r}\right] \supset \underset{\omega m s=1}{\oplus} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap S_{c}\left[\mu, m, f_{*}^{r}\right]
$$

We derive the second equality from a direct computation.
It is trivial that the third equality holds for $m-r=1$ and that

$$
S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{m-r}-\alpha^{-1}\right) \supset_{z^{m-r=\alpha^{-1}}} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right) .
$$

If $m-r \geqq 2$, for any $Y \in S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{m-r}-\alpha^{-1}\right)$ and z with $z^{m-r}=\alpha^{-1}$, we set

$$
Y_{z}=1 /(m-r) \sum_{l=1}^{m-r-1} z^{-l} f_{*}^{l-1}(Y) .
$$

We can check easily that $Y_{z} \in S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right)$ and $Y \underset{z^{m}-l=\alpha-1}{ } \sum_{z} z Y_{z}$. Hence the equality holds for $m-r \geqq 1$. If $m-r=0$.

$$
\begin{aligned}
S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{0}-\alpha^{-1}\right) & =S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{s}-\alpha^{-1}\right) \\
& =\underset{z s=\alpha^{-1}}{\bigoplus_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right)} \\
& =\underset{z^{0}=\alpha^{-1}}{ } S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right),
\end{aligned}
$$

because $z^{s}=1$ for any z with $\operatorname{ker}\left(f_{*}-z\right) \neq\{0\}$.
If $m-r<0$,

$$
\begin{aligned}
S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{m-r}-\alpha^{-1}\right) & =S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}^{r-m}-\alpha\right) \\
& =\underset{z^{r-m}=\alpha}{\oplus} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right) \\
& =\underset{z^{n-r}=\alpha-1}{\oplus} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right) .
\end{aligned}
$$

(q. e. d.)

It follows from the above lemma that

$$
\begin{aligned}
S_{c}\left[\mu, m, f_{*}^{r}\right] & =\underset{\omega^{s m=1}}{\oplus} \oplus_{z^{m-r=\omega^{-m}}}^{\oplus} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right) \\
& =\underset{\alpha^{s}=1}{\oplus} \bigoplus_{\omega^{m=\alpha}} \bigoplus_{z^{m-r}=\alpha^{-1}} S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right)
\end{aligned}
$$

Therefore we have

$$
\begin{gather*}
\lambda\left(c_{m}, f\right)=\sum_{\alpha s=1} \sum_{\omega^{m=\alpha}} \sum_{z^{m-1}=\alpha^{-1}} \Lambda_{c}^{z}(\omega), \tag{10}\\
\nu\left(c_{m}, f^{r}\right)=\sum_{\alpha=1} \sum_{\omega^{m=\alpha}=\alpha} \sum_{2^{m}-r_{=\alpha-1}} N_{c}^{z}(\omega),
\end{gather*}
$$

where we put

$$
\Lambda_{c}^{z}(\omega)=\sum_{\mu<0} \operatorname{dim}_{\boldsymbol{c}}\left\{S_{c}\left[\mu, 1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right)\right\}
$$

and

$$
N_{c}{ }^{z}(\omega)=\operatorname{dim}_{c}\left\{S_{c}\left[0,1, \omega f_{*}\right] \cap \operatorname{ker}\left(f_{*}-z\right)\right\}
$$

If follows that $\lambda\left(c_{m}, f\right)$ and $\nu\left(c_{m}, f^{r}\right)$ are completely determined by the nonnegative integer valued functions $\Lambda_{c}{ }^{z}(\cdot)$ and $N_{c}{ }^{z}(\cdot)$ on the unit circle. We obtain (see Lemma 8 and Theorem 9) the following lemma.

Lemma 15.

i) $N_{c}{ }^{2}(\omega)=0$ except for at most $2 n$ points which will be called Poincaré points with respect to z.
ii) $\Lambda_{c}{ }^{2}(\omega)$ is locally constant except possibly at Poincaré points with respect to z.
iii) $\lim _{\omega \rightarrow \omega_{0}} \Lambda_{c}{ }^{2}(\omega) \geqq \Lambda_{c}{ }^{2}\left(\omega_{0}\right)$.
iv) For any z with $\operatorname{ker}\left(f_{*}-z\right)=\{0\}, \Lambda_{c}{ }^{z} \equiv 0$ and $N_{c} \equiv 0$.

Let \boldsymbol{Z}^{+}and \boldsymbol{Z}^{-}denote the set of all positive integers and the set of all negative integers respectively. For each integer l, we put

$$
D_{l}^{+}=\left\{m \in \boldsymbol{Z}^{+} ; m-1 \equiv l \bmod s\right\}, D_{l}^{-}=\left\{m \in \boldsymbol{Z}^{-} ; m-1 \equiv l \bmod s\right\}
$$

and $D_{l}=D_{l}{ }^{+} \cup D_{l}^{-}$.
Lemma 16. For each $0 \leqq l<s$, either $\lambda\left(c_{m}, f\right)=0$ for all $m \in D_{l}$ or there exist positive numbers ε_{l} and a_{l} such that for any $m_{i} \in D_{l}{ }^{+}, i=1,2$ with $m_{1} \geqq m_{2}$,

$$
\lambda\left(c_{m_{1}}, f\right)-\lambda\left(c_{m_{2}}, f\right) \geqq\left(m_{1}-m_{2}\right) \varepsilon_{l}-a_{l}
$$

and such that for any $m_{i} \in D_{l}^{-}, i=1,2$ with $m_{2} \geqq m_{1}$,

$$
\lambda\left(c_{m_{1}}, f\right)-\lambda\left(c_{m_{2}}, f\right) \geqq\left(m_{2}-m_{1}\right) \varepsilon_{l}-a_{l} .
$$

Proof. It follows from (10) and Lemma 15 that for each $m \in D_{l}$,

$$
\lambda\left(c_{m}, f\right)=\sum_{\alpha=1} \sum_{\omega^{m}=\alpha} F_{\alpha}^{l}(\omega),
$$

where

$$
F_{\gamma}^{l}(\omega)=\sum_{z^{l}=\alpha^{-1}} \Lambda_{c}{ }^{2}(\omega) .
$$

If $F_{\alpha}{ }^{l} \not \equiv 0$, then there exist some positive numbers $\varepsilon_{l}{ }^{\alpha}$ and $a_{l}{ }^{\alpha}$ such that

$$
\sum_{\omega^{m_{1}=\alpha}} F_{\alpha}^{l}(\omega)-\sum_{\omega^{m_{2}=\alpha}} F_{\alpha}^{l}(\omega) \geqq\left(\left|m_{1}\right|-\left|m_{2}\right|\right) \varepsilon_{l}^{\alpha}-a_{l}^{\alpha}
$$

for any $m_{i} \in D_{l}, i=1,2$ with $\left|m_{1}\right| \geqq\left|m_{2}\right|$. We can prove the existence of such numbers $\varepsilon_{l}{ }^{\alpha}$ and $a_{l}{ }^{\alpha}$ analogously to Lemma 1 in [2]. Therefore if $\lambda\left(c_{m_{0}}, f\right) \neq 0$ for some $m_{0} \in D_{l}$, then $F_{\alpha}{ }^{l} \not \equiv 0$ for some α. Set $\varepsilon_{l}=\sum_{\alpha} \varepsilon_{l}{ }^{\alpha}$ and $a_{l}=\sum_{\alpha}{ }^{\prime} a_{l}{ }^{\alpha}$, where Σ_{α}^{\prime} denotes the sum of all $\alpha, \alpha^{s}=1$, satisfying $F_{\alpha}{ }^{l} \not \equiv 0$. For any $m_{i} \in D_{l}, i=1,2$ with $\left|m_{1}\right| \geqq\left|m_{2}\right|$

$$
\begin{align*}
\lambda\left(c_{m_{1}}, f\right)-\lambda\left(c_{m_{2}}, f\right) & =\sum_{\alpha}^{\prime}\left(\sum_{\omega^{m_{1}=\alpha}} F_{\alpha}^{l}(\omega)-\sum_{\omega^{m_{2}=\alpha}} F_{\gamma}^{l}(\omega)\right) \\
& =\sum_{\alpha}^{\prime}\left[\left(\left|m_{1}\right|-\left|m_{2}\right|\right) \varepsilon_{l}{ }^{\alpha}-a_{l}^{\alpha}\right] \\
& =\left(\left|m_{1}\right|-\left|m_{2}\right|\right) \varepsilon_{l}-a_{l} . \tag{q.e.d.}
\end{align*}
$$

Lemma 17. For each $0 \leqq l<s$, there exist positive integers k_{1}, \cdots, k_{q} and sequ. ences $m_{j}{ }^{2}, j=1, \cdots, q, i>0$ such that the numbers $m_{\jmath}{ }^{2} k$, are mutually distinct, $\left\{m_{\jmath}{ }^{2} k_{j}\right\}=D_{l}$, and for $m_{\jmath}{ }^{2}$ with $\left(m_{\jmath}{ }^{2}, s\right)=1$

$$
\nu\left(c_{m_{j} i_{j}}, f\right)=\nu\left(c_{k_{j}}, f^{r}\right) \quad \text { where } r \cdot m_{\jmath}{ }^{2} \equiv 1 \bmod s,
$$

and for $m_{\jmath}{ }^{2}$ with $\left(m_{\jmath}{ }^{i}, s\right) \neq 1$,

$$
\nu\left(c_{m_{j} \imath_{j}}, f\right)=\nu^{T}\left(c_{m_{j} \imath_{j}}\right)=\nu^{T}\left(c_{k_{j}}\right) .
$$

Here $\nu^{T}(\bar{c})$ denotes the nullity of the critical submanifold $S O(2) \bar{c}$ in $\Omega(\operatorname{Fix}(f)$,
$i d$.$) where \operatorname{Fix}(f)$ is the set of the fixed points of f. In general for any isometry h, Fix (h) is a totally geodesic submanifold of M.

Proof. It follows from (10) and Lemma 15 that

$$
\nu\left(c_{m}, f\right)=\sum_{\alpha=1} \sum_{\omega^{m}=\alpha}\left(\sum_{z=\alpha-1} N_{c}{ }^{2}(\omega)\right) \quad \text { for any } m \in D_{l} .
$$

For each $\alpha=\exp (2 \pi \tau t / s)(t \not \equiv 0 \bmod s)$, we set

$$
Q_{l}^{\alpha}=\left\{q \in \boldsymbol{Z}^{+} ;{ }_{z} \sum_{=\alpha^{-1}} N_{c}{ }^{2}(\exp (2 \pi i p / s q)) \neq 0,0<^{\exists} p \leqq s q,(p, s q)=1\right\} .
$$

And put

$$
Q_{l}{ }^{1}=\left\{q \in \boldsymbol{Z}^{+} ; \sum_{z l=1} N_{c}{ }^{2}(\exp (2 \pi i p / q))=0,0<^{3} p \leqq q,(p, q)=1\right\}
$$

and $Q_{l}=\bigcup_{\alpha s=1} Q_{l}{ }^{\alpha}$. Note that if $Q_{l}=\phi$, then $\nu\left(c_{m}, f\right)=0$ for any $m \in D_{l}$. In case $Q=\phi$, it is sufficient to prove that for any m with $(m, s)=1$,

$$
\nu\left(c_{m}, f\right) \geqq \nu\left(c, f^{r}\right), \quad \text { where } r \cdot m \equiv 1 \bmod s,
$$

and for any non zero m,

$$
\nu\left(c_{m}, f\right) \geqq \nu^{T}\left(c_{m}\right) \geqq \nu^{T}(c) .
$$

At first we consider the case where (m, s)=1. If we set $\omega=\alpha^{r}$ for each α with $\alpha^{s}=1$, then $\omega^{m}=\alpha$. Hence,

$$
\begin{aligned}
\nu\left(c_{m}, f\right) & \geqq \sum_{\alpha_{s=1}} \sum_{z_{l=\alpha^{-1}}} N_{c}^{z}\left(\alpha^{r}\right) \\
& =\sum_{\alpha s=1} \sum_{z} \sum_{r=a-r} N_{c}^{z}\left(\alpha^{r}\right) \\
& \left.=\sum_{\beta^{s}=1} \sum_{z^{l} r_{=\beta^{-1}}} N_{c}^{z}(\beta) \quad \text { (Here we set } \beta=\alpha^{r} .\right) \\
& =\sum_{\beta s=1} \sum_{z^{1}-r=\beta^{-1}} N_{c}^{z}(\beta) \\
& =\nu\left(c, f^{r}\right)(\text { by }(10)) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\nu\left(c_{m}, f\right) & =\sum_{\alpha s=1} \sum_{\omega^{m}=\alpha} \sum_{l^{l}=\alpha-1} N_{c}{ }^{2}(\omega) \geqq \sum_{\omega^{m}=1} \sum_{z l=1} N_{c}{ }^{2}(\omega) \\
& \geqq \sum_{\omega^{m}=1} N_{c}^{1}(\omega) \geqq N_{c}^{1}(1) .
\end{aligned}
$$

It follows from (10) that

$$
\nu^{T}\left(c_{m}\right)=\sum_{\omega^{m}=1} N_{c}{ }^{1}(\omega) \quad \text { and } \nu^{T}(c)=N_{c}{ }^{1}(1) .
$$

Combining the above inequality and the last equality, we obtain that $\nu\left(c_{m}, f\right) \geqq$ $\nu^{T}\left(c_{m}\right) \geqq \nu^{T}(c)$ for any non zero m.

In case $Q_{l} \neq \phi$, for each subset $A \subset Q_{l}$ let $k(A)$ denote the least common multiple of all elements in A. Choose distinct numbers $\bar{k}_{1}, \cdots, \bar{k}_{u}$ such that $\left\{\bar{k}_{1}, \cdots, \bar{k}_{u}\right\}=\{1\} \cup\left\{k(A) ; A \subset Q_{l}\right\}$. Keeping $j \in\{1, \cdots, u\}$ fixed, we select from the sequence $m \bar{k}_{j} \in \boldsymbol{Z}-\{0\}$, the greatest subsequence $\bar{m}_{,}{ }^{i} \bar{k}_{\text {, }}$, satisfying $q \nmid \bar{m}_{j}{ }^{i} \bar{k}_{j}$, whenever $q \in Q_{l}$ and $q \nmid \bar{k}_{j}$. Then the numbers $\bar{m}_{j}{ }^{i} \bar{k}_{3}$ are mutually distinct, $\left\{\bar{m}_{j}{ }^{2}\right.$; $i>0\}$ contains 1 for each $j \in\{1, \cdots, u\}$ and $\left\{\bar{m}_{j}{ }^{i} \bar{k}_{j} ; i>0, j=1, \cdots u\right\}=\boldsymbol{Z}-\{0\}$. Choose some elements k_{1}, \cdots, k_{q} (resp. $m_{\jmath}{ }^{2}, i>0, j=1, \cdots, q$) from the set $\left\{\bar{k}_{1}, \cdots, \bar{k}_{u}\right\}$ (resp. $\left\{\bar{m}_{j}{ }^{i} ; i>0, j=1, \cdots, u\right\}$) to satisfy $\left\{m_{\jmath}{ }^{i} k_{j} ; i>0, j=1, \cdots, q\right\}=D_{l}$. If $\sum_{\omega^{m} j^{k_{k}},} \sum_{j=\alpha}$ ${ }_{z^{l}=\alpha^{-1}} N_{c}{ }^{2}(\omega) \neq 0$ for some $\alpha=\exp (2 \pi i t / s)(t \not \equiv 0 \bmod s)$, there exist some positive integers $q \in Q_{l}{ }^{\alpha}$ and p satisfying ($\left.\exp (2 \pi i p / s q)\right)^{m_{j}{ }^{2} k_{j}}=\exp (2 \pi i t / s)$. Since $(p / s q)$ $m_{\jmath}{ }^{i} k_{j} \equiv t / s \bmod 1,(p / q) \cdot m_{j}{ }^{i} k_{j} \equiv t \bmod s$. The integer q devides k_{j} because $q \mid m_{j}{ }^{i} k_{j}$ and $q \in Q_{l}$. Since $\left(\left(p k_{j} / q\right) \cdot m_{\jmath}{ }^{2}, s\right)=1,\left(m_{\jmath}{ }^{2}, s\right)=1$. Therefore if $\left(m_{\jmath}{ }^{i}, s\right) \neq 1$, then

$$
\nu\left(c_{m_{j} l_{j}}, f\right)=\sum_{\omega^{m_{j} j^{l} j_{j=1}}} \sum_{z=1} N_{c}^{z}(\omega) .
$$

If $\omega^{m_{j}{ }^{\imath} k_{j}}=1$ and $\sum_{z^{l}=1} N_{c}{ }^{2}(\omega) \neq 0$, then $\omega^{k_{j}}=1$. Thus

$$
\nu\left(c_{m_{j} \imath_{j}}, f\right)=\sum_{\omega^{k} \jmath=1} \sum_{z l=1} N_{c}^{z}(\omega) .
$$

On the other hand, if we note that $N_{c}{ }^{2} \equiv 0$ for any z with $z^{s} \neq 1$, then

$$
\sum_{z l=1} N_{c}^{z}(\omega)=N_{c}{ }^{1}(\omega)
$$

for each ω since $l \equiv-1 \bmod s$. We obtain

$$
\nu\left(c_{m}, \imath_{j}, f\right)=\sum_{\omega^{m} j^{i_{j}}=1} N_{c}{ }^{1}(\omega)=\sum_{\omega^{k_{j}}=1} N_{c}{ }^{1}(\omega) .
$$

By using (10)

$$
\nu^{T}\left(c_{m_{j} k_{j}}, f\right)={\underset{\omega^{m} \jmath^{\nu_{j}}=1}{ }} N_{c}{ }^{1}(\omega) \text { and } \nu^{T}\left(c_{k_{j}}\right)=\sum_{\omega^{k} \neq 1} N_{c}{ }^{1}(\omega) .
$$

If $\left(m_{\jmath}{ }^{i}, s\right)=1$, there exists some integer r with $r \cdot m_{\jmath}{ }^{i} \equiv 1 \bmod s$. Since

$$
\left\{\omega ; \omega^{m j^{2} k_{j}}=\alpha, \sum_{z_{l=\alpha-1}} N_{c}^{z}(\omega) \neq 0\right\}=\left\{\omega ; \omega^{k_{j}}=\alpha^{r}, \sum_{z_{l=\alpha-1}} N_{c}^{z}(\omega) \neq 0\right\}
$$

for each α,

$$
\nu\left(c_{m} \imath_{k_{j}}, f\right)=\sum_{a=1} \sum_{\omega^{k} j=\alpha r} \sum_{z=\alpha-1} N_{c}^{z}(\omega) .
$$

On the other hand, if we note that $k_{\jmath}-r \equiv l r \bmod s$ since $m_{\jmath}{ }^{2} k_{\jmath}-1 \equiv l \bmod s$, then

$$
\begin{aligned}
& \nu\left(c_{k_{j}}, f^{r}\right)=\sum_{\beta^{s=1}} \sum_{\omega^{k}{ }^{k}=\beta^{2}} \sum_{l^{2}} \sum_{\beta_{-1}} N_{c}{ }^{z}(\omega) \\
& =\sum_{\alpha^{s}=1} \sum_{\omega^{k} j=\alpha r} \sum_{z} \sum_{r=\alpha-r} N_{c}^{z}(\omega) \text { (Here we set } \beta^{m j^{2}}=\alpha \text {.) } \\
& =\sum_{\alpha^{s}=1} \sum_{\omega^{k_{j}}=\alpha r} \sum_{z=\alpha-1} N_{c}^{z}(\omega)=\nu\left(c_{m_{j}{ }^{2} k_{j}}, f\right),
\end{aligned}
$$

since $\left\{z ; z^{l r}=\alpha^{-r}, z^{s}=1\right\}=\left\{z ; z=\alpha^{-1}, z^{s}=1\right\}$. (q. e. d.)

We assume that the critical orbit $S O(2) c_{m_{j}{ }^{2},}$ is isolated in $\Omega(M, f)$. If ($\left.m_{\jmath}{ }^{2}, s\right)=1$, it follows from Theorem 6 that

$$
\mathscr{H}^{0}\left(E^{f}{ }_{c_{j} k^{2} k_{j}}, c_{m_{j} k_{j}}\right)=\mathscr{H}^{0}\left(E_{c_{k}{ }^{\prime}}{ }^{f r}, c_{k_{j}}\right) .
$$

If $\left(m_{j}{ }^{2}, s\right) \neq 1$, then it holds that

$$
\mathscr{H}^{0}\left(E^{f}{ }_{c_{j} \imath^{2} k_{j}}, c_{m_{j} k_{j}}\right)=\mathscr{H}^{0}\left(c_{m_{j} k_{j}}\right)^{T}
$$

(See the proof of Lemma 3.6 in [5].) Furthermore it follows from Theorem 6 that

$$
\mathscr{H}^{0}\left(c_{m_{j} \imath_{j}}\right)^{T}=\mathscr{H}^{0}\left(c_{k_{j}}\right)^{T}
$$

Here $\mathscr{G}^{0}\left(c_{m}\right)^{T}$ denotes the characteristic invariant of c_{m} in the space Ω (Fix (f), id.).

Corollary 18. Let c be a critical point of fundamental period 1 . We as. sume that all the critical orbits $S O(2) c_{m}, m \in \boldsymbol{Z}-\{0\}$, are isolated in $\Omega(M, f)$. Then there exists some constant B such that $B_{k}{ }^{\circ}\left(c_{m}, f\right) \leqq B$ for all $m \in \boldsymbol{Z}-\{0\}$ and k. Furthermore there exists k_{0} such that $B_{k}{ }^{\circ}\left(c_{m}, f\right)=0$ for $k>k_{0}$ and all $m(\neq 0)$.

Combining (7) and Lemma 16 we have
Corollary 19. Under the hypotheses of Corollary 18, for the resulting con. stants B and $k_{0}, B_{k}\left(c_{m}, f\right)$ are uniformly bounded by $2 B$. Moreover, given $k>$ $k_{0}+1$, the number of orbits $S O(2) c_{m}$ such that $B_{k}\left(c_{m}, f\right) \neq 0$ is bounded by a constant C which does not depend on k.

The proof of the above corollary is analogous to that of Corollary 2 in [2].

§3. Proof of the main theorem

Let M be a compact simply connected Riemannian manifold. It is known that for any isometry h on M the inclusion of $\Omega(M, h)$ into the space of all continuous maps $\sigma: I \rightarrow M$ satisfying $h(\sigma(0))=\sigma(1)$ with the compact open topology is a homotopy equivalence [3]. It is also known that the Betti numbers

$$
b_{k}(\Omega(M, h))=\operatorname{dim} H_{k}(\Omega(M, h))
$$

are finite, when M is simply connected (see [7]).
Theorem 20. (Main theorem) Let f be an isometry on a simply connected
compact Riemannian manıfold M satisfying $f^{s}=i d$. for some prime integer s. If the sequence $b_{k}(\Omega(M, f))$ is not bounded, then there exist infinitely many geometrically distinct invariant closed geodesics under the isometry f on M.

Proof. If there are only finitely many invariant closed geodesics under f. then we can find some critical points c^{2} for $E^{f_{i}}\left(1 \leqq i \leqq r, n_{i} \in \boldsymbol{Z}^{+}\right)$such that any non constant critical point in $\Omega(M, f)$ lies on some orbit $S O(2) c^{2}{ }_{m}, m \in \boldsymbol{Z}$. It follows from the assumption that all the critical orbits $S O(2) c^{i}{ }_{m}$ in $\Omega(M, f)$ are isolated. Choose $B^{2}, k_{0}{ }^{2}$ and C^{i} for the critical point c^{2} according to corollaries 12 and 13 or corollaries 18 and 19 , and set $\hat{B}=\max \left\{B^{2} ; 1 \leqq i \leqq r\right\}, \hat{k}_{0}=\max \left\{k_{0}{ }^{2}\right.$; $1 \leqq i \leqq r\}$, and $\hat{C}=\sum_{i=1}^{r} C^{i}$. Now for any $k>\hat{k}^{0}+1$ the constant \hat{C} is an upper bound for the number of orbits $S O(2) c^{2}{ }_{m} \in \Omega(M, f), 1 \leqq i \leqq r$, with $B_{k}\left(c^{2}{ }_{m}, f\right) \neq 0$. Hence it follows from the Morse inequalities (3) that we can choose some regular value b satisfying $b_{k}\left(\Omega^{d}(M, f), \Omega^{b}(M, f)\right)=0$ for any fixed $k>\hat{k}_{0}+1$ and any regular value $d \geqq b$. Therefore $b_{k}(\Omega(M, f))=b_{k}\left(\Omega^{b}(M, f)\right)$ for $k>\hat{k}_{0}+1$. On the other hand, it follows from (3) that for $k>\hat{k}_{0}+1$ and all regular value $0<a<b$,

$$
b_{k}\left(\Omega^{b}(M, f), \Omega^{a}(M, f)\right) \leqq 2 \hat{C} \hat{B}
$$

If we choose $0<a<\min \left\{E^{f n_{i}}\left(c^{i}\right) ; 1 \leqq \imath \leqq r\right\}$, then $\operatorname{Fix}(f)$ is a strong deformation retract of $\Omega^{a}(M, f)$ (see [3]). Hence

$$
b_{k}\left(\Omega^{b}(M, f), \Omega^{a}(M, f)\right)=b_{k}\left(\Omega^{b}(M, f), \operatorname{Fix}(f)\right)
$$

holds from the exact sequence of homology. In case $\operatorname{Fix}(f)=\phi$, the last equality is trivial. Since Fix (f) is a finite dimensional manifold, we derive by using the exact sequence of homology

$$
b_{k}\left(\Omega^{b}(M, f), \operatorname{Fix}(f)\right)=b_{k}\left(\Omega^{b}(M, f)\right) \quad \text { for almost all } k
$$

Thus

$$
\begin{aligned}
b_{k}(\Omega(M, f)) & =b_{k}\left(\Omega^{b}(M, f)\right) \\
& =b_{k}\left(\Omega^{b}(M, f), \operatorname{Fix}(f)\right) \\
& =b_{k}\left(\Omega^{b}(M, f), \Omega^{a}(M, f)\right) \leqq 2 \hat{C} \hat{B} \quad \text { for almost all } k .
\end{aligned}
$$

This contradicts the hypothesis of the theorem.
Finally the author wishes to thank Prof. T. Otsuki for his valuable sug. gestions.

References

[1] D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology 8 (1969), 361-369.
[2] D. Gromoll and W. Meyer, Periodic geodesics on compact Riemannian mani-
folds, J. Differential Geometry 3 (1969), 493-510.
[3] K. Grove, Condition (C) for the energy integral on certain path spaces and applications to the theory of geodesics, J. Differential Geometry 8 (1973), 207-223.
[4] K. Grove, Isometry-invariant geodesics, Topology 13 (1974), 281-292.
[5] K. Grove, Involution-invariant geodesics, Math. Scand. 36 (1975), 97-108.
[6_{t}^{*}] M. Morse, The calculus of variations in the large, Amer. Math. Soc. Colloq. Publ. vol. 18 (1934).
[7] J. P. Serre, Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.

Department of Mathematics
Tokyo Institute of Technology

