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ON INVARIANT CLOSED GEODESICS

UNDER ISOMETRIES

BY MINORU TANAKA

§0. Introduction

It is an interesting problem to estimate the number of distinct closed
geodesies on a compact Riemannian manifold. In [2] Gromoll and Meyer proved
the existence of infinitely many geometrically distinct closed geodesies on a
compact Riemannian manifold satisfying a certain topological condition. Recently
Grove [5] extended their result by means of invariant closed geodesies under
involutive isometries. In this paper we will prove a more general theorem than
their results. Let M be a connected Riemannian manifold and h an isometry
on the manifold M. A geodesic γ: R-^M is called an invariant geodesic under
h if there exists some nonnegative constant θ such that h(γ(f))=γ(t+θ) for all
t^R. Two such geodesies γlt γ2 are said to be geometrically distinct if γ^(R)Φ
γ2(R). Let C°(M, h) be the topological space of all continuous curves σ: [0, 1]
—»M satisfying Λ(<τ(0))=<τ(l) with the compact open topology. Now we will
state our main theorem.

MAIN THEOREM. Let M be a compact simply connected Riemannian manifold
and f an isometry satisfying fs=id. for some prime integer s. Then there exist
infinitely many geometrically distinct invariant closed geodesies under f if the
sequence of the Betti numbers for the space C°(M, /) is not bounded.

Note. If s=l, i.e., f=id., (resp. s—2) in our main theorem then we obtain
the result of Gromoll and Meyer (resp. Grove).

§1. Preliminaries

Let (M, <, » be an n+l (^2) dimensional compact Riemannian manifold,
and h an isometry on the manifold M. A continuous curve γ: [0, 1]-»M will

/»!

be called an //^curve when it is absolutely continuous and <f, γydt<oof where
* 0

γ denotes the velocity vector of γ. For each //^-curve γ, a continuous vector
field X along the curve γ will be called an /^-vector field along γ when it is

r1

absolutely continuous and <X', X'ydt<oo, where X' denotes the covariant de-
J o
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rivative of X along γ. Let Ω(M, h) be the set of //^curves σ from the unit
interval I into M satisfying Λ(σ(0))=σ(l). For each σ^Ω(Mf h\ let TσΩ(M, h)
be the set of //^vector fields X along the curve σ satisfying h*(X(ϋ))=X(\),
where /ι* denotes the differential of the map h. The inner product on TσΩ(M, h)
is defined by

(1) «Z, F»-f«Z, Yy+(X', Y'»dt for X,

By this inner product TσΩ(M, h) becomes a Hubert space. Ω(M, /ι) has a struc-
ture of Riemannian Hubert manifold [3]. The model spaces of Ω(M, K) are
given by {T0Ω(M, h) σ^Ω(M, h)} and the Riemannian structure is given by
(1). For each σ^Ω(M, h) we can regard the model space TaΩ(M, h) as the
tangent space of Ω(M, h) at σ. On Ω(M, h) we have the energy function Eh :
Ω(M, h}->R defined by

Eh(σ)=l/2(\ό, σydt for σ^Ω(M, h} .
J Q

The following are well known facts.

(a) Eh : Ω(M, h)^R is a smooth function and satisfies condition (C) of Palais
and Smale (see [3]).

(b) σ^Ω(M, h) is a critical point for Eh if and only if σ is a geodesic on M
satisfying h*σ(0)=σ(ϊ) (see [3]). Particularly σ^Ω(M, id.) is a critical point
for Eld : Ω(M, id.)-*R if and only if σ is a closed geodesic in M.

(c) The Hessian Hc of Eh at a critical point c is given by

He(X, Y)=«X', Y'>-<R(X, c\ cY»dt,
Jo

where R denotes the curvature tensor of M.

For each σ^Ω(M, h} we always assume that σ is naturally defined on R}

i.e.,

(2) σ(0=Acί3(σ(ί-[ί])) fortϊΞR,

where [ί] denotes the greatest integer ^ί.
Let g be an isometry on M such that gs=ιd. for some positive integer s,

and S0(2) the parameter circle [0, s]/{0, s}. We may regard S0(2) as an opera-
tion on Ω(M, g) as follows

SO(2)xΩ(M,g)—+Ω(M,g),

(a, σ) i - > a(σ\ where a(σ)(f)=σ(t+ά) .

Note that σ(t+s)=σ(f) for all t^R and σ^Ω(M, g). This action is continuous
and for each a^SO(2), a : Ω(M, g)-+Ω(M, g) is an isometry [4]. A critical
point c for Eg in Ω(M, g) lies always on a critical submanifold of Ω(M, g\
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S0(2)c when c is non constant, i.e., Eg(c)Φ§. Now we shall construct a tubular
neighborhood 3) of S0(2)c. We can take for S) the diffeomorphic image of a
sufficiently small tubular neighborhood of the zero section in the normal bundle
37 of S0(2}c by the induced map from the exponential map exp of M, i.e., the
map exp : 32— »β(M, g) with F ->expoF is a local diffeomorphism along the zero
section of 32. So the normal space 22C over c is the tangent space of the fiber
2)c at c and α(^)c)=^tf(c) for αeSO(2). Let Ec

g be the restriction of the energy
E* to 3)c. For the Hessian Hc of £/ at c we obtain immediately Hc=Hc\yic^me.

The next lemma is essentially proved by Gromoll and Meyer [2].

LEMMA 1. Let c<^Ω(M, g) be a non constant critical point. Then the operator
Ac : TCΩ(M, g)-^TcΩ(M, g) defined by

<ACX, Y>=HC(X, Y)

admits a decomposition Ac=ιd-\-k with a compact operator k. Clearly the cor-
responding operator Άc for Hc is also of the form Ac—ιά-\-k, where, k is compact.

In general let j be a smooth (C°°) function defined on some open neighbor-
hood of the origin in a Hubert space (H, <, » such that the origin 0 is an
isolated critical point of j, and y(0)=0. Let d2j0 be the Hessian for j at the
origin, and we assume that the operator A: H-+H defined by {Ax, yy=d2j0(x, y)
admits a decomposition A=ιd+K, where K is a compact operator. We put
ΛΓ=ker A and E=N^, the orthogonal complement in //, so that H=E®N. The
next "splitting lemma" is due to Gromoll and Meyer [1].

LEMMA 2. (Splitting lemma) Let j satisfy the assumptions as above. Then
there exist an origin preserving diffeomorphism Φ of some neighborhood of 0 in
H into H and an origin preserving smooth map h defined in some neighborhood
of 0 in N into E such that joφ(χ, y)=<P*, />*>-<(/-/>)*, (I-P)x>+j(h(y\ y)
with an orthogonal projection P : E—*E.

COROLLARY 3. The function j satisfies condition (C) of Palais and Smale in
some neighborhood of the origin.

Proof. Let {σn} be any sequence such that the gradient vector of j at σn,
V ]0n, tends to zero as n— »oo. We set (xn, yn)—Φ~\^n)' If the points σn are in
a sufficiently small neighborhood of the origin, the points yn are in a bounded
set. Since N is a finite dimensional linear subspace, {yn} has a convergent
subsequence. On the other hand, by the splitting lemma

where PE denotes the orthogonal projection to E in H. Hence

where || || denotes the norm induced by the inner product <, >. So if Fjσn-+0,
then xn tends to zero. Therefore the sequence {σn} has a convergent subsequ-
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ence. (q. e. d.)
Using Lemma 1 and Corollary 3, we have

PROPOSITION 4. // c is an isolated critical point of Ec

g and £)c is sufficiently
small, then condition (C) holds for Ec

g.

Now we will define a local homological invariant M(Eg, S0(2)c) of the energy
Eg at the isolated critical orbit S0(2)c by using the construction and the nota-
tion of [1]. Choose a sufficiently small tubular neighborhood 3) such that Ec

g

satisfies condition (C) and such that c is an isolated critical point of Ec

g (see
p. 502 in [2]). Thus we can define a local homological invariant of Ec

g at c;

where Wc and Wc~ are admissible regions for the function Ec

g on the fiber 3)c

at c (see [1]). For convenience we use singular homology with a field of
characteristic zero. We define a local homological invariant M(E8, S0(2)c) of
the energy Eg at the isolated critical orbit SO(2)c by

JC(E*,SO(2)c)=H*(W, W~) where W=SO(2)WC and W~=SO(2}WC- .

It does not depend on the choice of the 3) and admissible regions Wc, Wc~.
The next lemma is proved by Gromoll and Meyer [2].

LEMMA 5. Let b be the only critical value of the energy Eg : Ω(M, g)-*R in
[_b — ε, b + ε] for some ε>0. Assume that the critical set in (EgYl(b) consists of
finitely many critical orbits 80(2) c1, — , S0(2)cr. Then

H*(Ωb+ε(M, g\ Ωb-*(M, g}}=Λ(Eg, 80(2)0*) ,
1=1

where Ωb±ε(M, ^)=(£*)"1CO, 6±e] .

Let a<b be regular values of the energy E8 such that the critical orbits
in (E§Yl[_a, b~] consist of finitely many critical orbits SO(2)c\ •••, SO(2)cr. Then
we have the Morse inequalities from Lemma 5;

(3) bk(Ω\M, g\ Ωa(M, g))^± Bk(c\ g) ,

where bk(Ω\M, g\ Ω\M, ^))=dim Hk(Ω\ Ωa)

and
Bk(c\ g)=dimJCk(E§, S0(2)cl) .

If we define a map π of (50(2) xWc, SO(2)xWc~) onto (W, W) by (α, e)^
a(e), then the map π is a covering map. Put Γ= {αeSO(2); a(c)=c}, which is
called the isotropy group at c. We can regard Γ as covering transformations
on (SO(2)XWC, SO(2)xWc~) by (a, e)^(aβ'\ β(e)) for each β<=Γ. Since

(W, W-)=(SO(2)xWe, SO(2)xWc-)/Γ,
we have
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(4) H*(W, W~)(ZH*(SO(2)xWc, S0(2)x HV) .

By the kύnneth formula

(5) JC(E', SO(2)c)c:H*(SO(2))®Jt(Ee

g, c) .

Let λ be the index of c in Ω(M, g). Using the shifting theorem [1]

where M* denotes the characteristic invariant.
The last equality and (5) give

(6) JCk(E , SO(2)c)C^*_/(£/, c)0ΛΓV;ι-ι(£Λ c) .

Hence

(7) Bk(c, g)£Bk-f(c, g)+B\.^(c9 g) ,

where Bh\c, g)=dimJCk\Ec*, c).

§2. Estimations of the indexes and nullities of all the critical orbits

For each σ^Ω(M, g} and non zero integer m, we define a curve

σm^Ω(M, gm) by σn(f)=σ(mf) .

Note that each element in Ω(M, g) is assumed to be a map from R into M by
(2). Then we can define the interation map m : Ω(M, g)-^>Ω(M, gm) by σ*-+σm

for each non zero integer m. The next theorem is important for us. It is
essentially proved by Gromoll and Meyer [2].

THEOREM 6. Let S0(2)c be a non constant critical orbit in Ω(M, g) such that
SO(2}cm is an isolated critical orbit in Ω(M, gm) and v(c, g)=v(cm, gm) for some
non zero integer m. Then JCk\Ee

g, c)=4C k\ECrfl

gm, cm) for all all k. Here v(c, g)
(resp. v(cm, g™1)) denotes the nullity of the critical submanifold S0(2)c (resp. S0(2)
cj in Ω(M, g) (resp. Ω(M, gm».

Let / be an isometry on M with an order s, and we assume that s is prime.
Now we will study the indexes and nullities of all the critical orbits in Ω(M, /)
generated by the iteration of a critical point. Let σ be a non constant critical
point. Since f(σ(ί))=σ(t+ϊ) and fs=ιd, then σ(t+s)=σ(ί), that is, c is a closed
geodesic with the fundamental period s/m, where m is some positive integer.
For a critical point γ^Ω(M,f) there are the following possibilities.

1) ΐ(t)=P for all fe[0, 1] where the point p is a fixed point of /.
2) The fundamental period of a critical point is l/m0 for some positive in-

teger mQ.
3) The fundamental period of a critical point is s/m0 for some positive

integer m0 with (m0, s)=l.
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A critical point of type 1) is constant. The other critical points are non
constant. At first we will study a critical point c of type 3). Since m0 and s
are relatively prime, there exist some integers nQ and k0 satisfying m0n0=l+sk0,
hence n0=l/mQ+(s/m0)k0. If we set c(f)=c(t/mQ) for fe[0, 1] and g=fn°, then
c is a critical point for Eg and the fundamental period of c is s. Clearly for
each integer m and r with ms+rm^O, cms+rmo is a critical point for Efr. The
critical orbits SO(2)cms+mQ, m<=Z, are all the orbits in Ω(M, /) generated by the
closed geodesic c. We may assume I^m0<s without loss of generality.

Let V'c be the vector space of smooth vector fields along c orthogonal to

c. A linear map L e: V-C->V-C is defined by L-c X= — X"~ R(X, c}c. Let λ(cms+rmQ,
fr) and v(cms+rπlo, /

r) be the index and the nullity of the submanifold

S0(2)cmt+rmo in

respectively. We have

Λ(cms+mo, /)=Σ dim{ZeΞ y:; L;Z=
^<o

for all

K'm.+r»o> /r)-dim {Ze ΪA L-c X=0, X(t+ms+rm0)=f*r(X(t»

for all

(See Theorem 2.3 in [6, p. 45].)

Let us complexify V-G and write it as V~c again. We also extend /*, g and
LC to C-linear maps and write them as /*, g*, L-G again respectively. For a
complex number ωeStC, a real number μ and a non zero integer m, let
Sa [μ, m, ωg*m] denote the vector space of complex vector fields Y in V-c satisfy-
ing L-cY=μY and Y(t+m)=ωg*n(Y(t)).

LEMMA 7. S3 [μ, m, ̂ m]= φ 56- [μ, 1, ω ]̂.
ωm=l

Proof. It is trivial that S~c[μ, m, ̂ *m]I3 Θ S-c[μ, 1, ω ]̂. We assume that

m is positive. We can prove the lemma analogously for negative intgers. For
any FeScCμ, m, g*™] and ω with ωm— 1, we set

TO-l

Kβ(ί)=l/m Σ α>-^*-i+1(F(ί+/-l)) .
2=sO

Clearly, Lt- Fω=μFω and F— ΣωFω. From the definition of Yω,
ωm=l

m-1

Ya(t+ϊ)=l/mΐΣ ω-lg*-l
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= ωg*(Yω(t)}.

Hence Yω^S-c [_μ, 1, ωg*]. (q. e. d.)

Since f=g™+™°t Sa [>, ms+rm0, /V]= Θ S; [μ, 1, ωg^ .
(0ms+rmo=ι

Putting Λc(ώ)= Σ dimc Sa [μ, 1, ωg*] and A^ (ω)=dimc S^ [0, 1, ωg*~\, we obtain
μ<0

Λ(cm5+mo> /)= Σ Λ; (α») ,
ωras+m0=ι

(8)
v(cmί+rroo, /

r)= Σ N-c(ω).
ωms+rwo=ι

It follows that Λ(cms+mo, /) and v(cms+rmo, /
r) are completely determined by

the nonnegative integer valued functions Λ-c( } and N-c( ) on the unit circle re-
spectively.

Let E denote the complexification of the orthogonal complement of c(0j in
the tangent space MC«» at c(0). Then so called Poincare map P is defined in
the following

P : E@E —+ E@E, (u, v} -̂> (^^(Fd)), ̂ ^(^(l))) ,

where Y is the unique complex Jacobi field (i.e. L-c Y—0) satisfying Y(ϋ)—u and
Y'(Q)=v. Since N-c (z)=dimc ker (P—z) and dimc (E®E}= 2n, we obtain

LEMMA 8. N-c(z}= 0 except for at most 2n points which will be called Pome-
are points.

The next theorem is contained in Theorem 3.1 and 3.2 of M. Morse [6,
p. 91].

THEOREM 9. Let J be a bounded interval such that the end points are not in
the eigenvalues of L-c subject to the boundary condition Y(t+ϊ)=zg*(Y(t)). Then
there is a neighborhood U of z in S1 such that the end points of J are not in the
eigenvalues of L-c subject to Y(t+ΐ)=ωg*(Y(t)) for ω^U and

Σ dimc S-c [_μ, 1, ω£*]=Σ dimc S-c \_μ, 1, zg*Γ\ .
μej μej

It follows from Theorem 9 that

Λ-c( ) is locally constant except possibly at Poincare points,
(9)

and \\mΛ-c
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By using Lemma 8, (8) and (9) we obtain the following two lemmas.

LEMMA 10. Either λ(cms+mQ, /)=0 for all m or there are positive numbers a
and ε such that for any integers m^m^Q

and such that for any negative integers m1^

The proof of Lemma 10 is analogous to that of Lemma 1 in [2].

LEMMA 11. There exist positive integers klt •••, kq and sequences ra/eZ,
= l, •••, q, such that the numbers ra/&; are mutually distinct, {mj

lkj} = {msjrm();
} and

v(Cmskj,f)=v(ckj,f
r) where r m/ = l m o d s .

Outline of proof. We can prove analogously to Lemma 2 in [2] that there
exist positive integers k l f •••, kt and sequences m/eZ, z>0, j = 1, •••, /, such that
the numbers fn^kj are mutually distinct, {mJ

lkj}=Z—{Q} and

_Σ NΈ(ω)= _Σ N-c(ω).

ω

mJ*J = 1 ω^=1

Choose some elements k l f ~kq (resp. m/) from the set {klf ~ kι] (resp. {m/
z>0,;=l, ••-,/}) to satisfy {m/^} = {ms+m0; meZ}. We can checkeasily by
using (8) that v(cmjtkj, f)=v(ckj, Γ) holds. (q. e. d.)

Combining Theorem 6 and Lemma 11 we obtain

COROLLARY 12. Let c be a critical point in Ω(M, /) of type 3) and we
assume that all the critical orbits SO(2)cms+mQ, meZ, are isolated in Ω(M, /).
Then there exists some constant B such that Bk

Q(cms+mo, f)^B for all k and m.
Furthermore there exists a number kQ such that Bk*(cms+mQ1 /)= 0 for k>k0 and
all m.

Note that v(cms+mo, f)^2n for all m. Hence we can take the number k0 to
be not greater than 2n.

Combining (7), Lemma 10 and Corollary 12 we obtain

COROLLARY 13. Under the hypotheses of Corollary 12, for the resulting con-
stants B and k0, Bk(cms+mo, /) are uniformly bounded by 2B. Moreover, given
&>&0+1, the number of orbits S0(2)<?ms+m0

 suc^ that Bk(cms+mo, /)^0 is bounded
by a constant C which does not depend on k.

The proof of the above corollary is the same as that of Corollary 2 in [2].

Next we will prove analogous corollaries to Corollary 12 and Corollary 13
for a critical point c of type 2). If we set c(f)=c(t/mQ), then c is critical for
Ef. The fundamental period of c is 1, and the orbits S0(2)cm, meZ— {0}, are
all the critical orbits in Ω(M, /) generated by c. Therefore we may assume
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that the critical point c is c, that is, w0—1. Let Vc be a vector space of smooth
vector fields along c which are orthogonal to c. A linear map Lc: VC->VC is
defined by

LCX=-X"-R(X', c}c.

Complexify Vc and write it as Vc again. We also extend /* and Lc to C-linear
maps, and write them as /*, Lc again respectively. For each non zero integer
m, real number μ and ωeStC, let Sc[μ, m, ωf*] be the set of complex vector
fields X<ΞVC satisfying LcX=μX and X(t+m)=ωf*(X(t)).

LEMMA 14. The next equalities hold for any integer r, m(φϋ) and real μ.

A m, /^]

2) Sclμ, 1, ωf*lr\Sclμ, m, /*r]=Sc[>, 1, ω/*]nker (/*m-r-αΓw),

where the linear map /* : FC-»FC zs defined by (f*X)(t)=f*(X(t)).

3) Sc|>, 1, α>/*Jπker (/*m"r-«"1)=m_Θ _Sdμ, 1, ω/*]nker (/*-z),

where we set ωm^a.

Proof. If ims|—1, then s=l and m—±1. Since Sc[μ, 1, zd] = Sc[μ, —1, zύf.],
the first equality is trivial. If \ms\^2, for any 7eSc[μ, m, /*r] and <y with

ωm*=l, we set yω(0=l/|wιs| Σ ω~5/;{ί~^1(y(ί+^—1)). It is easy to check that

Yat^Sdμ, 1, ω/*]n5c[^, m, /*r] and that Y= Σ ωFω (see Lemma 7). Thus the

first equality holds since it is trivial that

Sdμ, m> /*rIP 0 Sclμ, 1, ω/*]r\sc[^, m, /*r].

We derive the second equality from a direct computation.
It is trivial that the third equality holds for m—r—\ and that

Sclμ, 1, ω/*]nker (/*m-r-α-1)ID 0 Sc[μ, 1, ω/*]πker (/*-^).
2m-r=α-l

If m—r^2, for any FeSc[μ, 1, α>/*]r\ker (/*m"r—α'1) and z with ^m"r=α~1, we
set

ra-r-i
r,=l/(m-r) Σ ^Λ'-^y).

We can check easily that Yz^Sclμ, 1, α>/*]nker (f*—z) and 7"= Σ ^72. Hence

the equality holds for m—r^l. If m—r—0.
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= Θ Scl>, 1, ω
zs=α-l

= Θ Sdμ, 1, ω/*]Γ\ker (/*-*),

because zs=l for any 2 with ker (/*—
If m— r<0,

= θ Se[j«, 1, ω/*]rιker (/*-*)
2r-m=Q,

- θ Sβ[>, 1, ω

(q. e. d.)
It follows from the above lemma that

ScLμ, m, /*r]= 0 Θ Sc[μ, 1, ω/*]nker (/*—*)
(asm — i zτn—r=ω—m

= 0 0 m θ ScO, 1, ω/*]nker(/*-z).

Therefore we have

(10)
Kcm,/ r)=Σ Σ ^ "

where we put

Λc

z(ω)=Σ dimc {Sc[μ, 1, ω/#]πker (/*—<

and

{Sc[0, 1, ω.

If follows that λ(cm, /) and v(cmt /
r) are completely determined by the non-

negative integer valued functions Λ/( ) and #/(•) on the unit circle. We
obtain (see Lemma 8 and Theorem 9) the following lemma.

LEMMA 15.
i) 7V/(ω)=0 except for at most 2n points which will be called Poincare points

with respect to z.
ii) Λc

z(ώ) is locally constant except possibly at Poincare points with respect to
z.

iii) lim Λc

z(ω)^Λc

z(ω,}.
α>-ft>0

iv) For any z with ker (/*—*)={()}, ΛC'=Q and NC

Z=Q.
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Let Z+ and Z~ denote the set of all positive integers and the set of all
negative integers respectively. For each integer /, we put

and A=/

LEMMA 16. For each 0^/<s, either λ(cm, /)— 0 for all m^Dt or there exist
positive numbers εt and at such that for any m^D^, i=\, 2 with m^m^

and such that for any m^Df, z— 1, 2 with m2^mlf

Proof. It follows from (10) and Lemma 15 that for each m(=DL,

*(<:», /)=Σ Σ Fa

l(ω),
as=1 a)m=(x

where

Fn\ώ)= Σ Λc*(ω).
zl = a-1

If Fa

l^Q, then there exist some positive numbers ε f

α and a" such that

Σ Fa\ω)-a -
ω

ml=a

for any m^Di, i=l, 2 with | m 1 | ^ | m 2 | . We can prove the existence of such
numbers εz

α and a" analogously to Lemma 1 in [2]. Therefore if Λ(cmo, /)=£()
for some mQ^Dh then Fa

l^0 for some a. Set e ί=Σ /e ί

α and α^Σ'^Λ where
α or

Σ7 denotes the sum of all a, a'=l, satisfying Fa

l^Q. For any m^D^ z— 1, 2
α

with \m1\'^\m2\

*(cmι, f)-Λ(cmv f)=Σ' ( Σ ^V)- Σ Fn

l(ωy>

= (|m 1 |- |m 2 |)e ί-α ί. (q. e. d.)

LEMMA 17. F0r ^αc/z 0^/<5, ί/2^r^ exist positive integers k l f •••, ^g and sequ-
ences m/, ;=1, •••, ,̂ z>0 swc/i ί/iαί ί/ie numbers rn^kj are mutually distinct,
{mjlkj}=Dι, and for m/ w zϊ/z (m/, s)=l

r m/=l mod s ,

and for m/ ^zϊ/z (m/,

Here vr(c) denotes the nullity of the critical submanifold S0(2)c in β(Fix(/),



ON INVARIANT CLOSED GEODESICS 273

id.} where Fix (/) is the set of the fixed points of /. In general for any isometry
h, Fix(Λ) is a totally geodesic submanifold of M.

Proof. It follows from (10) and Lemma 15 that

»(c»,/)=Σ Σ ( Σ Ne'(ω)) for any me A -
s = ι ω™>=ce z

For each α^exp (2πιt/s) (f^Omods), we set

Ql

a={q^Z+] Σ Ne (exp(2πip/sq))*Q, 0<*p^sq, (ft s?)=l} .
z^α-1

And put

<?t

1={?eZ+; Σ Λfc (exp (2πip/q))=Q9 0<3^<?, (P, q)=l}
zl = l

and Qt= \J Qf. Note that if Qι=φ, then v(cm, /)=0 for any m^Dt. In case
(χS=l

Q=φ, it is sufficient to prove that for any ra with (m, s)=l,

^(<^m, f}^v(c, /r) , where r-m=l mod s,

and for any non zero m,

At first we consider the case where (m, s)=l. If we set ω—ar for each a
with as=l, then ωm=a. Hence,

=βΣ ^Σ_rΛ^(tfr)

- Σ Σ Nc*(β) (Here we set β=ar.)
βs = ι zlr=β-^

= Σ Σ W/(/3)
^8 = 1 2l-r = /3-l

-Kc,/r) (by (10)).

On the other hand,

It follows from (10) that

ι/(cm)= Σ Nc\ώ) and
ωm=l
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Combining the above inequality and the last equality, we obtain that v(cm, /)^
yr(cm)^r(c) for any non zero m.

In case QtΦφ, for each subset AaQt let k(Λ) denote the least common
multiple of all elements in A. Choose distinct numbers klt ~ , ku such that
{&ι, ••*, ku} = {l}\J{k(A); AdQt}. Keeping ;e{l, •••, u} fixed, we select from the
sequence mfc^eZ—{0}, the greatest subsequence w/£, satisfying qjfmfkj when-
ever q^Qi and qjfkj. Then the numbers mfkj are mutually distinct, {m*
ί>0} contains 1 for each;e{l, ~ ,u} and {m/£, f>0, /=!, •• M}=Z— {0}. Choose
some elements &!,-••, &ς (resp. m/, z>0, j=l, •••, tf) from the set {fei, •••, fett}
(resp. {m/; z>0, j=l, -, u}} to satisfy {m/fe^ z>0, j=l, •-, ^}=A If Σ

ωmfkJ = a

Σ Nc

z(ω)ΦQ for some α=exp (2πzί/s) (ί^O mod s), there exist some positive
zl = a~l

integers q^Q" and p satisfying (exp (2πip/sq}}mJlkJ=exp (2πit/s). Since (p/sq)
m/fe jΞf/smodl , (ί/^) m/fe y=ίmods. The integer ^ devides ^; because q\mfk3

and ^eQ^. Since ((pkj/q} mj'
l

f s)=l, (m/, s)=l. Therefore if (w/, s)^l, then

If ω™JlkJ=l and Σ NC

2O)^0, then ω*J=l. Thus

v(cmjikj, /)— Σ Σ Nc*(ώ).

On the other hand, if we note that NC*=Q for any z with z'^1, then

Σ Nc

z(ω}=Nc

1(ω)

for each ω since /= — 1 mod s. We obtain

v(cm ik , /)— Σ Nc

l(ω)= Σ Nc\ώ).

By using (10)

vτ(cmjikj, /)= Σ AV(ω) and vτ(ck^)= Σ A^W.

If (m/, s)=l, there exists some integer r with r w/=l mod 5. Since

for each α,

^(^m I*-, /)=Σ Σ Σ Nc

z(ώ).

On the other hand, if we note that k3—r=lr mod s since m3

lk3—!=/ mod s,
then
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KC*,, /r)= Σ Σ Σ Ne (ώ)
βs=l ωk^β zlr=P~l

= Σ Σ Σ Ne'(ώ) (Here we set βm^=a.}
as=ι ω

kj = arzlr=a-τ

= Σ Σ Σ Nc (<o)=ι>(cnj*kJ, /) ,
««=! ω*Jssar

 zl=fχ-1

since {*; zlr=oΓr, z*=l} = { z ; z=a~\ zs=l}. (q. e. d.)
We assume that the critical orbit S0(2)cmjιkj is isolated in Ω(M, /). If

(m}\ s)=l, it follows from Theorem 6 that

If (m3\ s)^l, then it holds that

(See the proof of Lemma 3.6 in [5].) Furthermore it follows from Theorem β
that

Here JC°(cm)τ denotes the characteristic invariant of cm in the space β(Fix
(/), id.}.

COROLLARY 18. Let c be a critical point of fundamental period 1. We as-
sume that all the critical orbits 50(2)cm, raeZ— {0}, are isolated in Ω(M, /).
Then there exists some constant B such that Bk\cm,f)^B for all m<=Z—{Q} and
k. Furthermore there exists kQ such that Bk\cm,f)=Q for k>kQ and all m(Φ<S).

Combining (7) and Lemma 16 we have

COROLLARY 19. Under the hypotheses of Corollary 18, for the resulting con-
stants B and k0, Bk(cm,f) are uniformly bounded by 2B. Moreover, given k>
k0+l, the number of orbits SO(2)cm such that Bk(cm,f)^Q is bounded by a const-
ant C which does not depend on k.

The proof of the above corollary is analogous to that of Corollary 2 in [2].

§3. Proof of the main theorem

Let M be a compact simply connected Riemannian manifold. It is known
that for any isometry A on M the inclusion of Ω(M, h) into the space of all
continuous maps' σ : I—>M satisfying A(σ(0))=σ(l) with the compact open topology
is a homotopy equivalence [3]. It is also known that the Betti numbers

bk(Ω(M, h»=dimHk(Ω(M, A))

are finite, when M is simply connected (see [7]).

THEOREM 20. (Main theorem) Let f be an isometry on a simply connected
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compact Riemannian manifold M satisfying fs=id. for some prime integer s. If
the sequence bk(Ω(M, /)) is not bounded, then there exist infinitely many geome-
trically distinct invariant closed geodesies under the isometry f on M.

Proof. If there are only finitely many invariant closed geodesies under /,
then we can find some critical points cl for Ef7li (l^i^r, nt^Z+) such that any
non constant critical point in Ω(M, /) lies on some orbit S0(2)c*m, me Z. It
follows from the assumption that all the critical orbits SO(2')ci

m in Ω(M, /) are
isolated. Choose Bl, kj and C* for the critical point cl according to corollaries

12 and 13 or corollaries 18 and 19, and set 6— max {Bl l^i^r}, &0— max {kQ

l

^ r Λ ^
Igi^r}, and C=Σ Cl. Now for any &>&°+l the constant C is an upper bound

ι=l

for the number of orbits SO(2)cl

m^Ω(MJ /), l^i^r, with S*(c*m, /)=£(). Hence
it follows from the Morse inequalities (3) that we can choose some regular

value b satisfying bk(Ωd(M, /), Ω\M, /))=0 for any fixed ^>^0+1 and any

regular value d^b. Therefore bk(Ω(M, f))=b k(Ω\M, /)) for &>£0+1 On the

other hand, it follows from (3) that for k>k0+l and all regular value Q<a<b,

If we choose 0<α<min {Efni(ci)} l^z^r}, then Fix (/) is a strong deformation
retract of βα(M, /) (see [3]). Hence

b*(Ω\M, /), βα(M, f))=bh(Ω\M, /), Fix (/))

holds from the exact sequence of homology. In case Fix(/)— φ, the last equ-
ality is trivial. Since Fix (/) is a finite dimensional manifold, we derive by
using the exact sequence of homology

bk(Ω\M, /), Fix (f»=bk(Ω\M, /)) for almost all k .
Thus

=bk(Ω\M, /), Ωa(M, /))^2C£ for almost all k .

This contradicts the hypothesis of the theorem. (q. e. d.)
Finally the author wishes to thank Prof. T. Otsuki for his valuable sug-

gestions.
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