M. TANAKA
KODAI MATH. SEM. REP.
28 (1977), 262—277

ON INVARIANT CLOSED GEODESICS
UNDER ISOMETRIES

By MINORU TANAKA

§0. Introduction

It is an interesting problem to estimate the number of distinct closed
geodesics on a compact Riemannian manifold. In [2] Gromoll and Meyer proved
the existence of infinitely many geometrically distinct closed geodesics on a
compact Riemannian manifold satisfying a certain topological condition. Recently
Grove [5] extended their result by means of invariant closed geodesics under
involutive isometries. In this paper we will prove a more general theorem than
their results. Let M be a connected Riemannian manifold and 4 an isometry
on the manifold M. A geodesic y: R—M is called an invariant geodesic under
h if there exists some nonnegative constant @ such that A(y(f))=y(t+6) for all
teR. Two such geodesics 7,, 7, are said to be geometrically distinct if y,(R)+#
72(R). Let C°(M, h) be the topological space of all continuous curves o:[0, 1]
—M satisfying h(6(0))=0(1) with the compact open topology. Now we will
state our main theorem.

MAIN THEOREM. Lei M be a compact simply connected Riemannian manifold
and [ an isometry satisfying f*=id. for some prime integer s. Then there exist
infinitely many geometrically distinct invariant closed geodesics under f if the
sequence of the Betti numbers for the space C°(M, f) is not bounded.

Note. If s=1, i.e., f=id., (resp. s=2) in our main theorem then we obtain
the result of Gromoll and Meyer (resp. Grove).

§1. Preliminaries
Let (M, ¢, >) be an n+1 (=2) dimensional compact Riemannian manifold,
and & an isometry on the manifold M. A continuous curve y:[0, 11-M will
1
be called an H'.curve when it is absolutely continuous and f(;'«, 7>dt<co, where
0

7 denotes the velocity vector of y. For each H'.curve 7. a continuous vector
field X along the curve y will be called an H'.vector field along 7 when it is

1
absolutely continuous and L(X’, X'»dt<co, where X’ denotes the covariant de-
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rivative of X along 7. Let £2(M, h) be the set of H'-curves ¢ from the unit
interval I into M satisfying h(c(0))=0c(1). For each o= Q(M, h), let T,2(M, h)
be the set of H'.vector fields X along the curve ¢ satisfying h«(X(0))=X(1),
where hx denotes the differential of the map k. The inner product on T,2(M, h)
is defined by

1) <X, Y>= j(‘)«x, YS4(X, Y'Y for X, YET,Q(M, ).

By this inner product T,2(M, h) becomes a Hilbert space. £2(M, h) has a struc-
ture of Riemannian Hilbert manifold [3]. The model spaces of £2(M, h) are
given by {T,2(M, h); c=2(M, h)} and the Riemannian structure is given by
(1). For each 0= 2(M, h) we can regard the model space T,2(M, h) as the
tangent space of 2(M, k) at . On 2(M, h) we have the energy function E":
(M, h)—R defined by

EX0)=1/2f :<a, 6>dt  for oc2(M, h).
The following are well known facts.

(a) E™:Q2(M, h)—R is a smooth function and satisfies condition (C) of Palais
and Smale (see [3]).

(b) o=f(M, h) is a critical point for E* if and only if ¢ is a geodesic on M
satisfying h«6(0)=6(1) (see [3]). Particularly c€2(M, 1d.) is a critical point
for E*: Q(M, id)—R if and only if ¢ is a closed geodesic in M.

(¢) The Hessian H, of E" at a critical point ¢ is given by

H(X, V)= (X', Y)—~(R(X, ©), ¢Y))dt,

where R denotes the curvature tensor of M.

For each o= 2(M, h) we always assume that ¢ is naturally defined on R,
ie.,
(2) o(H)=h"c(t—[1])) for teR,
where [¢] denotes the greatest integer =¢.

Let g be an isometry on M such that g*=1id. for some positive integer s,

and SO(2) the parameter circle [0, s1/{0, s}. We may regard SO(2) as an opera-
tion on 2(M, g) as follows;

SO@2)x 2(M, g) —> 2(M, g),
(a, 6) — a(o), where a(o)(t)=o(t+a).

Note that o(t+s)=a(t) for all t€R and o=£2(M, g). This action is continuous
and for each acSOQ2), a:2(M, g)—2(M, g) is an isometry [4]. A critical
point ¢ for Ef in (M, g) lies always on a critical submanifold of 2(M, g),
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SO(2)c when ¢ is non constant, i.e., E%(c)#0. Now we shall construct a tubular
neighborhood 9 of SO(2)c. We can take for 9 the diffeomorphic image of a
sufficiently small tubular neighborhood of the zero section in the normal bundle
J1 of SO(2)c by the induced map from the exponential map exp of M, i.e., the
map exp: J1—R(M, g) with Y—expoY is a local diffeomorphism along the zero
section of J2. So the normal space JI, over c¢ is the tangent space of the fiber
9D, at c and a(D.)=D., for aESO(2) Let E.2 be the restriction of the energy
E# to 9.. For the Hessian H of E. at ¢ we obtain 1mmed1atelyH =H_.|7.P..
The next lemma is essentially proved by Gromoll and Meyer [2].

LEMMA 1. Let ce2(M, g) be a non constant critical point. Then the operator
A : T 2(M, g)—T.2(M, g) defined by

AKX, Y>=H(X,Y)

adnuts a decomposition A, —zd+k with a compact Operator. k. Clearly the cor-
responding operator A for H. 1s also of the form A =1d+E, where E 1s compact.

In general let ; be a smooth (C*) function defined on some open neighbor-
hood of the origin in a Hilbert space (H, <, ) such that the origin 0 is an
isolated critical point of 7, and j(0)=0. Let d?j, be the Hessian for ; at the
origin, and we assume that the operator A: H—H defined by {Ax, y>=d?*(x, ¥)
admits a decomposition A=1d+K, where K is a compact operator. We put
N=ker A and E=N*, the orthogonal complement in H, so that H=E®N. The
next “splitting lemma” is due to Gromoll and Meyer [1].

LEMMA 2. (Splitting lemma) Let j satisfy the assumptions as above. Then
there exist an orign preserving diffeomorphism @ of some neighborhood of 0 in
H into H and an origin preserving smooth map h defined in some neighborhood
of 0 i N wnto E such that jo®@(x, y)=<{Px, Px)—{(I—P)x, I—P)x)+j(h(y), y)
with an orthogonal projection P: E—E.

COROLLARY 3. The function ) satisfies condition (C) of Palais and Smale in
some neighborhood of the origin.

Proof. Let {0,} be any sequence such that the gradient vector of j at gy,
V54, tends to zero as n—oco. We set (X, y,)=@ *(0,). If the points ¢, are in
a sufficiently small neighborhood of the origin, the points y, are in a bounded
set. Since N is a finite dimensional linear subspace, {y,} has a convergent
subsequence. On the other hand, by the splitting lemma

PV (70@)z,yy)=2(2P—1D)x,
where Py denotes the orthogonal projection to E in H. Hence
2051=21@P=D=ZIF GoP)capll = 1Pscanl- IV J0ca |

where ||-|| denotes the norm induced by the inner product ¢, >. So if Vj,,—0,
then x, tends to zero. Therefore the sequence {s,} has a convergent subsequ-
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ence. (q.e.d.)
Using Lemma 1 and Corollary 3, we have

PROPOSITION 4. If cis an isolated critical point of E.f and D, 1s sufficiently
small, then condition (C) holds for EZ.

Now we will define a local homological invariant 4 (E#, SO(2)c) of the energy
E* at the isolated critical orbit SO(2)c by using the construction and the nota-
tion of [1]. Choose a sufficiently small tubular neighborhood 9 such that E.*
satisfies condition (C) and such that ¢ is an isolated critical point of E# (see
p. 502 in [2]). Thus we can define a local homological invariant of E.# at c;

J[(Ecg: C)ZH*(WCy Wc—) ’

where W, and W,~ are admissible regions for the function E. on the fiber 9,
at ¢ (see [1]). For convenience we use singular homology with a field of
characteristic zero. We define a local homological invariant 4 (E#, SO(2)c) of
the energy E? at the isolated critical orbit SO(2)c by

H(E2, SO2)c)=H«(W, W~) where W=SO(2)W, and W~ =SO@2)W,".

It does not depend on the choice of the 9 and admissible regions W, W, .
The next lemma is proved by Gromoll and Meyer [2].

LEMMA 5. Let b be the only critical value of the energy E*: Q(M, g)—R n
[b—e, b+e] for some ¢>0. Assume that the critical set in (E2)"Yb) consists of
Sfimtely many critical orbits SO(2)c', ---, SO2)c". Then

Hi(27+4(M, g), £2°-(M, g>>=§1 J(EF, SOQ2)c")
where 2°*(M, g)=(E#®)"[0, b+¢].

Let a<b be regular values of the energy E? such that the critical orbits
in (E¢)~'[a, b] consist of finitely many critical orbits SO(2)c, ---, SO(2)¢". Then
we have the Morse inequalities from Lemma 5;

®) b(2A(M, g), 2%(M, g)) gz By(c', g),

where b (2°(M, g), 2%(M, g))=dim H,(2°, 2%)

and
By(c*, g)=dim 4 ,(E?, SO2)c") .

If we define a map = of (SO(2)x W,, SO2)xW,”) onto (W, W~) by («a, e)—
a(e), then the map =z is a covering map. Put I'={aeS0(2); a(c)=c}, which is
called the isotropy group at ¢. We can regard I as covering transformations
on (SOQ2)X W, SO@2)x W) by (a, e)—(aB™?, Be)) for each f=l'. Since

(W, WH=(S0Q)x W,, SO2)x W .)/I",
we have
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4 H(W, W)CH«(SO@2)X W., SO2)XW.™).
By the kiinneth formula
(5) L(E#, SO(2)c)C H«(SO2))Q4(E, ¢) .
Let A be the index of ¢ in 2(M, g). Using the shifting theorem [1]
K il(ESE, )= (EF, o),

where 4% ,° denotes the characteristic invariant.
The last equality and (5) give

(6) H(EE, SO2)0)CTIH 12" (EcE, O)DIH k-2-1(ESE, €) .
Hence
(7) Bk(cy g)éBk-Zo(c: g)+Bok—2—1(cy g) ’

where B,%c, g)=dim % ,°(E.#, c).

§2. Estimations of the indexes and nullities of all the critical orbits

For each 6= 2(M, g) and non zero integer m, we define a curve
on€RQ(M, g™ by  on()=0(mi).

Note that each element in £2(M, g) is assumed to be a map from R into M by
(2). Then we can define the interation map m: 2(M, g)—2(M, g™ by o—0o,
for each non zero integer m. The next theorem is important for us. It is
essentially proved by Gromoll and Meyer [2].

THEOREM 6. Let SO(2)c be a non constant critical orbit in Q(M, g) such that
SO22)cn, 18 an 1solated critical orbit in 2(M, g™ and v(c, g)=v(cn, &™) for some
non zero wnteger m. Then H(EZ2, )= (E..F", cm) for all all k. Here v(c, g)
(resp. v(cn, ™) denotes the nullity of the critical submanifold SO(2)c (resp. SO(2)
cn) i 2(M, g) (resp. 2(M, g™)).

Let f be an isometry on M with an order s, and we assume that s is prime.
Now we will study the indexes and nullities of all the critical orbits in 2(M, f)
generated by the iteration of a critical point. Let o be a non constant critical
point. Since f(o(t))=0(t+1) and f*=1d, then o(t-+s)=o(t), that is, ¢ is a closed
geodesic with the fundamental period s/m, where m is some positive integer.
For a critical point y€2(M, f) there are the following possibilities.

1) y@®)=p for all t<[0, 1] where the point p is a fixed point of f.

2) The fundamental period of a critical point is 1/m, for some positive in-
teger m,.

3) The fundamental period of a critical point is s/m, for some positive
integer m, with (m,, s)=1.
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A critical point of type 1) is constant. The other critical points are non
constant. At first we will study a critical point ¢ of type 3). Since m, and s
are relatively prime, there exist some integers 7, and k&, satisfying myn,=1-sk,,
hence ny=1/my+(s/my)k,. If we set ¢(t)=c(¢/m,) for t[0, 1] and g=/"°, then
¢ is a critical point for E? and the fundamental period of ¢ is s. Clearly for
each integer m and 7 with ms+rmy#0, Cnsirm, iS @ critical point for E/". The
critical orbits SO(2)Cnsim, ME Z, are all the orbits in 2(M, f) generated by the
closed geodesic ¢. We may assume 1=m,<s without loss of generality.

Let V; be the vector space of smooth vector fields along ¢ orthogonal to

¢. A linear map L;: V;—V; is defined by L; X=—X""—R(X, ¢)¢. Let A(Cnsirmgr
F7) and v(Cpssrmg S7) be the index and the nullity of the submanifold
SO2)emssrmy in (M, f7)
respectively. We have
MCmssmg )= dim{Xe V;; L; X=pX, X(t+ms+m,)=f(X(1))

#<0

for all te R},
Y(Cmsirme JT)=dim {X e V;; Lz X=0, X(¢+ms+rme)=f«"(X(1))
for all te R}

(See Theorem 2.3 in [6, p. 45].)

Let us complexify V; and write it as V; again. We also extend fx, g and
L; to C.linear maps and write them as fx, g L; again respectively. For a
complex number w=S'CC, a real number g and a non zero integer m, let
S: [¢, m, wg«™] denote the vector space of complex vector fields Y in V; satisfy-
ing L; Y=pY and Y(t+m)=wg"(Y(?)).

LEMMA 7. Si[p, m, g«™1= @ S:[g, 1, ogsl.
oM=1

Proof. 1t is trivial that S;[g, m, g«™1D @ S:[p, 1, wg«]. We assume that
oM=1

m is positive. We can prove the lemma analogously for negative intgers. For
any YeS;[y, m, g«™] and o with 0™=1, we set

Yw<t)=1/m:§‘w-lg*-l+l()f(t+z—1)) .
=0

Clearly, L; Y,=pY, and Y= 0Y,. From the definition of Y,,

Yw<t+1)=1/m[§1w-lg*-“l<Y<t+z>>1

m-

=w/mLg (S g (Y (t+1))]

=0
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:w/mtg*{f‘;’llw-lg*-“‘<Y<t+1—1>>

+o g MY (1+m—1))}]
=wgx(Y (1) .
Hence Y,eS:[ g4, 1, wgx]. (g.e.d.)
Since  fT=g™*"™, S;[p, ms+rm, fx"]= @D lSzE/z, 1, wgx].

@ms+rmo=

Putting 4; (w)=2 dime¢ S; [ ¢, 1, wg«] and N; (w)=dim¢ S; [0, 1, wgs], we obtain
#<0

Z(C-msﬂno, f): > AE (w) ’

wmstmo=1

v(c_ms-krmoy fr): 2 NE (w)

omstrmo=1

®

It follows that A(Cmssmg /) @nd Y(Cmssrmy f7) are completely determined by
the nonnegative integer valued functions 4;(-) and N;(-) on the unit circle re-
spectively.

Let E denote the complexification of the orthogonal complement of ¢(0) in
the tangent space M, at ¢(0). Then so called Poincaré map P is defined in
the following;

P: EQE — EQE, (u,v)— (g (Y1), &« (Y'(1))),
where Y is the unique complex Jacobi field (i.e. L; Y=0) satisfying Y(0)=u and
Y’/(0)=v. Since N;(z)=dim¢ ker (P—2) and dim. (EQE)=2n, we obtain

LEMMA 8. N;(2)=0 except for at most 2n pownts which will be called Poinc-
aré points.

The next theorem is contained in Theorem 3.1 and 3.2 of M. Morse [6,
p. 917.

THEOREM 9. Let ] be a bounded interval such that the end points are not in
the ewgenvalues of L; subject to the boundary condition Y(i4+1)=zg«(Y(t)). Then
there 1s a neighborhood U of z in S' such that the end pownts of J are not in the
ergenvalues of L; subject to Y(i+1)=wg«(Y(?)) for wsU and

2 dime S; [y, 1, wgs« =2 dime Sz [, 1, z8x] .
HEJ reJ
It follows from Theorem 9 that
A;(+) is locally constant except possibly at Poincaré points,

)

and lim 4; (2)=4; (z,).
z-2g



ON INVARIANT CLOSED GEODESICS 269
By using Lemma 8, (8) and (9) we obtain the following two lemmas.

LEMMA 10. Either A(Cmsimy J)=0 for all m or there are positive numbers a
and ¢ such that for any integers m,=m,=0

ACmyseme )= A Crmpsimg F)Z(my—my)e—a
and such that for any negative integers m,<=m,
ACmysemer L) = A Cimysamg ) Z(my—my)e—a.
The proof of Lemma 10 is analogous to that of Lemma 1 in [2].

LEMMA 11. There exist positive integers ky, ---, k, and sequences m,*€ Z, 1>0,
7=1, -+, q, such that the numbers m,'k, are mutually distinct, {m,k;}={ms+my;
meZ} and

p(c’m]lkj, F)=v(C,, f7) where r-m,'=1mods.

Outline of proof. We can prove analogously to Lemma 2 in [2] that there
exist positive integers £,, -+, k, and sequences ,'c Z, 1>0, =1, ---, [, such that
the numbers 7,'k, are mutually distinct, {,'k;}=Z—{0} and

2 Ni@)= 3 Ni(w).
wm}kal wk]=1
Choose some elements Fky, -k, (resp. m,’) from the set {k,, -k} (resp. {m,*;
1>0, =1, -, [}) to satisfy {m,*k;}={ms+m,; meZ}. We can checkeasily by
using (8) that ¥(Cpjie;, /)=V(Cs,, /™) holds. (q.e.d.)
Combining Theorem 6 and Lemma 11 we obtain

COROLLARY 12. Let ¢ be a cnitical pownt i (M, f) of type 3) and we
assume that all the critical orbits SO2)Cpsimy MEZ, are 1solated in 2(M, f).
Then there exists some constant B such that By’ (Cmsimg F)=B for all k and m.
Furthermore there exists a number ky such that By*(Cmssmy [)=0 for k>k, and
all m.

Note that v(Cpssm, S)=2n for all m. Hence we can take the number k, to

be not greater than 2n.
Combining (7), Lemma 10 and Corollary 12 we obtain

COROLLARY 13. Under the hypotheses of Corollary 12, for the resulting con-
stants B and kg, By(Crsimg f) are umiformly bounded by 2B. Moreover, gwen
k>ky+1, the number of orbits SO2)Cmssm, Such that By(Cmsimg F)#0 15 bounded
by a constant C which does not depend on k.

The proof of the above corollary is the same as that of Corollary 2 in [2].

Next we will prove analogous corollaries to Corollary 12 and Corollary 13
for a critical point ¢ of type 2). If we set ¢(f)=c(¢/m,), then ¢ is critical for
E’. The fundamental period of ¢ is 1, and the orbits SO(2)¢,. me Z—{0}, are
all the critical orbits in £2(M, f) generated by c¢. Therefore we may assume
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that the critical point C is ¢, that is, m;=1. Let V. be a vector space of smooth
vector fields along ¢ which are orthogonal to ¢. A linear map L.: V.—V, is
defined by

L X=—X"'—R(X', &) .

Complexify V., and write it as V, again. We also extend f« and L, to C-linear
maps, and write them as fx, L. again respectively. For each non zero integer
m, real number g and weS'CC, let S.[p, m, wf«] be the set of complex vector
fields XV, satisfying L. X=pX and X(t+m)=wf«(X()).

LEMMA 14. The next equalities hold for any integer v, m(+0) and real p.

iy ScLu, m, f+x"]= @:1Sc[#, L efs NSy, m, f+71,

2) Sc[ﬂr ]-7 wf*]f\sc[#, m, f*r:l___Sc[#, 1, a)f*]f\ker (f*"‘"—w"") s
where the linear map f«: V,—V, 1s defined by (f+X)()=fa(X(D)).

3) Sc[ﬂy 17 wf*kaer (f*m—r_a-l):m @ 7'156[#7 11 (Uf*]f\kel' (f*_'z) 5

where we set w™=a.
Proof. 1f !ms|=1, then s=1and m==+1. Since Sy, 1,1d.1=S.[p, —1,1d.],
the first equality is trivial. If |ms|=2, for any Ye&S.[y m, f+"] and o with
|ms|—1
w™=1, we set Y, (£)=1/|ms| 20 ™% (Y (t+9—1)). It is easy to check that
P
YoeSle, 1, of«INSLy, m, f+"] and that Y= 3] oY, (see Lemma 7). Thus the

@Mme=1

first equality holds since it is trivial that

Sc[.uy m, f*T:]D 1@-180[#, 17 wf*:]/—\Scl:/’ty m, f*T] .

We derive the second equality from a direct computation.
It is trivial that the third equality holds for m—r=1 and that

Sl 1, ofsdnker (S 7—a™)D @ Sl 1, ofsInker (fx—2).

If m—r=2, for any YeS.[y, 1, ofsINker (f«™ "—a™!) and z with 2" "=a"!, we
set

Yz=1/<m—r>”§lz-lf*l-l<Y) .

We can check easily that Y, S,[x, 1, ofiInker (fx—z) and Y= 3 zY,. Hence

M—r=g—1

the equality holds for m—r=1. If m—r=0.
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Sc[,ay ]-y wf*]/'\kel' (f*o—'a’l):ScEﬂy 1y wf*]f\kel' (f*s__a‘l)
= @_156[#7 17 wf*]/'\kel‘ (f*—Z)

S=a

= _EB_ISCE#, 1, ofsINker (f+—2),

because z°=1 for any z with ker (fx+—z)={0}.
If m—r<o0,

S 1, ofilnker (fi" " —a)=SLp, 1, @fsINker (/' "—a)
= &P Sc[/"r 1, wf*]f\ker (f*‘"‘Z)

Mg

= @ lscl:ﬂy 1, of«INker (f«—2).

(q.e.d.)
It follows from the above lemma that

Sl m fx"l= @ B Sy l, ofsdnker (fx—2)

@SM=1 M—T=g—Mm

=0 D D ISc[ﬂ, 1, wfs«INker (fx—2).

as=1 oM=q 2M~T=q~
Therefore we have

ew, =2 ¥ T AHw),

as=1 oM=q :M-1=¢-1

2"(Cmy f')=2 > > ch(w) y

as=1 oM=q M-T=q~!

(10)

where we put
Ac’(w)‘—-{%‘ dime {S.[z, 1, ofsINker (fx—2)}

and
N (w)=dim¢ {S.[0, 1, ofsINker (fx—2)} .

If follows that A(cn, f) and v(cn, /™) are completely determined by the non-
negative integer valued functions 4.(-) and N,/(-) on the unit circle. We
obtain (see Lemma 8 and Theorem 9) the following lemma.

LEMMA 15.

i) N (w)=0 except for at most 2n points which will be called Poincaré points
with respect to z.

ii) A(w) is locally constant except possibly at Poincaré points with respect to

z.
i) lim 4. (@)= 45 ().

w—wy

iv) For any z with ker (f«x—2)={0}, 4,°=0 and N/ =0.
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Let Z* and Z- denote the set of all positive integers and the set of all
negative integers respectively. For each integer /, we put

Dit={meZ*; m—1=Ilmods}, D, ={meZ ; m—1=Imod s}
and Dl:Dl+UDl—.

LEMMA 16. For each 0=I<s, either Acn, [)=0 for all me D, or there exist
positive numbers ¢, and a, such that for any m;eD,*, i=1, 2 with m;=m,,

Aemyy = Uemy, ) z(mi—my)e—ay
and such that for any m;eD,”, i=1, 2 with my,=m,,
ACmyy )= ACmy, )z (my—m)ei—ay .
Proof. 1t follows from (10) and Lemma 15 that for each me D,
Xew N=3, T Fi(w),

where
F’*l(w):z > A w).
z :0('1

If F,!#0, then there exist some positive numbers ¢" and @,* such that

% Flo)— 3 Flo)z(Iml|—|m.l)e"—a"

oM=a o™2=a

for any m;eD,, i=1, 2 with |m,;|=|m,|. We can prove the existence of such
numbers &% and a,* analogously to Lemma 1 in [2]. Therefore if A(cn, /)#0
for some m,eD,, then F,'#0 for some a. Set =3¢, and ;=Y a,%, where

2./ denotes the sum of all &, a’=1, satisfying F,'%0. For any m;eD,, i=1,2
with [m,|=|m,|

Aemy N=Aemy, N=2'( T Flo)— 3 Fl(w)

a  @Ml=a oM2=a

=27 L(m ] —Im,[)e—a,"]

=(|m,|—|m,)e;—a,. (g.e.d.)

LEMMA 17. For each 0=I<s, there exist positive integers ky, -+, b, and sequ.
ences my, j=1, -+, q,1>0 such that the numbers m,'k, are mutually dishinct,
{m,*k;}=D,, and for m,* with (m,, s)=1

V(Cmjing, F)=v(cr; /) where v-m,*=1mod s,
and for m," with (m,%, s)+1,
’)(cmﬂkjr f):vT(Cmﬂkj):pT(ckj) .

Here v7(¢) denotes the nullity of the critical submanifold SO(2)¢ in 2(Fix(f),
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id.) where Fix (f) is the set of the fixed points of /. In general for any isometry
h, Fix (h) is a totally geodesic submanifold of M.

Proof. 1t follows from (10) and Lemma 15 that

Wiem, =2 2 ( 2 N’(w)) for any meD,.

as=1 oM=q sl=a~
For each a=exp (2n1t/s) (1=£0 mod s), we set
Q" —{qu+ 2 Ne*(exp Crip/s)#0, 0<3p=sq, (p, s9)=1} .
And put
Q'={qeZ"; Z Ne*(exp (2rip/q))=0, 0<?p=gq, (p, =1}
and Q,= U Q,% Note that if Q,=¢, then v(¢c,, f/)=0 for any meD, In case

as=1

Q=¢, it is sufficient to prove that for any m with (m, s)=1,
vicm, )=v(c, f7),  where »-m=1mods,
and for any non zero m,
v(emy )2 (cn)Zv7(c) .

At first we consider the case where (m, s)=1. If we set w=a” for each «
with a*=1, then w™=a. Hence,

viem Nz 2 B Ne(ah)

asS= 12 =a”

=2 2 NHa)

as=1 zlT=q=T

=3 X NXB) (Here we set f=a’.)

3s=1 511‘:}9—1

=3 B N®

=v(c, f/7) (by (10)).
On the other hand,

Wem =2 2 B NAo9)zX 3 Ne(o)

as=1 oM=q zl=a= oM=1 zl=1

= 2 Nl (@)zN(D).

wm_

It follows from (10) that
vi(cm)= 2 N (@)  and v"(c)=NQ1).

oM=1
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Combining the above inequality and the last equality, we obtain that y(c,, )=
vT(cn)=v7(c) for any non zero m.

In case Q,#¢, for each subset ACQ, let 2(A) denote the least common
multiple of all elements in A. Choose distinct numbers %, ---, k, such that
{By, -, F }—{l}U{k(A) AcQ,}. Keeping j={1, ---, u} fixed, we select from the
sequence mk;c Z— {0}, the greatest subsequence 7, ik satisfying ¢ f 7,%, when-
ever ¢=Q, and q,{’k Then the numbers 7, ’k are mutually distinct, {7,*;
1>0} contains 1 for each j {1, ---, u} and {rsz"E]; i>0, j=1, ---u}=Z—{0}. Choose
some elements k,, -+, k, (resp. m,, i>0, j=1, -, q) from the set {&, -, k,}
(resp. {m,*; i>0, j=1, -, u}) to satisfy {m,’k,; >0, j=1, -, ¢}=D,. If 12

@ .] J 4

2 N (w)#0 for some a=exp (2rit/s) (t30 mod s), there exist some positive

t=a”

integers ¢=Q,* and p satisfying (exp (2rip/sq))™**i=exp (2rit/s). Since (p/sq)
m,'k,=t/smod 1, (p/q)-m,’k;=tmods. The integer ¢ devides k, because g|m,%,
and ¢€Q,. Since ((pk;/q)-m,", s)=1, (m*, s)=1. Therefore if (m,% s)#1, then

D(ij"kjy f) 2 2 N z(w)

jlkJ 1,. =1

If w™"*i=1 and lE N (w)#0, then w*=1. Thus
2¢=1

Wenpip N=F T NA@).

wfi=1 =1

On the other hand, if we note that N.=0 for any z with 2°%#1, then

T Nef(@)=N:()
for each w since /=—1 mod s. We obtain

Memun 1= T Ni@)= T N

w]]l le

By using (10)
vi(empry /)= X N w) and uT(ckJ)— > NXw).

o™y =1 k=1

If (m)} s)=1, there exists some integer 7 with 7-m,’=1 mod s. Since

{o; 0™ =a, B N(@)#0}={0; o"=a’, T Ni()#0}
for each «,
Wempp N=Z T = Nei(o).
as=1, j=ar #l=a-1

On the other hand, if we note that 2,—r=Ir mod s since m,'k,—1=[ mod s,
then
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e, M= 5 5 NiA(0)
Bs= lw 1=p 2 T=p-
=3 3 3 No) (Here we set f™'=a.)

as=1 a)kJ ar 2dr=a-

= Z‘ 2 lE Ne*(@)=v(cmpury [
as=1 ,, kyoqr 2l=a-1
since {z; z2"=a", 2'=1}={z; z=a?, 2°=1}. (q.e.d)
We assume that the critical orbit SO(2)cn,.e, is isolated in 2(M, f). If
(m,", s)=1, it follows from Theorem 6 that

J[O(Emejlkj) cmjlkj):‘g[o(ECk]fri Ck]) .
If (m,*, s)#1, then it holds that
J[O(Efcmjlkjy cmjlkj):‘g[o(cmjlkj)z' .

(See the proof of Lemma 3.6 in [5].) Furthermore it follows from Theorem 6
that
j[o(cmjlkj)T:j[o(ckj)T .

Here 4°c,)T denotes the characteristic invariant of ¢, in the space £(Fix
(f), id.).

COROLLARY 18. Let ¢ be a critical point of fundamental period 1. We as-
sume that all the critical orbits SOQ2)cn, me Z—{0}, are isolated in Q2(M, f).
Then there exists some constant B such that B,cn, /)SB for all me Z—{0} and
k. Furthermore there exists k, such that B,(cn, )=0 for k>k, and all m(#0).

Combining (7) and Lemma 16 we have

COROLLARY 19. Under the hypotheses of Corollary 18, for the resulting con-
stants B and k,, By(cn, f) are uniformly bounded by 2B. Moreover, given k>
ko+1, the number of orbits SO(2)c,, such that Bi(cn, f)#0 is bounded by a const-
ant C which does not depend on k.

The proof of the above corollary is analogous to that of Corollary 2 in [2].

§3. Proof of the main theorem

Let M be a compact simply connected Riemannian manifold. It is known
that for any isometry A on M the inclusion of 2(M, h) into the space of all
continuous maps ¢ : [—M satisfying h(c(0))=ac(1) with the compact open topology
is a homotopy equivalence [3]. It is also known that the Betti numbers

by(2(M, h))=dim H,(2(M, h))
are finite, when M is simply connected (see [7]).

THEOREM 20. (Main theorem) Let f be an isometry on a simply connected
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compact Riemannian manmifold M satisfying f°=1id. for some prime integer s. If
the sequence b, (2(M, f)) is not bounded, then there exist infinitely many geome-
trically distinct invariant closed geodesics under the isometry f on M.

Proof. If there are only finitely many invariant closed geodesics under f.
then we can find some critical points ¢* for E/™ (1=i<r, n,&€Z"*) such that any
non constant critical point in £2(M, f) lies on some orbit SO(2)c*,, meZ. It
follows from the assumption that all the critical orbits SO(2)c',, in (M, f) are
isolated. Choose B k,* and C* for the critical point ¢* according to corollaries

12 and 13 or corollaries 18 and 19, and set B=max {B*; 1<i<r}, h,=max {ky;
1=i<r}, and C=Zj)1C‘. Now for any k>E°+1 the constant C is an upper bound

for the number of orbits SO(2)c',€2(M, f), 1=i=<r, with B.(c'w, /)#0. Hence
it follows from the Morse inequalities (3) that we can choose some regular

value b satisfying b.(2%M, ), 2% M, ))=0 for any fixed E>k,+1 and any

regular value d=b. Therefore b,(2(M, 1)=b,(2°(M, f)) for k> £,4-1. On the

other hand, it follows from (3) that for #>#,+1 and all regular value 0<a<b,
bi(Q%M, ), 24M, [)=2CB.

If we choose 0<a<min {E/"(c*); 1=1=r}, then Fix (f) is a strong deformation
retract of 2%M, f) (see [3]). Hence

bk(‘Qb(My f)v Qa(M’ f)):bk(‘Qb(My f)y Fix (f))

holds from the exact sequence of homology. In case Fix (f)=¢, the last equ-
ality is trivial. Since Fix(f) is a finite dimensional manifold, we derive by
using the exact sequence of homology

b (%M, 1), Fix (f)=b,(2°(M, 1)) for almost all %.

Thus
bu(2(M, 1)=b(2"(M, /))
=b,(2%M, 1), Fix (/)
=by(2"(M, f), 2°(M, /))<2CB  for almost all k.
This contradicts the hypothesis of the theorem. (q.e. d.)

Finally the author wishes to thank Prof. T. Otsuki for his valuable sug-
gestions.
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