M. TANAKA KODAI MATH. SEM. REP. 28 (1977), 262-277

ON INVARIANT CLOSED GEODESICS UNDER ISOMETRIES

By Minoru Tanaka

§0. Introduction

It is an interesting problem to estimate the number of distinct closed geodesics on a compact Riemannian manifold. In [2] Gromoll and Meyer proved the existence of infinitely many geometrically distinct closed geodesics on a compact Riemannian manifold satisfying a certain topological condition. Recently Grove [5] extended their result by means of invariant closed geodesics under involutive isometries. In this paper we will prove a more general theorem than their results. Let M be a connected Riemannian manifold and h an isometry on the manifold M. A geodesic $\gamma: \mathbf{R} \rightarrow M$ is called an invariant geodesic under h if there exists some nonnegative constant θ such that $h(\gamma(t))=\gamma(t+\theta)$ for all $t \in \mathbf{R}$. Two such geodesics γ_1, γ_2 are said to be geometrically distinct if $\gamma_1(\mathbf{R}) \neq \gamma_2(\mathbf{R})$. Let $C^0(M, h)$ be the topological space of all continuous curves $\sigma: [0, 1] \rightarrow M$ satisfying $h(\sigma(0))=\sigma(1)$ with the compact open topology. Now we will state our main theorem.

MAIN THEOREM. Let M be a compact simply connected Riemannian manifold and f an isometry satisfying $f^* = id$. for some prime integer s. Then there exist infinitely many geometrically distinct invariant closed geodesics under f if the sequence of the Betti numbers for the space $C^0(M, f)$ is not bounded.

Note. If s=1, i.e., f=id., (resp. s=2) in our main theorem then we obtain the result of Gromoll and Meyer (resp. Grove).

§1. Preliminaries

Let (M, \langle, \rangle) be an n+1 (≥ 2) dimensional compact Riemannian manifold, and h an isometry on the manifold M. A continuous curve $\gamma: [0, 1] \rightarrow M$ will be called an H^1 -curve when it is absolutely continuous and $\int_0^1 \langle \dot{\gamma}, \gamma \rangle dt < \infty$, where $\dot{\gamma}$ denotes the velocity vector of γ . For each H^1 -curve γ , a continuous vector field X along the curve γ will be called an H^1 -vector field along γ when it is absolutely continuous and $\int_0^1 \langle X', X' \rangle dt < \infty$, where X' denotes the covariant de-

Received Nov. 28, 1975.

rivative of X along γ . Let $\Omega(M, h)$ be the set of H^1 -curves σ from the unit interval I into M satisfying $h(\sigma(0)) = \sigma(1)$. For each $\sigma \in \Omega(M, h)$, let $T_{\sigma}\Omega(M, h)$ be the set of H^1 -vector fields X along the curve σ satisfying $h_*(X(0)) = X(1)$, where h_* denotes the differential of the map h. The inner product on $T_{\sigma}\Omega(M, h)$ is defined by

(1)
$$\ll X, Y \gg = \int_0^1 (\langle X, Y \rangle + \langle X', Y' \rangle) dt$$
 for $X, Y \in T_\sigma \Omega(M, h)$.

By this inner product $T_{\sigma}\Omega(M, h)$ becomes a Hilbert space. $\Omega(M, h)$ has a structure of Riemannian Hilbert manifold [3]. The model spaces of $\Omega(M, h)$ are given by $\{T_{\sigma}\Omega(M, h); \sigma \in \Omega(M, h)\}$ and the Riemannian structure is given by (1). For each $\sigma \in \Omega(M, h)$ we can regard the model space $T_{\sigma}\Omega(M, h)$ as the tangent space of $\Omega(M, h)$ at σ . On $\Omega(M, h)$ we have the energy function E^{h} : $\Omega(M, h) \to \mathbf{R}$ defined by

$$E^{\hbar}(\sigma) = 1/2 \int_{0}^{1} \langle \dot{\sigma}, \dot{\sigma} \rangle dt \quad \text{for } \sigma \in \mathcal{Q}(M, h) .$$

The following are well known facts.

- (a) $E^h: \mathcal{Q}(M, h) \rightarrow \mathbf{R}$ is a smooth function and satisfies condition (C) of Palais and Smale (see [3]).
- (b) σ∈Ω(M, h) is a critical point for E^h if and only if σ is a geodesic on M satisfying h_{*}σ(0)=σ(1) (see [3]). Particularly σ∈Ω(M, id.) is a critical point for E^{id}: Ω(M, id.)→**R** if and only if σ is a closed geodesic in M.
- (c) The Hessian H_c of E^h at a critical point c is given by

$$H_c(X, Y) = \int_0^1 \langle \langle X', Y' \rangle - \langle R(X, \dot{c}), \dot{c}Y \rangle \rangle dt,$$

where R denotes the curvature tensor of M.

For each $\sigma \in \Omega(M, h)$ we always assume that σ is naturally defined on R, i.e.,

(2)
$$\sigma(t) = h^{[t]}(\sigma(t - [t])) \quad \text{for } t \in \mathbf{R},$$

where [t] denotes the greatest integer $\leq t$.

Let g be an isometry on M such that $g^s = \iota d$. for some positive integer s, and SO(2) the parameter circle $[0, s]/\{0, s\}$. We may regard SO(2) as an operation on $\Omega(M, g)$ as follows;

$$SO(2) \times \Omega(M, g) \longrightarrow \Omega(M, g),$$

 $(\alpha, \sigma) \longmapsto \alpha(\sigma), \text{ where } \alpha(\sigma)(t) = \sigma(t+\alpha).$

Note that $\sigma(t+s)=\sigma(t)$ for all $t \in \mathbf{R}$ and $\sigma \in \mathcal{Q}(M, g)$. This action is continuous and for each $\alpha \in SO(2)$, $\alpha : \mathcal{Q}(M, g) \to \mathcal{Q}(M, g)$ is an isometry [4]. A critical point c for E^g in $\mathcal{Q}(M, g)$ lies always on a critical submanifold of $\mathcal{Q}(M, g)$,

SO(2)c when c is non constant, i.e., $E^g(c) \neq 0$. Now we shall construct a tubular neighborhood \mathcal{D} of SO(2)c. We can take for \mathcal{D} the diffeomorphic image of a sufficiently small tubular neighborhood of the zero section in the normal bundle \mathcal{N} of SO(2)c by the induced map from the exponential map exp of M, i.e., the map $\overline{\exp}: \mathcal{N} \to \mathcal{Q}(M, g)$ with $Y \mapsto \exp \circ Y$ is a local diffeomorphism along the zero section of \mathcal{N} . So the normal space \mathcal{N}_c over c is the tangent space of the fiber \mathcal{D}_c at c and $\alpha(\mathcal{D}_c) = \mathcal{D}_{\alpha(c)}$ for $\alpha \in SO(2)$. Let $E_c{}^g$ be the restriction of the energy E^g to \mathcal{D}_c . For the Hessian \widetilde{H}_c of $E_c{}^g$ at c we obtain immediately $\widetilde{H}_c = H_c | \mathcal{N}_c \oplus \mathcal{N}_c$.

The next lemma is essentially proved by Gromoll and Meyer [2].

LEMMA 1. Let $c \in \Omega(M, g)$ be a non constant critical point. Then the operator $A_c: T_c \Omega(M, g) \rightarrow T_c \Omega(M, g)$ defined by

$$\ll A_c X, Y \gg = H_c(X, Y)$$

admits a decomposition $A_c = id + k$ with a compact operator k. Clearly the corresponding operator \widetilde{A}_c for \widetilde{H}_c is also of the form $\widetilde{A}_c = id + \tilde{k}$, where \tilde{k} is compact.

In general let j be a smooth (C^{∞}) function defined on some open neighborhood of the origin in a Hilbert space (H, \langle, \rangle) such that the origin 0 is an isolated critical point of j, and j(0)=0. Let d^2j_0 be the Hessian for j at the origin, and we assume that the operator $A: H \rightarrow H$ defined by $\langle Ax, y \rangle = d^2j_0(x, y)$ admits a decomposition $A=\imath d+K$, where K is a compact operator. We put $N=\ker A$ and $E=N^{\perp}$, the orthogonal complement in H, so that $H=E \oplus N$. The next "splitting lemma" is due to Gromoll and Meyer [1].

LEMMA 2. (Splitting lemma) Let j satisfy the assumptions as above. Then there exist an origin preserving diffeomorphism Φ of some neighborhood of 0 in H into H and an origin preserving smooth map h defined in some neighborhood of 0 in N into E such that $j \circ \Phi(x, y) = \langle Px, Px \rangle - \langle (I-P)x, (I-P)x \rangle + j(h(y), y)$ with an orthogonal projection $P: E \rightarrow E$.

COROLLARY 3. The function j satisfies condition (C) of Palais and Smale in some neighborhood of the origin.

Proof. Let $\{\sigma_n\}$ be any sequence such that the gradient vector of j at σ_n , $V_{j\sigma_n}$, tends to zero as $n \to \infty$. We set $(x_n, y_n) = \Phi^{-1}(\sigma_n)$. If the points σ_n are in a sufficiently small neighborhood of the origin, the points y_n are in a bounded set. Since N is a finite dimensional linear subspace, $\{y_n\}$ has a convergent subsequence. On the other hand, by the splitting lemma

$$P_E(\nabla(j \circ \Phi)_{(x,y)}) = 2(2P - I)x,$$

where P_E denotes the orthogonal projection to E in H. Hence

$$2\|x\| = 2\|(2P - I)x\| \le \|\nabla(j \circ \Phi)_{(x,y)}\| \le \|\Phi_{*(x,y)}\| \cdot \|\nabla_{J_{\Phi}(x,y)}\|,$$

where $\|\cdot\|$ denotes the norm induced by the inner product \langle , \rangle . So if $V_{J_{\sigma_n} \to 0}$, then x_n tends to zero. Therefore the sequence $\{\sigma_n\}$ has a convergent subsequ-

(q. e. d.)

ence.

Using Lemma 1 and Corollary 3, we have

PROPOSITION 4. If c is an isolated critical point of E_c^g and \mathcal{D}_c is sufficiently small, then condition (C) holds for E_c^g .

Now we will define a local homological invariant $\mathcal{H}(E^g, SO(2)c)$ of the energy E^g at the isolated critical orbit SO(2)c by using the construction and the notation of [1]. Choose a sufficiently small tubular neighborhood \mathcal{D} such that E_c^g satisfies condition (C) and such that c is an isolated critical point of E_c^g (see p. 502 in [2]). Thus we can define a local homological invariant of E_c^g at c;

$$\mathcal{H}(E_c^{g}, c) = H_*(W_c, W_c^{-}),$$

where W_c and W_c^- are admissible regions for the function $E_c{}^g$ on the fiber \mathcal{D}_c at c (see [1]). For convenience we use singular homology with a field of characteristic zero. We define a local homological invariant $\mathcal{H}(E^g, SO(2)c)$ of the energy E^g at the isolated critical orbit SO(2)c by

$$\mathcal{H}(E^g, SO(2)c) = H_*(W, W^-)$$
 where $W = SO(2)W_c$ and $W^- = SO(2)W_c^-$.

It does not depend on the choice of the \mathcal{D} and admissible regions W_c , W_c^- .

The next lemma is proved by Gromoll and Meyer [2].

LEMMA 5. Let b be the only critical value of the energy $E^g: \Omega(M, g) \to \mathbf{R}$ in $[b-\varepsilon, b+\varepsilon]$ for some $\varepsilon > 0$. Assume that the critical set in $(E^g)^{-1}(b)$ consists of finitely many critical orbits $SO(2)c^1, \dots, SO(2)c^r$. Then

$$H_*(\mathcal{Q}^{b+\varepsilon}(M, g), \mathcal{Q}^{b-\varepsilon}(M, g)) = \sum_{i=1}^r \mathcal{H}(E^g, SO(2)c^i),$$

where $\Omega^{b_{\pm}\varepsilon}(M, g) = (E^g)^{-1}[0, b \pm \varepsilon]$.

Let a < b be regular values of the energy E^g such that the critical orbits in $(E^g)^{-1}[a, b]$ consist of finitely many critical orbits $SO(2)c^1, \dots, SO(2)c^r$. Then we have the Morse inequalities from Lemma 5;

(3)
$$b_k(\Omega^b(M, g), \Omega^a(M, g)) \leq \sum_{i=1}^T B_k(c^i, g),$$

where $b_k(\Omega^b(M, g), \Omega^a(M, g)) = \dim H_k(\Omega^b, \Omega^a)$

and

$$B_k(c^i, g) = \dim \mathcal{H}_k(E^g, SO(2)c^i)$$
.

If we define a map π of $(SO(2) \times W_c, SO(2) \times W_c^{-})$ onto (W, W^{-}) by $(\alpha, e) \mapsto \alpha(e)$, then the map π is a covering map. Put $\Gamma = \{\alpha \in SO(2); \alpha(c) = c\}$, which is called the isotropy group at c. We can regard Γ as covering transformations on $(SO(2) \times W_c, SO(2) \times W_c^{-})$ by $(\alpha, e) \mapsto (\alpha \beta^{-1}, \beta(e))$ for each $\beta \in \Gamma$. Since

$$(W, W^{-}) = (SO(2) \times W_c, SO(2) \times W_c^{-})/\Gamma$$

we have

(4)
$$H_*(W, W^-) \subset H_*(SO(2) \times W_c, SO(2) \times W_c^-).$$

By the künneth formula

(5)
$$\mathscr{H}(E^{\mathfrak{g}}, SO(2)c) \subset H_*(SO(2)) \otimes \mathscr{H}(E_c^{\mathfrak{g}}, c).$$

Let λ be the index of c in $\Omega(M, g)$. Using the shifting theorem [1]

 $\mathcal{H}_{k+\lambda}(E_c^{g}, c) = \mathcal{H}_k^{0}(E_c^{g}, c),$

where
$$\mathcal{H}_{k}^{0}$$
 denotes the characteristic invariant.

The last equality and (5) give

(6)
$$\mathcal{H}_{k}(E^{g}, SO(2)c) \subset \mathcal{H}_{k-\lambda}^{0}(E_{c}^{g}, c) \oplus \mathcal{H}^{0}_{k-\lambda-1}(E_{c}^{g}, c)$$

Hence

(7)
$$B_{k}(c, g) \leq B_{k-\lambda}^{0}(c, g) + B^{0}_{k-\lambda-1}(c, g),$$

where $B_k^{0}(c, g) = \dim \mathcal{H}_k^{0}(E_c^{g}, c)$.

§2. Estimations of the indexes and nullities of all the critical orbits

For each $\sigma \in \Omega(M, g)$ and non zero integer *m*, we define a curve

$$\sigma_m \in \Omega(M, g^m)$$
 by $\sigma_m(t) = \sigma(mt)$.

Note that each element in $\mathcal{Q}(M, g)$ is assumed to be a map from \mathbf{R} into M by (2). Then we can define the interation map $m: \mathcal{Q}(M, g) \rightarrow \mathcal{Q}(M, g^m)$ by $\sigma \mapsto \sigma_m$ for each non zero integer m. The next theorem is important for us. It is essentially proved by Gromoll and Meyer [2].

THEOREM 6. Let SO(2)c be a non constant critical orbit in $\Omega(M, g)$ such that $SO(2)c_m$ is an isolated critical orbit in $\Omega(M, g^m)$ and $\nu(c, g) = \nu(c_m, g^m)$ for some non zero integer m. Then $\mathcal{H}_k^0(E_c{}^g, c) = \mathcal{H}_k^0(E_c{}^m{}^g^m, c_m)$ for all all k. Here $\nu(c, g)$ (resp. $\nu(c_m, g^m)$) denotes the nullity of the critical submanifold SO(2)c (resp. SO(2) c_m) in $\Omega(M, g)$ (resp. $\Omega(M, g^m)$).

Let f be an isometry on M with an order s, and we assume that s is prime. Now we will study the indexes and nullities of all the critical orbits in $\Omega(M, f)$ generated by the iteration of a critical point. Let σ be a non constant critical point. Since $f(\sigma(t))=\sigma(t+1)$ and $f^s=\iota d$, then $\sigma(t+s)=\sigma(t)$, that is, c is a closed geodesic with the fundamental period s/m, where m is some positive integer. For a critical point $\gamma \in \Omega(M, f)$ there are the following possibilities.

- 1) $\gamma(t) = p$ for all $t \in [0, 1]$ where the point p is a fixed point of f.
- 2) The fundamental period of a critical point is $1/m_0$ for some positive integer m_0 .
- 3) The fundamental period of a critical point is s/m_0 for some positive integer m_0 with $(m_0, s)=1$.

A critical point of type 1) is constant. The other critical points are non constant. At first we will study a critical point c of type 3). Since m_0 and s are relatively prime, there exist some integers n_0 and k_0 satisfying $m_0n_0=1+sk_0$, hence $n_0=1/m_0+(s/m_0)k_0$. If we set $\bar{c}(t)=c(t/m_0)$ for $t\in[0, 1]$ and $g=f^{n_0}$, then \bar{c} is a critical point for E^g and the fundamental period of \bar{c} is s. Clearly for each integer m and r with $m_s+rm_0\neq 0$, \bar{c}_{ms+rm_0} is a critical point for E^{f^r} . The critical orbits $SO(2)\bar{c}_{ms+m_0}, m\in \mathbb{Z}$, are all the orbits in $\Omega(M, f)$ generated by the closed geodesic c. We may assume $1\leq m_0<s$ without loss of generality.

Let $V_{\tilde{c}}$ be the vector space of smooth vector fields along \tilde{c} orthogonal to \tilde{c} . A linear map $L_{\tilde{c}}: V_{\tilde{c}} \to V_{\tilde{c}}$ is defined by $L_{\tilde{c}} X = -X'' - R(X, \tilde{c})\tilde{c}$. Let $\lambda(\tilde{c}_{ms+rm_0}, f^r)$ and $\nu(\tilde{c}_{ms+rm_0}, f^r)$ be the index and the nullity of the submanifold

$$SO(2)\bar{c}_{ms+rm_0}$$
 in $\Omega(M, f^r)$

respectively. We have

$$\begin{aligned} \lambda(\bar{c}_{ms+m_0}, f) &= \sum_{\mu < 0} \dim \{ X \in V_{\bar{c}} ; L_{\bar{c}} X = \mu X, X(t+ms+m_0) = f_*(X(t)) \\ & \text{for all } t \in \mathbf{R} \} , \\ \nu(\bar{c}_{ms+rm_0}, f^r) &= \dim \{ X \in V_{\bar{c}} ; L_{\bar{c}} X = 0, X(t+ms+rm_0) = f_*^r(X(t)) \end{aligned}$$

for all $t \in \mathbf{R}$

(See Theorem 2.3 in [6, p. 45].)

Let us complexify $V_{\overline{c}}$ and write it as $V_{\overline{c}}$ again. We also extend f_*, g and $L_{\overline{c}}$ to *C*-linear maps and write them as $f_*, g_*, L_{\overline{c}}$ again respectively. For a complex number $\omega \in S^1 \subset C$, a real number μ and a non zero integer *m*, let $S_{\overline{c}} [\mu, m, \omega g_*^m]$ denote the vector space of complex vector fields *Y* in $V_{\overline{c}}$ satisfying $L_{\overline{c}} Y = \mu Y$ and $Y(t+m) = \omega g_*^m(Y(t))$.

LEMMA 7.
$$S_{\overline{c}}[\mu, m, g_*^m] = \bigoplus_{\omega^m = 1} S_{\overline{c}}[\mu, 1, \omega g_*].$$

Proof. It is trivial that $S_{\tilde{c}}[\mu, m, g_*^m] \supset_{\omega^{m-1}} S_{\tilde{c}}[\mu, 1, \omega g_*]$. We assume that m is positive. We can prove the lemma analogously for negative intgers. For any $Y \in S_{\tilde{c}}[\mu, m, g_*^m]$ and ω with $\omega^m = 1$, we set

$$Y_{\omega}(t) = 1/m \sum_{l=0}^{m-1} \omega^{-l} g_*^{-l+1}(Y(t+l-1)).$$

Clearly, $L_{\tilde{c}} Y_{\omega} = \mu Y_{\omega}$ and $Y = \sum_{\omega^{m=1}} \omega Y_{\omega}$. From the definition of Y_{ω} ,

$$Y_{\omega}(t+1) = 1/m \left[\sum_{l=0}^{m-1} \omega^{-l} g_{*}^{-l+1}(Y(t+l)) \right]$$
$$= \omega/m \left[g_{*} \left(\sum_{l=0}^{m-1} \omega^{-l-1} g_{*}^{-l}(Y(t+l))) \right] \right]$$

$$= \omega/m [g_* \{ \sum_{l=1}^{m-1} \omega^{-l} g_*^{-l+1} (Y(t+l-1)) + \omega^{-m} g_*^{-m+1} (Y(t+m-1)) \}]$$

= $\omega g_* (Y_\omega(t)).$

(q. e. d.)

Hence $Y_{\omega} \in S_{\tilde{c}} [\mu, 1, \omega g_*].$

Since $f^r = g^{ms+rm_0}$, $S_{\overline{c}}[\mu, ms+rm_0, f_*^r] = \bigoplus_{\omega^{ms+rm_0}=1} S_{\overline{c}}[\mu, 1, \omega g_*]$.

Putting $\Lambda_{\bar{c}}(\omega) = \sum_{\mu < 0} \dim_c S_{\bar{c}}[\mu, 1, \omega g_*]$ and $N_{\bar{c}}(\omega) = \dim_c S_{\bar{c}}[0, 1, \omega g_*]$, we obtain

$$\begin{aligned} \lambda(\bar{c}_{ms+m_0},f) &= \sum_{\omega^{ms+m_{0-1}}} \Lambda_{\bar{c}}(\omega) , \\ \nu(\bar{c}_{ms+rm_0},f^r) &= \sum_{\omega^{ms+rm_{0-1}}} N_{\bar{c}}(\omega) . \end{aligned}$$

It follows that $\lambda(\bar{c}_{ms+m_0}, f)$ and $\nu(\bar{c}_{ms+rm_0}, f^r)$ are completely determined by the nonnegative integer valued functions $\Lambda_{\bar{c}}(\cdot)$ and $N_{\bar{c}}(\cdot)$ on the unit circle respectively.

Let *E* denote the complexification of the orthogonal complement of $\dot{\bar{c}}(0)$ in the tangent space $M_{\bar{c}(0)}$ at $\bar{c}(0)$. Then so called Poincaré map *P* is defined in the following;

$$P: E \oplus E \longrightarrow E \oplus E, \quad (u, v) \longmapsto (g_*^{-1}(Y(1)), g_*^{-1}(Y'(1)))$$

where Y is the unique complex Jacobi field (i.e. $L_{\bar{c}} Y=0$) satisfying Y(0)=u and Y'(0)=v. Since $N_{\bar{c}}(z)=\dim_c \ker(P-z)$ and $\dim_c (E\oplus E)=2n$, we obtain

LEMMA 8. $N_{\bar{c}}(z)=0$ except for at most 2n points which will be called Poincaré points.

The next theorem is contained in Theorem 3.1 and 3.2 of M. Morse [6, p. 91].

THEOREM 9. Let J be a bounded interval such that the end points are not in the eigenvalues of $L_{\bar{c}}$ subject to the boundary condition $Y(t+1)=zg_*(Y(t))$. Then there is a neighborhood U of z in S¹ such that the end points of J are not in the eigenvalues of $L_{\bar{c}}$ subject to $Y(t+1)=\omega g_*(Y(t))$ for $\omega \in U$ and

$$\sum_{\mu \in J} \dim_c S_{\bar{c}} [\mu, 1, \omega g_*] = \sum_{\mu \in J} \dim_c S_{\bar{c}} [\mu, 1, zg_*].$$

It follows from Theorem 9 that

 $\Lambda_{\bar{c}}(\cdot)$ is locally constant except possibly at Poincaré points,

(9)

and $\lim_{z\to z_0} \Lambda_{\bar{c}}(z) \geq \Lambda_{\bar{c}}(z_0)$.

268

(8)

By using Lemma 8, (8) and (9) we obtain the following two lemmas.

LEMMA 10. Either $\lambda(\bar{c}_{ms+m_0}, f)=0$ for all m or there are positive numbers aand ε such that for any integers $m_1 \ge m_2 \ge 0$

$$\lambda(\bar{c}_{m_1s+m_0},f) - \lambda(\bar{c}_{m_2s+m_0},f) \ge (m_1 - m_2)\varepsilon - a$$

and such that for any negative integers $m_1 \leq m_2$

$$\lambda(\bar{c}_{m_1s+m_0},f) - \lambda(\bar{c}_{m_2s+m_0},f) \ge (m_2 - m_1)\varepsilon - a.$$

The proof of Lemma 10 is analogous to that of Lemma 1 in [2].

LEMMA 11. There exist positive integers k_1, \dots, k_q and sequences $m_j \in \mathbb{Z}$, i > 0, $j=1, \dots, q$, such that the numbers $m_j k_j$ are mutually distinct, $\{m_j k_j\} = \{ms+m_0; m \in \mathbb{Z}\}$ and

$$\nu(\bar{c}_{m_j}, f) = \nu(\bar{c}_{k_j}, f^r) \text{ where } r \cdot m_j \equiv 1 \mod s.$$

Outline of proof. We can prove analogously to Lemma 2 in [2] that there exist positive integers $\bar{k}_1, \dots, \bar{k}_l$ and sequences $\bar{m}_j \in \mathbb{Z}$, $i > 0, j = 1, \dots, l$, such that the numbers $\bar{m}_j \tilde{k}_j$ are mutually distinct, $\{\bar{m}_j \tilde{k}_j\} = \mathbb{Z} - \{0\}$ and

$$\sum_{\overline{\omega}_{j}^{i}\overline{k}_{j=1}} N_{\overline{c}}(\omega) = \sum_{\omega\overline{k}_{j=1}} N_{\overline{c}}(\omega).$$

Choose some elements $k_1, \dots k_q$ (resp. m_j^i) from the set $\{\bar{k}_1, \dots \bar{k}_l\}$ (resp. $\{\bar{m}_j^i; i > 0, j=1, \dots, l\}$) to satisfy $\{m_j^i k_j\} = \{ms+m_0; m \in \mathbb{Z}\}$. We can checkeasily by using (8) that $\nu(\bar{c}_{m_j^i k_j}, f) = \nu(\bar{c}_{k_j}, f^r)$ holds. (q. e. d.)

Combining Theorem 6 and Lemma 11 we obtain

COROLLARY 12. Let c be a critical point in $\Omega(M, f)$ of type 3) and we assume that all the critical orbits $SO(2)\bar{c}_{ms+m_0}, m \in \mathbb{Z}$, are isolated in $\Omega(M, f)$. Then there exists some constant B such that $B_k^{0}(\bar{c}_{ms+m_0}, f) \leq B$ for all k and m. Furthermore there exists a number k_0 such that $B_k^{0}(\bar{c}_{ms+m_0}, f)=0$ for $k > k_0$ and all m.

Note that $\nu(\bar{c}_{ms+m_0}, f) \leq 2n$ for all *m*. Hence we can take the number k_0 to be not greater than 2n.

Combining (7), Lemma 10 and Corollary 12 we obtain

COROLLARY 13. Under the hypotheses of Corollary 12, for the resulting constants B and k_0 , $B_k(\bar{c}_{ms+m_0}, f)$ are uniformly bounded by 2B. Moreover, given $k > k_0+1$, the number of orbits $SO(2)\bar{c}_{ms+m_0}$ such that $B_k(\bar{c}_{ms+m_0}, f) \neq 0$ is bounded by a constant C which does not depend on k.

The proof of the above corollary is the same as that of Corollary 2 in [2].

Next we will prove analogous corollaries to Corollary 12 and Corollary 13 for a critical point c of type 2). If we set $\bar{c}(t)=c(t/m_0)$, then \bar{c} is critical for E^f . The fundamental period of \bar{c} is 1, and the orbits $SO(2)\bar{c}_m, m \in \mathbb{Z} - \{0\}$, are all the critical orbits in $\Omega(M, f)$ generated by c. Therefore we may assume

that the critical point \bar{c} is c, that is, $m_0=1$. Let V_c be a vector space of smooth vector fields along c which are orthogonal to c. A linear map $L_c: V_c \to V_c$ is defined by

$$L_c X = -X'' - R(X', \dot{c})\dot{c}$$
.

Complexify V_c and write it as V_c again. We also extend f_* and L_c to C-linear maps, and write them as f_* , L_c again respectively. For each non zero integer m, real number μ and $\omega \in S^1 \subset C$, let $S_c[\mu, m, \omega f_*]$ be the set of complex vector fields $X \in V_c$ satisfying $L_c X = \mu X$ and $X(t+m) = \omega f_*(X(t))$.

LEMMA 14. The next equalities hold for any integer r, $m(\neq 0)$ and real μ .

1)
$$S_{c}[\mu, m, f_{*}^{r}] = \bigoplus_{\omega^{m_{u}=1}} S_{c}[\mu, 1, \omega f_{*}] \cap S_{c}[\mu, m, f_{*}^{r}]$$

2)
$$S_c[\mu, 1, \omega f_*] \cap S_c[\mu, m, f_*] = S_c[\mu, 1, \omega f_*] \cap \ker (f_*^{m-r} - \omega^{-m}),$$

where the linear map $f_*: V_c \to V_c$ is defined by $(f_*X)(t) = f_*(X(t))$.

3)
$$S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*}^{m-r} - \alpha^{-1}) = \bigoplus_{z^{m-r} = \alpha^{-1}} S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*} - z),$$

where we set $\omega^m = \alpha$.

Proof. If |ms|=1, then s=1 and $m=\pm 1$. Since $S_c[\mu, 1, id.]=S_c[\mu, -1, id.]$, the first equality is trivial. If $|ms|\geq 2$, for any $Y\in S_c[\mu, m, f_*^r]$ and ω with $\omega^{ms}=1$, we set $Y_{\omega}(t)=1/|ms|\sum_{q=0}^{|ms|-1}\omega^{-q}f_*^{-q+1}(Y(t+q-1))$. It is easy to check that $Y_{\omega}\in S_c[\mu, 1, \omega f_*]\cap S_c[\mu, m, f_*^r]$ and that $Y=\sum_{\omega^{ms}=1}\omega Y_{\omega}$ (see Lemma 7). Thus the first equality holds since it is trivial that

$$S_{c}[\mu, m, f_{*}^{r}] \supset \bigoplus_{\omega^{m_{s-1}}} S_{c}[\mu, 1, \omega f_{*}] \cap S_{c}[\mu, m, f_{*}^{r}].$$

We derive the second equality from a direct computation. It is trivial that the third equality holds for m-r=1 and that

$$S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*}^{m-r} - \alpha^{-1}) \supset \bigoplus_{z^{m-r} = \alpha^{-1}} S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*} - z).$$

If $m-r \ge 2$, for any $Y \in S_c[\mu, 1, \omega f_*] \cap \ker(f_*^{m-r} - \alpha^{-1})$ and z with $z^{m-r} = \alpha^{-1}$, we set

$$Y_z = 1/(m-r) \sum_{l=1}^{m-r-1} z^{-l} f_*^{l-1}(Y)$$

We can check easily that $Y_z \in S_c[\mu, 1, \omega f_*] \cap \ker(f_*-z)$ and $Y = \sum_{z^{m-1}=\alpha^{-1}} zY_z$. Hence the equality holds for $m-r \ge 1$. If m-r=0.

$$S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*}^{\circ} - \alpha^{-1}) = S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*}^{\ast} - \alpha^{-1})$$
$$= \bigoplus_{z^{\circ} = \alpha^{-1}} S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*} - z)$$
$$= \bigoplus_{z^{\circ} = \alpha^{-1}} S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*} - z),$$

because $z^s=1$ for any z with ker $(f_*-z) \neq \{0\}$. If m-r < 0,

$$S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*}^{m-r} - \alpha^{-1}) = S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*}^{r-m} - \alpha)$$
$$= \underset{z^{r-m} = \alpha}{\bigoplus} S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*} - z)$$
$$= \underset{z^{m-r} = \alpha^{-1}}{\bigoplus} S_{c}[\mu, 1, \omega f_{*}] \cap \ker (f_{*} - z).$$
(q. e. d.)

It follows from the above lemma that

$$S_{c}[\mu, m, f_{*}^{r}] = \bigoplus_{\omega^{sm}=1} \bigoplus_{z^{m-r}=\omega^{-m}} S_{c}[\mu, 1, \omega f_{*}] \cap \ker(f_{*}-z)$$
$$= \bigoplus_{\alpha^{s=1}} \bigoplus_{\omega^{m}=\alpha} \bigoplus_{z^{m-r}=\alpha^{-1}} S_{c}[\mu, 1, \omega f_{*}] \cap \ker(f_{*}-z).$$

Therefore we have

(10)
$$\lambda(c_m, f) = \sum_{\alpha^{s=1}} \sum_{\omega^{m=\alpha}} \sum_{z^{m-1}=\alpha^{-1}} \Lambda_c^{z}(\omega),$$
$$\nu(c_m, f^r) = \sum_{\alpha^{s=1}} \sum_{\omega^{m=\alpha}} \sum_{z^{m-r}=\alpha^{-1}} N_c^{z}(\omega),$$

where we put

$$\Lambda_c^{z}(\omega) = \sum_{\mu < 0} \dim_{\mathbf{C}} \{ S_c[\mu, 1, \omega f_*] \cap \ker(f_* - z) \}$$

and

$$N_c^z(\omega) = \dim_c \{S_c[0, 1, \omega f_*] \cap \ker(f_* - z)\}$$
.

If follows that $\lambda(c_m, f)$ and $\nu(c_m, f^r)$ are completely determined by the nonnegative integer valued functions $\Lambda_c^{z}(\cdot)$ and $N_c^{z}(\cdot)$ on the unit circle. We obtain (see Lemma 8 and Theorem 9) the following lemma.

Lemma 15.

- i) $N_c^z(\omega)=0$ except for at most 2n points which will be called Poincaré points with respect to z.
- ii) $\Lambda_c^{z}(\omega)$ is locally constant except possibly at Poincaré points with respect to z.
- iii) lim $\Lambda_c^{z}(\omega) \ge \Lambda_c^{z}(\omega_0)$.
- iv) For any z with ker $(f_*-z)=\{0\}$, $\Lambda_c^{z}\equiv 0$ and $N_c^{z}\equiv 0$.

Let Z^+ and Z^- denote the set of all positive integers and the set of all negative integers respectively. For each integer l, we put

$$D_l^+ = \{m \in \mathbb{Z}^+; m-1 \equiv l \mod s\}, D_l^- = \{m \in \mathbb{Z}^-; m-1 \equiv l \mod s\}$$

and $D_l = D_l^+ \cup D_l^-$.

LEMMA 16. For each $0 \leq l < s$, either $\lambda(c_m, f) = 0$ for all $m \in D_l$ or there exist positive numbers ε_l and a_l such that for any $m_i \in D_l^+$, i=1, 2 with $m_1 \geq m_2$,

$$\lambda(c_{m_1}, f) - \lambda(c_{m_2}, f) \ge (m_1 - m_2)\varepsilon_l - a_l$$

and such that for any $m_i \in D_i^-$, i=1, 2 with $m_2 \ge m_1$,

$$\lambda(c_{m_1}, f) - \lambda(c_{m_2}, f) \ge (m_2 - m_1)\varepsilon_l - a_l$$

Proof. It follows from (10) and Lemma 15 that for each $m \in D_l$,

$$\lambda(c_m, f) = \sum_{\alpha^{s=1}} \sum_{\omega^m = \alpha} F_{\alpha}^{l}(\omega),$$

where

$$F_{\alpha}^{l}(\omega) = \sum_{z^{l}=\alpha^{-1}} \Lambda_{c}^{z}(\omega)$$
.

If $F_{\alpha}{}^{l} \equiv 0$, then there exist some positive numbers $\varepsilon_{l}{}^{\alpha}$ and $a_{l}{}^{\alpha}$ such that

$$\sum_{\boldsymbol{\omega}^{m_1=\alpha}} F_{\alpha}^{l}(\boldsymbol{\omega}) - \sum_{\boldsymbol{\omega}^{m_2=\alpha}} F_{\alpha}^{l}(\boldsymbol{\omega}) \ge (|m_1| - |m_2|)\varepsilon_l^{\alpha} - a_l^{\alpha}$$

for any $m_i \in D_l$, i=1, 2 with $|m_1| \ge |m_2|$. We can prove the existence of such numbers ε_l^{α} and a_l^{α} analogously to Lemma 1 in [2]. Therefore if $\lambda(c_{m_0}, f) \ne 0$ for some $m_0 \in D_l$, then $F_{\alpha}^{\ l} \ne 0$ for some α . Set $\varepsilon_l = \sum_{\alpha}' \varepsilon_l^{\alpha}$ and $a_l = \sum_{\alpha}' a_l^{\alpha}$, where \sum_{α}' denotes the sum of all α , $\alpha^s = 1$, satisfying $F_{\alpha}^{\ l} \ne 0$. For any $m_i \in D_l$, i=1, 2with $|m_1| \ge |m_2|$

$$\begin{split} \lambda(c_{m_1}, f) - \lambda(c_{m_2}, f) &= \sum_{\alpha}' \left(\sum_{\omega^{m_1 = \alpha}} F_{\alpha}^{\ l}(\omega) - \sum_{\omega^{m_2 = \alpha}} F_{\alpha}^{\ l}(\omega) \right) \\ &= \sum_{\alpha}' \left[\left(|m_1| - |m_2| \right) \varepsilon_l^{\ \alpha} - a_l^{\ \alpha} \right] \\ &= \left(|m_1| - |m_2| \right) \varepsilon_l - a_l \,. \end{split}$$
(q. e. d.)

LEMMA 17. For each $0 \le l < s$, there exist positive integers k_1, \dots, k_q and sequences $m_j^i, j=1, \dots, q, i>0$ such that the numbers $m_j^i k_j$ are mutually distinct, $\{m_j^i k_j\}=D_l$, and for m_j^i with $(m_j^i, s)=1$

$$\nu(c_{m_i i_{k_i}}, f) = \nu(c_{k_i}, f^r) \qquad where \ r \cdot m_i^{\ i} \equiv 1 \bmod s,$$

and for m_1^i with $(m_1^i, s) \neq 1$,

$$\nu(c_{m_j^{\imath}k_j}, f) = \nu^T(c_{m_j^{\imath}k_j}) = \nu^T(c_{k_j}).$$

Here $\nu^{T}(\bar{c})$ denotes the nullity of the critical submanifold $SO(2)\bar{c}$ in $\Omega(\operatorname{Fix}(f),$

id.) where Fix(f) is the set of the fixed points of f. In general for any isometry h, Fix(h) is a totally geodesic submanifold of M.

Proof. It follows from (10) and Lemma 15 that

$$\nu(c_m, f) = \sum_{\alpha^{s=1}} \sum_{\omega^{m=\alpha}} (\sum_{z^{l=\alpha^{-1}}} N_c^{z}(\omega)) \quad \text{for any } m \in D_l.$$

For each $\alpha = \exp(2\pi i t/s)$ ($t \equiv 0 \mod s$), we set

$$Q_{l}^{\alpha} = \{q \in \mathbb{Z}^{+}; \sum_{z^{l} = \alpha^{-1}} N_{c}^{z}(\exp(2\pi i p/sq)) \neq 0, \ 0 < \exists p \leq sq, \ (p, sq) = 1\}.$$

And put

$$Q_l^{1} = \{q \in \mathbf{Z}^+; \sum_{z^{l=1}} N_c^{z}(\exp(2\pi i p/q)) = 0, \ 0 < {}^{\mathfrak{g}} p \leq q, \ (p, q) = 1\}$$

and $Q_l = \bigcup_{\alpha^{\delta=1}} Q_l^{\alpha}$. Note that if $Q_l = \phi$, then $\nu(c_m, f) = 0$ for any $m \in D_l$. In case $Q = \phi$, it is sufficient to prove that for any m with (m, s) = 1,

 $\nu(c_m, f) \ge \nu(c, f^r)$, where $r \cdot m \equiv 1 \mod s$,

and for any non zero m,

$$\nu(c_m, f) \geq \nu^T(c_m) \geq \nu^T(c)$$
.

At first we consider the case where (m, s)=1. If we set $\omega = \alpha^r$ for each α with $\alpha^s = 1$, then $\omega^m = \alpha$. Hence,

$$\nu(c_{m}, f) \geq \sum_{\alpha^{s=1}} \sum_{z^{l=\alpha^{-1}}} N_{c}^{z}(\alpha^{r})$$

$$= \sum_{\alpha^{s=1}} \sum_{z^{l}r=\alpha^{-r}} N_{c}^{z}(\alpha^{r})$$

$$= \sum_{\beta^{s=1}} \sum_{z^{l}r=\beta^{-1}} N_{c}^{z}(\beta) \quad (\text{Here we set } \beta = \alpha^{r}.)$$

$$= \sum_{\beta^{s=1}} \sum_{z^{1-r=\beta^{-1}}} N_{c}^{z}(\beta)$$

$$= \nu(c, f^{r}) \text{ (by (10))}.$$

On the other hand,

$$\nu(c_m, f) = \sum_{\alpha^{s=1}} \sum_{\omega^m = \alpha} \sum_{z^{l} = \alpha^{-1}} N_c^{z}(\omega) \ge \sum_{\omega^m = 1} \sum_{z^{l} = 1} N_c^{z}(\omega)$$
$$\ge \sum_{\omega^m = 1} N_c^{-1}(\omega) \ge N_c^{-1}(1).$$

It follows from (10) that

$$\nu^{T}(c_{m}) = \sum_{\boldsymbol{\omega}^{m=1}} N_{c}^{1}(\boldsymbol{\omega}) \quad \text{and } \nu^{T}(c) = N_{c}^{1}(1).$$

Combining the above inequality and the last equality, we obtain that $\nu(c_m, f) \ge \nu^T(c_m) \ge \nu^T(c)$ for any non zero *m*.

In case $Q_i \neq \phi$, for each subset $A \subset Q_i$ let k(A) denote the least common multiple of all elements in A. Choose distinct numbers $\bar{k}_1, \dots, \bar{k}_u$ such that $\{\bar{k}_1, \dots, \bar{k}_u\} = \{1\} \cup \{k(A); A \subset Q_i\}$. Keeping $j \in \{1, \dots, u\}$ fixed, we select from the sequence $m\bar{k}_j \in \mathbb{Z} - \{0\}$, the greatest subsequence $\bar{m}_j{}^i\bar{k}_j$ satisfying $q \nmid \bar{m}_j{}^i\bar{k}_j$ whenever $q \in Q_i$ and $q \not \mid \bar{k}_j$. Then the numbers $\bar{m}_j{}^i\bar{k}_j$ are mutually distinct, $\{\bar{m}_j{}^i; i>0\}$ contains 1 for each $j \in \{1, \dots, u\}$ and $\{\bar{m}_j{}^i\bar{k}_j; i>0, j=1, \dots u\} = \mathbb{Z} - \{0\}$. Choose some elements k_1, \dots, k_q (resp. $m_j{}^i, i>0, j=1, \dots, q$) from the set $\{\bar{k}_1, \dots, \bar{k}_u\}$ (resp. $\{\bar{m}_j{}^i; i>0, j=1, \dots, u\}$) to satisfy $\{m_j{}^ik_j; i>0, j=1, \dots, q\} = D_i$. If $\sum_{\omega^{m_j{}^ik_j=\alpha}} \mathbb{Z} - \{0\}$.

 $\sum_{z^{l}=\alpha^{-1}} N_{c}^{z}(\omega) \neq 0$ for some $\alpha = \exp(2\pi i t/s)$ ($t \equiv 0 \mod s$), there exist some positive

integers $q \in Q_l^{\alpha}$ and p satisfying $(\exp(2\pi i p/sq))^{m_j \cdot k_j} = \exp(2\pi i t/s)$. Since $(p/sq) = m_j \cdot k_j \equiv t/s \mod 1$, $(p/q) \cdot m_j \cdot k_j \equiv t \mod s$. The integer q devides k_j because $q \mid m_j \cdot k_j$ and $q \in Q_l$. Since $((pk_j/q) \cdot m_j \cdot s) = 1$, $(m_j \cdot s) = 1$. Therefore if $(m_j \cdot s) \neq 1$, then

$$\nu(c_{m_j^{\iota}k_j}, f) = \sum_{\omega^{m_j^{\iota}k_{j-1}}} \sum_{z^{l-1}} N_c^{z}(\omega) \,.$$

If $\omega^{m_j i_{k_j}} = 1$ and $\sum_{z^{l_{-1}}} N_c^{z}(\omega) \neq 0$, then $\omega^{k_j} = 1$. Thus

$$\nu(c_{m_j^{i}k_j}, f) = \sum_{\omega^{k_{j=1}}} \sum_{z^{l=1}} N_c^{z}(\omega)$$

On the other hand, if we note that $N_c^z \equiv 0$ for any z with $z^s \neq 1$, then

$$\sum_{z^{l=1}} N_c^{z}(\omega) = N_c^{1}(\omega)$$

for each ω since $l \equiv -1 \mod s$. We obtain

$$u(c_{m_j^{i_k}j_j}, f) = \sum_{\omega^{m_j^{i_k}j_{j=1}}} N_c^{1}(\omega) = \sum_{\omega^{k_j}j_{j=1}} N_c^{1}(\omega).$$

By using (10)

$$u^T(c_{m_j^{i_k}k_j}, f) = \sum_{\omega^{m_j^{i_k}j=1}} N_c^{i_j}(\omega) \text{ and } \nu^T(c_{k_j}) = \sum_{\omega^{k_j=1}} N_c^{i_j}(\omega).$$

If $(m_j^i, s) = 1$, there exists some integer r with $r \cdot m_j^i \equiv 1 \mod s$. Since

$$\{\boldsymbol{\omega} ; \boldsymbol{\omega}^{m_j \imath_{k_j}} = \boldsymbol{\alpha}, \sum_{z^{l} = \alpha^{-1}} N_c^{z}(\boldsymbol{\omega}) \neq 0\} = \{\boldsymbol{\omega} ; \boldsymbol{\omega}^{k_j} = \alpha^r, \sum_{z^{l} = \alpha^{-1}} N_c^{z}(\boldsymbol{\omega}) \neq 0\}$$

for each α ,

$$\nu(c_{m_j \iota_{k_j}}, f) = \sum_{\alpha^{s=1}} \sum_{\omega^{k_{j=\alpha^r}}} \sum_{z^{l=\alpha^{-1}}} N_c^{z}(\omega).$$

On the other hand, if we note that $k_j - r \equiv lr \mod s$ since $m_j k_j - 1 \equiv l \mod s$, then

$$\begin{split} \nu(c_{k_j}, f^r) &= \sum_{\beta^{s=1}} \sum_{\omega^k_{j=\beta}} \sum_{z^{l\tau=\beta-1}} N_c^z(\omega) \\ &= \sum_{\alpha^{s=1}} \sum_{\omega^{k_{j=\alpha\tau}}} \sum_{z^{l\tau=\alpha-r}} N_c^z(\omega) \text{ (Here we set } \beta^{m_j \imath} = \alpha.) \\ &= \sum_{\alpha^{s=1}} \sum_{\omega^{k_{j=\alpha\tau}}} \sum_{z^{l=\alpha-1}} N_c^z(\omega) = \nu(c_{m_j \imath_{k_j}}, f) , \end{split}$$

since $\{z; z^{lr} = \alpha^{-r}, z^s = 1\} = \{z; z = \alpha^{-1}, z^s = 1\}.$ (q. e. d.)

We assume that the critical orbit $SO(2)c_{m_j i_{k_j}}$ is isolated in $\Omega(M, f)$. If $(m_j i, s)=1$, it follows from Theorem 6 that

$$\mathcal{H}^{0}(E^{f}_{c_{m_{j}}i_{k_{j}}}, c_{m_{j}i_{k_{j}}}) = \mathcal{H}^{0}(E_{c_{k_{j}}}f^{r}, c_{k_{j}}).$$

If $(m_j^i, s) \neq 1$, then it holds that

$$\mathcal{H}^{0}(E^{f}_{c_{m_{j}},k_{j}}, c_{m_{j},k_{j}}) = \mathcal{H}^{0}(c_{m_{j},k_{j}})^{T}.$$

(See the proof of Lemma 3.6 in [5].) Furthermore it follows from Theorem 6 that

$$\mathcal{H}^{0}(c_{m_{j}^{\iota}k_{j}})^{T} = \mathcal{H}^{0}(c_{k_{j}})^{T}.$$

Here $\mathscr{H}^0(c_m)^T$ denotes the characteristic invariant of c_m in the space $\mathscr{Q}(\text{Fix}(f), id.)$.

COROLLARY 18. Let c be a critical point of fundamental period 1. We assume that all the critical orbits $SO(2)c_m$, $m \in \mathbb{Z} - \{0\}$, are isolated in $\Omega(M, f)$. Then there exists some constant B such that $B_k^{\circ}(c_m, f) \leq B$ for all $m \in \mathbb{Z} - \{0\}$ and k. Furthermore there exists k_0 such that $B_k^{\circ}(c_m, f) = 0$ for $k > k_0$ and all $m(\neq 0)$.

Combining (7) and Lemma 16 we have

COROLLARY 19. Under the hypotheses of Corollary 18, for the resulting constants B and k_0 , $B_k(c_m, f)$ are uniformly bounded by 2B. Moreover, given $k > k_0+1$, the number of orbits $SO(2)c_m$ such that $B_k(c_m, f) \neq 0$ is bounded by a constant C which does not depend on k.

The proof of the above corollary is analogous to that of Corollary $2 \ln \lfloor 2 \rfloor$.

§3. Proof of the main theorem

Let M be a compact simply connected Riemannian manifold. It is known that for any isometry h on M the inclusion of $\Omega(M, h)$ into the space of all continuous maps $\sigma: I \rightarrow M$ satisfying $h(\sigma(0)) = \sigma(1)$ with the compact open topology is a homotopy equivalence [3]. It is also known that the Betti numbers

$$b_k(\Omega(M, h)) = \dim H_k(\Omega(M, h))$$

are finite, when M is simply connected (see [7]).

THEOREM 20. (Main theorem) Let f be an isometry on a simply connected

compact Riemannian manifold M satisfying $f^s = id$, for some prime integer s. If the sequence $b_{k}(\Omega(M, f))$ is not bounded, then there exist infinitely many geometrically distinct invariant closed geodesics under the isometry f on M.

Proof. If there are only finitely many invariant closed geodesics under f. then we can find some critical points c^i for $E^{f^n_i}$ $(1 \le i \le r, n_i \in \mathbb{Z}^+)$ such that any non constant critical point in $\Omega(M, f)$ lies on some orbit $SO(2)c^{*}_{m}, m \in \mathbb{Z}$. It follows from the assumption that all the critical orbits $SO(2)c^i_m$ in $\mathcal{Q}(M, f)$ are isolated. Choose B^i , k_0^i and C^i for the critical point c^i according to corollaries 12 and 13 or corollaries 18 and 19, and set $\hat{B}=\max\{B^i; 1\leq i\leq r\}, \hat{k}_0=\max\{k_0^i\}$ $1 \leq i \leq r$, and $\hat{C} = \sum_{i=1}^{r} C^{i}$. Now for any $k > \hat{k}^{0} + 1$ the constant \hat{C} is an upper bound for the number of orbits $SO(2)c_m^i \in \mathcal{Q}(M, f)$, $1 \leq i \leq r$, with $B_k(c_m^i, f) \neq 0$. Hence it follows from the Morse inequalities (3) that we can choose some regular value b satisfying $b_k(\Omega^d(M, f), \Omega^b(M, f)) = 0$ for any fixed $k > \hat{k}_0 + 1$ and any regular value $d \ge b$. Therefore $b_k(\mathcal{Q}(M, f)) = b_k(\mathcal{Q}^b(M, f))$ for $k > \hat{k}_0 + 1$. On the other hand, it follows from (3) that for $k > \hat{k}_a + 1$ and all regular value 0 < a < b,

$$b_k(\Omega^b(M, f), \Omega^a(M, f)) \leq 2CB$$
.

If we choose $0 < a < \min \{E^{f^n}(c^i); 1 \le i \le r\}$, then Fix (f) is a strong deformation retract of $\Omega^{a}(M, f)$ (see [3]). Hence

$$b_k(\Omega^b(M, f), \Omega^a(M, f)) = b_k(\Omega^b(M, f), \operatorname{Fix}(f))$$

holds from the exact sequence of homology. In case Fix $(f) = \phi$, the last equality is trivial. Since Fix(f) is a finite dimensional manifold, we derive by using the exact sequence of homology

$$b_k(\Omega^b(M, f), \operatorname{Fix}(f)) = b_k(\Omega^b(M, f))$$
 for almost all k.

Thus

$$\begin{split} b_k(\mathcal{Q}(M,f)) &= b_k(\mathcal{Q}^b(M,f)) \\ &= b_k(\mathcal{Q}^b(M,f), \operatorname{Fix}(f)) \\ &= b_k(\mathcal{Q}^b(M,f), \, \mathcal{Q}^a(M,f)) \leq 2\hat{C}\hat{B} \quad \text{ for almost all } k \,. \end{split}$$

This contradicts the hypothesis of the theorem.

(q. e. d.) Finally the author wishes to thank Prof. T. Otsuki for his valuable suggestions.

References

- [1] D. GROMOLL AND W. MEYER, On differentiable functions with isolated critical points, Topology 8 (1969), 361-369.
- [2] D. GROMOLL AND W. MEYER, Periodic geodesics on compact Riemannian mani-

folds, J. Differential Geometry 3 (1969), 493-510.

- [3] K. GROVE, Condition (C) for the energy integral on certain path spaces and applications to the theory of geodesics, J. Differential Geometry 8 (1973), 207-223.
- [4] K. GROVE, Isometry-invariant geodesics, Topology 13 (1974), 281-292.
- [5] K. GROVE, Involution-invariant geodesics, Math. Scand. 36 (1975), 97-108.
- $\begin{bmatrix} 6_t^r \end{bmatrix}$ M. MORSE, The calculus of variations in the large, Amer. Math. Soc. Colloq. Publ. vol. 18 (1934).
- [7] J. P. SERRE, Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY