ALMOST COQUATERNION METRIC STRUCTURES ON 3-DIMENSIONAL MANIFOLDS

By Constantin Udriste

We give explicitly almost coquaternion metric structures on 3-dimensional parallelizable manifolds and some conditions under which a 3 -dimensional manifold admits a Sasakian 3 -structure.

1. We suppose that all the used differentiable manifolds and maps are of class C^{∞} and we denote by $\mathscr{X}(M)$ the Lie algebra of all vector fields on the manifold M.

Let M be a ($4 n+3$)-dimensional manifold. An almost coquaternion metric structure*) on M is an aggregate consisting of three almost cocomplex metric structures**) ($\phi_{a}, \xi_{a}, \eta_{a}, g$), $a=1,2,3$, which satisfy

$$
\begin{gathered}
\phi_{a} \circ \phi_{b}-\xi_{a} \otimes \eta_{b}=-\phi_{a} \circ \phi_{a}+\xi_{b} \otimes \eta_{a}=\phi_{c}, \\
\phi_{a} \xi_{b}=-\phi_{b} \xi_{a}=\xi_{c}, \\
\eta_{a} \circ \phi_{b}=-\eta_{b} \circ \phi_{a}=\eta_{c}, \\
\eta_{a}\left(\xi_{b}\right)=\eta_{b}\left(\xi_{a}\right)=0,
\end{gathered}
$$

for any cyclic permutation $\{a, b, c\}$ of $\{1,2,3\} . M$ is said to be an almost coquaternion Riemannian manifold.

An almost coquaternion metric structure can be described by means of 1 forms η_{a} and 2-forms $\Theta_{a}(X, Y)=g\left(\phi_{a} X, Y\right), a=1,2,3, \forall X, Y \in \mathscr{X}(M)$.

Theorem 1.1. If $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3$, is an almost coquaternion metric structure, then, $\forall \alpha: M \rightarrow(0, \infty), \forall\left(A_{d}^{a}\right) \in S O(3)$,

$$
\left(A_{d}^{a} \phi_{a}, \frac{1}{\alpha} A_{a}^{a} \xi_{a}, \alpha A_{a}^{a} \eta_{a}, \alpha g+\left(\alpha^{2}-\alpha\right) \sum_{a} \eta_{a} \otimes \eta_{a}\right), \quad d=1,2,3,
$$

is again an almost coquaternion metric structure on M [10].
An almost coquaternion metric structure on M whose tensor
Received Nov. 13, 1973.
*) Or almost contact metric 3 -structure [3].
**) Or almost contact metric structures [5].

$$
\begin{aligned}
T^{1}(X, Y)= & \frac{2}{3} \sum_{a}\left(\left[\phi_{a} X, \phi_{a} Y\right]-\phi_{a}\left[\phi_{a} X, Y\right]\right. \\
& \left.-\phi_{a}\left[X, \phi_{a} Y\right]+\phi_{a}^{2}[X, Y]+2 d \eta_{a}(X, Y) \xi_{a}\right)
\end{aligned}
$$

vanishes is called a pseudo-coquaternion metric structure and the manifold with such a structure a pseudo-coquaternıon Riemannian manifold. A pseudo-coquaternion metric structure consists of three normal almost cocomplex metric structures and corresponds to the pseudo-quaternion metric structure on $M \times R$, where R is the real line [10], [11].

If

$$
\begin{equation*}
\Theta_{a}=d \eta_{a}, \quad a=1,2,3 \tag{1}
\end{equation*}
$$

then $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3$, is a pseudo-coquaternion metric structure iff

$$
\begin{equation*}
\nabla_{X}\left(\nabla \xi_{a}\right) Y=\eta_{a}(Y) X-g(X, Y) \xi_{a} \text { or }-R\left(X, \xi_{a}\right) Y=\eta_{a}(Y) X-g(X, Y) \xi_{a} \tag{2}
\end{equation*}
$$

where ∇ is the Riemannian connection and R is the Riemannian curvature tensor $R(X, Y)=\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right]$.

An almost coquaternion metric structure whith satisfies the conditions (1) and (2) is said to be a Sasakian 3-structure. For a Sasakian 3 -structure, $\xi_{a}, a=$ $1,2,3$, are unit Killing vector fields (determine a Lie group of translations [1]) with respect to g and we have $\phi_{a}=\nabla \xi_{a}[7]$.

THEOREM 1.2. If $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3, \imath s$ a Sasakian 3 -structure and $\left(A_{d}^{a}\right)$ is an orthogonal matrix whose entries are constants, then

$$
\left(A_{d}^{a} \phi_{a}, A_{d}^{a} \xi_{a}, A_{d}^{a} \eta_{a}, g\right), \quad d=1,2,3
$$

is again a Sasakian 3-structure on M.
2. Let M be a 3-dimensional manifold. We have

THEOREM 2.1. A 3-dimensional manifold M has an almost coquaternion metric structure iff it is parallelizable [9].

Proof. Obviously, eyery almost coquaternion Riemannian 3-dimensional manifold is parallelizable.

Conversely, the hypothesis that M is parallelizable is equivalent to the fact that it possesses three vector fields $\xi_{a}, a=1,2,3$, which are linearly independent at every point of M. Let η_{a} be the dual 1 -forms, that is,

$$
\eta_{a}\left(\xi_{a}\right)=\delta_{a b}, \quad \sum_{a} \eta_{a} \otimes \xi_{a}=i d
$$

We define

$$
\phi_{a}=\xi_{c} \otimes \eta_{b}-\xi_{b} \otimes \eta_{c}
$$

where $\{a, b, c\}$ is an even permutation of $\{1,2,3\}$, and $g=\sum_{a} \eta_{a} \otimes \eta_{a}$. We can
verify without difficulty that ($\phi_{a}, \xi_{a}, \eta_{a}, g$), $a=1,2,3$, is an almost coquaternion metric structure on M. Evidently, $\Theta_{a}=2 \eta_{b} \wedge \eta_{c}$.

As any orientable 3 -dimensional manifold is parallelizable, we have
Theorem 2.2. Every 3-dimensional orientable manıfold can be endowed with an almost coquaternion metric structure [9].

Remark. Suppose $\xi_{a}, a=1,2,3$, generate a simply transitive Lie group of transformations G on M and $\zeta_{a}, a=1,2,3$, generate the reciprocal group \bar{G} of G [1]. As each transformation of G commutes with each transformation of \bar{G}, the almost coquaternion metric structure determined by $\xi_{a}\left(\zeta_{a}\right)$ is invariant by $\bar{G}(G)$.
3. Let M be a 3 -dimensional manifold and ($\phi_{a}, \xi_{a}, \eta_{a}, g$), $a=1,2,3$, an almost coquaternion metric structure on M.

Theorem 3.1. Suppose $\xi_{a}, a=1,2,3$, determine a Lie group of motions G with respect to g whose structure constants are $C_{b c}^{a}$.
(i) If $C_{23}^{1}=0$, then G is isomorphic to an Abelian group, $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=$ $1,2,3$, is an integrable almost coquaternion metric structure and M is locally Euclıdean.
(ii) If $C_{23}^{1} \neq 0$, then G is isomorphic to a unitary, semi-simple group, $\left(\phi_{a}, \xi_{a}\right.$, $\left.\eta_{a}, g\right), a=1,2,3$, is a Sasakian 3-structure and M is a space of constant positve curvature.

Proof. As ξ_{a} generate a group of motions with respect to g, we have

$$
\begin{equation*}
L_{\xi a} \xi_{b}=C_{a b}^{c} \xi_{c}, \quad a, b, c=1,2,3, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
L_{\xi_{a}} g=0 \quad \text { or } \quad\left(\nabla_{Y} \eta_{a}\right)(X)+\left(\nabla_{X} \eta_{a}\right)(Y)=0, \quad \forall X, Y \in \mathscr{X}(M), \tag{4}
\end{equation*}
$$

where ∇ is the Riemannian connection. On the other hand, from $g\left(\xi_{b}, \xi_{c}\right)=\delta_{b c}$, it follows

$$
g\left(L_{\xi_{a}} \xi_{b}, \xi_{c}\right)+g\left(\xi_{a}, L_{\xi_{a}} \xi_{c}\right)=0,
$$

that is,

$$
C_{a b}^{c}+C_{a c}^{b}=0 .
$$

From these relations and from the fact that the structure constants $C_{a b}^{c}$ of the group G are skew-symmetric in the indices a and b it results that all the structure constants are zero besides C_{23}^{1} (and those which proceed from C_{23}^{1}) which can be zero or not.
(i) If $C_{23}^{1}=0$, then G is isomorphic to an Abelian group. In this case we can choose the local coordinates so that $\xi_{a}=\partial / \partial x^{a}$ and hence

$$
\eta_{a}=d x^{a}, \quad \phi_{a}=\frac{\partial}{\partial x^{c}} \otimes d x^{b}-\frac{\partial}{\partial x^{b}} \otimes d x^{c}, \quad g=\sum_{a} d x^{a} \otimes d x^{a},
$$

So our first statement is true.
(ii) If $C_{23}^{1} \neq 0$, then the comitant $C_{a b}=C_{a c}^{d} C_{b d}^{c}$ has the components $C_{11}=C_{22}=$ $C_{33}=-2\left(C_{23}^{1}\right)^{2}, C_{a b}=0, a \neq b$. Consequently G is isomorphic to a unitary, semisimple group.

Without loss of generality, we may assume that $C_{23}^{1}=-2$. Really, if not so we may work out the change

$$
\bar{\xi}_{a}=-\frac{2}{C_{23}^{1}} \xi_{a}
$$

and putting

$$
\left[\bar{\xi}_{2}, \bar{\xi}_{3}\right]=\bar{C}_{23}^{1} \bar{\xi}_{1}
$$

we get $\bar{C}_{23}^{1}=-2$.
From (4) and

$$
d \eta_{a}(X, Y)=\frac{1}{2}\left(\left(\nabla_{X} \eta_{a}\right)(Y)-\left(\nabla_{Y} \eta_{a}\right)(X)\right), \quad \forall X, Y \in \mathscr{X}(M),
$$

we obtain

$$
\begin{equation*}
d \eta_{a}(X, Y)=\left(\nabla_{X} \eta_{a}\right)(Y) \tag{5}
\end{equation*}
$$

Since $g\left(\xi_{a}, \xi_{a}\right)=1$, we have $g\left(\nabla_{x} \xi_{a}, \xi_{a}\right)=0$, that is,

$$
\begin{equation*}
\left(\nabla_{X} \eta_{a}\right)\left(\xi_{a}\right)=0 \tag{6}
\end{equation*}
$$

From (6) and (4) we get

$$
\left(\nabla_{\xi_{a}} \eta_{a}\right)(Y)=0
$$

and hence

$$
d \eta_{a}\left(\xi_{a}, Y\right)=0, \quad \forall Y \in \mathscr{X}(M)
$$

From $\left[\xi_{a}, \xi_{b}\right]=-2 \xi_{c}=\nabla_{\xi_{a}} \xi_{b}-\nabla_{\xi_{b}} \xi_{c}$, where $\{a, b, c\}$ is a cyclic permutation of $\{1,2,3\}$, it results

$$
\begin{equation*}
\left(\nabla_{\xi_{a}} \eta_{b}\right)(X)-\left(\nabla_{\xi_{b}} \eta_{a}\right)(X)=-2 \eta_{c}(X) . \tag{7}
\end{equation*}
$$

On the other hand, from (4) we obtain

$$
\left(\nabla_{\xi_{a}} \eta_{b}\right)(X)=-\left(\nabla_{X} \eta_{a}\right)\left(\xi_{b}\right)
$$

and $g\left(\xi_{a}, \xi_{b}\right)=0$ give

$$
g\left(\nabla_{X} \xi_{a}, \xi_{b}\right)+g\left(\xi_{a}, \nabla_{X} \xi_{b}\right)=0 \quad \text { or } \quad\left(\nabla_{X} \eta_{a}\right)\left(\xi_{b}\right)+\left(\nabla_{X} \eta_{b}\right)\left(\xi_{a}\right)=0
$$

Thus

$$
\begin{equation*}
\left(\nabla_{\xi_{a}} \eta_{b}\right)(X)+\left(\nabla_{\xi_{b}} \eta_{a}\right)(X)=0, \tag{8}
\end{equation*}
$$

which together with (7) give

$$
\begin{equation*}
\nabla_{\xi_{b}} \eta_{a}=-\nabla_{\xi_{a}} \eta_{b}=\eta_{c} . \tag{9}
\end{equation*}
$$

By virtue of (9) and (5) we have

$$
\begin{equation*}
d \eta_{a}\left(\xi_{b}, Y\right)=-d \eta_{b}\left(\xi_{a}, Y\right)=\eta_{c}(Y) \text { or } d \eta_{a}=\Theta_{a}=2 \eta_{b} \wedge \eta_{c} \tag{10}
\end{equation*}
$$

From (5) and (10) we get

$$
\begin{align*}
\left(\nabla_{X} \eta_{a}\right)(Y) & =\eta_{b}(X) \eta_{c}(Y)-\eta_{c}(X) \eta_{b}(Y) \quad \text { or } \tag{11}\\
\nabla_{X} \xi_{a} & =\eta_{b}(X) \xi_{c}-\eta_{c}(X) \xi_{b}, \quad \forall X, Y \in \mathscr{X}(M),
\end{align*}
$$

where $\{a, b, c\}$ is a cyclic permutation of $\{1,2,3\}$.
From (11) we obtain

$$
\begin{equation*}
\nabla_{X}\left(\nabla \xi_{a}\right)(Y)=\eta_{a}(Y) X-g(X, Y) \xi_{a}, \tag{12}
\end{equation*}
$$

which shows that $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3$, is a Sasakian 3 -structure.
As (12) is equivalent to

$$
R\left(X, \xi_{a}\right) Y=g(X, Y) \xi_{a}-g\left(\xi_{a}, Y\right) X
$$

multiplying by $\eta_{a}(Z)$ and summing for a, we obtain

$$
R(X, Y) Z=g(X, Y) Z-g(Y, Z) X
$$

So M has constant curvature 1 .
Theorem 3.2. A 3-dimensional manifold M admits a Sasakian 3-structure iff it possesses three independent vector fields which determine a unitary semisimple Lie group of transformations.

Proof. We first assume that M possesses a Sasakian 3 -structure $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right)$, $a=1,2,3$. From

$$
\Theta_{a}(X, Y)=d \eta_{a}(X, Y)=\left(\nabla_{X} \eta_{a}\right)(Y), \quad \forall X, Y \in \mathscr{X}(M),
$$

it follows that ξ_{a} are Killing vector fields of the Riemannian metric g for which

$$
\left[\xi_{a}, \xi_{b}\right]=\nabla_{\xi_{a} \xi_{b}}-\nabla_{\xi_{b}} \xi_{a}=-2 \xi_{c} .
$$

So ξ_{a} generate a unitary semi-simple Lie group of transformations.
Conversely, let $\xi_{a}, a=1,2,3$, be three independent vector fields on M which determine a unitary semi-simple Lie group of transformations. Without loss of generality, we can suppose

$$
\left[\xi_{a}, \xi_{b}\right]=-2 \xi_{c} \text { or } L_{\xi_{a}} \xi_{b}=-2 \xi_{c}
$$

From $\eta_{a}\left(\xi_{b}\right)=\delta_{a b}$ we find

$$
\left(L_{\xi_{a}} \eta_{a}\right)\left(\xi_{b}\right)+\eta_{a}\left(L_{\xi_{a}} \xi_{b}\right)=0
$$

and hence

$$
\left(L_{\xi_{a}} \eta_{a}\right)\left(\xi_{b}\right)=0, \text { that is, } L_{\xi_{a}} \eta_{a}=0 .
$$

Analogously, we have

$$
\left(L_{\xi_{c}} \eta_{a}\right)\left(\xi_{b}\right)+\eta_{a}\left(L_{\xi_{c}} \xi_{a}\right)=0
$$

and hence

$$
L_{\xi_{a}} \eta_{b}=-L_{\xi_{b}} \eta_{a}=-2 \eta_{c} .
$$

From these relations we obtain

$$
L_{\xi_{a}} g=L_{\xi_{a}}\left(\sum_{b} \eta_{b} \otimes \eta_{b}\right)=0
$$

and so ξ_{a} are Killing vector fields. By virtue of Theorem 3.1, $\left(\phi_{a}=\eta_{b} \otimes \xi_{c}-\eta_{c} \otimes \xi_{b}\right.$, $\left.\xi_{a}, \eta_{a}, g=\sum_{a} \eta_{a} \otimes \eta_{a}\right)$ is a Sasakian 3 -structure on M.

Theorem 3.3. A 3-dimensional manifold M admits a Sasakian 3-structure iff it possesses three independent 1-forms η_{a} which satisfy

$$
\eta_{a} \wedge d \eta_{b}=2\left(\eta_{1} \wedge \eta_{2} \wedge \eta_{3}\right) \delta_{a b}, \quad a, b=1,2,3
$$

Proof. Let us suppose that $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3$, is a Sasakian 3 -structure on M. Then we have

$$
d \eta_{a}=\eta_{b} \otimes \eta_{c}-\eta_{c} \otimes \eta_{b}=2 \eta_{b} \wedge \eta_{c}
$$

for any cyclic permutation $\{a, b, c\}$ of $\{1,2,3\}$, and hence

$$
\eta_{a} \wedge d \eta_{b}=2\left(\eta_{1} \wedge \eta_{2} \wedge \eta_{3}\right) \delta_{a b}
$$

Conversely, from $\eta_{a} \wedge d \eta_{b}=0, a \neq b$, it follows $d \eta_{a}=f \eta_{b} \wedge \eta_{c}$ and from $\eta_{a} \wedge d \eta_{a}$ $=2\left(\eta_{1} \wedge \eta_{2} \wedge \eta_{3}\right)$ we get $f=2$. Let ξ_{a} be the dual vector fields of the 1 -forms η_{a}. We have

$$
d \eta_{a}\left(\xi_{a}, X\right)=0, \quad d \eta_{a}\left(\xi_{b}, X\right)=-d \eta_{b}\left(\xi_{a}, X\right)=\eta_{c}(X), \quad \forall X \in \mathscr{X}(M)
$$

We define on M the metric

$$
g=\sum_{a} \eta_{a} \otimes \eta_{a}, \quad g^{-1}=\sum_{a} \xi_{a} \otimes \xi_{a}
$$

and

$$
\phi_{a}=g^{-1}\left(d \eta_{a}\right)=\xi_{c} \otimes \eta_{b}-\xi_{b} \otimes \eta_{c}
$$

Evidently, $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3$, is an amost coquaternion metric structure on M.

From

$$
\begin{aligned}
d \eta_{a}(X, Y) & =\frac{1}{2}\left\{X\left(\eta_{a}(Y)\right)-Y\left(\eta_{a}(X)\right)-\eta_{a}([X, Y])\right\} \\
& =\eta_{b}(X) \eta_{c}(Y)-\eta_{c}(X) \eta_{b}(Y)
\end{aligned}
$$

we obtain

$$
\eta_{c}\left(\left[\xi_{a}, \xi_{b}\right]\right)=-2 \text { or }\left[\xi_{a}, \xi_{b}\right]=-2 \xi_{c}
$$

Hence $\xi_{a}, a=1,2,3$, generate a unitary semi-simple Lie group of transformations, that is, $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3$, is a Sasakian 3 -structure.

4. Examples.

(a) Let

$$
S^{3}=\left\{x \mid x \in R^{4},\|x\|=1\right\}
$$

be the unit sphere in the Euclidean space R^{4} and $\left(J_{a}, h\right), a=1,2,3$, be the canonical quaternion Hermitian structure on R^{4}. If we denote the induced metric on S^{3} from the Euclidean metric h on R^{4} by g and if we define

$$
\xi_{a}=J_{a} x, \quad x \in S^{3}, \quad \eta_{a}(X)=g\left(\xi_{a}, X\right), \quad \phi_{a} X=J_{a} X+\eta_{a}(X) x
$$

then $\left(\phi_{a}, \xi_{a}, \eta_{a}, g\right), a=1,2,3$, is a Sasakian 3 -structure on S^{3}. In other words, the independent 1 -forms η_{a} satisfy

$$
\eta_{a} \wedge d \eta_{b}=2\left(\eta_{1} \wedge \eta_{2} \wedge \eta_{3}\right) \delta_{a b}, \quad a, b=1,2,3
$$

(b) A 3-dimensional manifold M which admits a Sasakian 3-structure has positive constant curvature. Therefore, if we suppose that M is a complete manifold, then $M \equiv S^{3} / \Gamma$ (spherical space form), where Γ is a finite subgroup of $O(4)$ which acts freely on S^{3}. More precisely [6], Γ is any one of subgroups of Clifford translations given by :
(i) $\Gamma=\{\imath d\}$,
(ii) $\Gamma=\{ \pm \imath d\}$,
(iii) Γ is the cyclic group of order $q>2$ generated by

$$
\left(\begin{array}{ll}
A & 0 \\
0 & A
\end{array}\right), \text { where } \quad A=\left(\begin{array}{cc}
\cos \frac{2 \pi}{2} & -\sin \frac{2 \pi}{2} \\
\sin \frac{2 \pi}{2} & \cos \frac{2 \pi}{2}
\end{array}\right)
$$

(iv) Γ is the group of Clifford translations which corresponds to a binary dihedral group, a binary tetrahedral group, a binary octahedral group or a binary icosahedral group.
(c) Theorem 4.1. If M is an orientable hypersurface in the Euclidean space R^{4} such that its spherical map is regular, then M admits a Sasakian 3 -structure.

Proof. We choose the unit normal vector ζ to M in R^{4} such that the positive orientation of M is coherent with the positive orientation of R^{4}. Then ζ is a differentiable vector field over M and by means of ζ we construct the spherical map of Gauss $s: M \rightarrow S^{3}$.

If M is covered by a system of coordinate neighborhoods $\left\{U ;\left(u^{1}, u^{2}, u^{3}\right)\right\}$ and S^{3} is covered by a system of coordinate neighborhoods $\left\{V ;\left(v^{1}, v^{2}, v^{3}\right)\right\}$, then s can be represented locally by

$$
v^{a}=v^{a}\left(u^{1}, u^{2}, u^{3}\right), \quad \alpha, \beta=1,2,3,
$$

and by hypothesis

$$
\left|\frac{\partial v^{\alpha}}{\partial u^{\beta}}\right| \neq 0
$$

On the other hand S^{3} possesses a Sasakian 3 -structure, that is three independent 1 -forms $\eta_{a}, a=1,2,3$, which satisfy

$$
\eta_{a} \wedge d \eta_{0}=2\left(\eta_{1} \wedge \eta_{2} \wedge \eta_{3}\right) \delta_{a b}, \quad a, b=1,2,3,
$$

or locally

$$
\eta_{a} \wedge d \eta_{b}=2 \lambda d v^{1} \wedge d v^{2} \wedge d v^{3} \delta_{a b}
$$

We denote by s^{*} the dual map of forms on S^{3} into forms on M induced by the map s. Then $s^{*} \eta_{a}$ are three 1 -forms on M and

$$
s^{*}\left(\eta_{a} \wedge d \eta_{a}\right)=s^{*} \eta_{a} \wedge d\left(s^{*} \eta_{a}\right), \quad s^{*}\left(\eta_{1} \wedge \eta_{2} \wedge \eta_{3}\right)=s^{*} \eta_{1} \wedge s^{*} \eta_{2} \wedge s^{*} \eta_{3} .
$$

As locally we have

$$
s^{*} \eta_{1} \wedge s^{*} \eta_{2} \wedge s^{*} \eta_{3}=\lambda(v(u))\left|\frac{\partial v^{\alpha}}{\partial u^{\beta}}\right| d u^{1} \wedge d u^{2} \wedge d u^{3},
$$

the three 1 -forms $s^{*} \eta_{a}$ are independent.
We deduce

$$
s^{*} \eta_{a} \wedge d\left(s^{*} \eta_{b}\right)=2 \lambda(v(u))\left|\frac{\partial v^{\alpha}}{\partial u^{\beta}}\right| d u^{1} \wedge d u^{2} \wedge d u^{3}
$$

or

$$
s^{*} \eta_{a} \wedge d\left(s^{*} \eta_{b}\right)=2\left(s^{*} \eta_{1} \wedge s^{*} \eta_{2} \wedge s^{*} \eta_{3}\right) \delta_{a b}
$$

Therefore the 1 -forms $s^{*} \eta_{a}, a=1,2,3$, give rise to a Sasakian 3 -structure on M (Theorem 3.3.).

Bibliography

[1] Eisenhart, L. P., Contınuous groups of transformations, Dover Publications, Inc. New York, 1961.
[2] Kobayashi, S. and Nomizu, K., Foundations of differential geometry, vol. I-II, Interscience publishers, 1963-1969.
[3] Kuo, Y. Y., On almost contact 3-structure, Tôhoku Math. J., 22 (1970), 325332.
[4] Ogiue, K. and Okumura, M., On cocomplex structures, Kōdai Math. Sem. Rep., 19 (1967), 507-512.
[5] Sasaki, S., Almost contact manıfolds, Math. Inst. Tôhoku Univ. Part I, 1965.
[6] SASAKI, S., On spherical space forms with normal contact metric 3-structure, J. Diff. Geom., 6 (1972), 307-315.
[7] Tachibana, S. and Yu, W. N., On a Riemannian space admitting more than one Sasakian structures, Tôhoku Math. J., 22 (1970), 535-540.
[8] Tanno, S., Killing vectors on contact Riemannian manifolds and fiberings related to the Hopf fibrations, Tôhoku Math. J., 23 (1971), 313-333.
[9] Udriste, C., Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R.S.R., 13 (61), 4 (1969), 487-507.
[10] Udriste, C., Almost coquaternion structures, Doctoral thesis of Mathematical Sciences, Cluj University, Romanıa (1971).
[11] Udriste, C., On fiberings of almost coquaternion manifolds, An. St. Univ. Iasi, Matematica, XVIII (1972), 407-415.
[12] Yano, K., The Theory of Lie Derivatives and Its Applications, North-Holland

Publ. Co., Amsterdam, 1957.
[13] Yano, K., Integral formulas in Riemannian geometry, Marcel Dekker, Ink., New York, 1970.
[14] Yano, K. and Ako, M., Integrability conditions for almost quaternion structures, Hokkaido Math. J., 1 (1972), 63-86.

Department of Mathematics I
Polytechnic Institute, Bucharest, Romania.

