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1. Notations

In this paper the term "meromorphic function" will mean a meromorphic
function in C. We will use the standard notations of Nevanlinna theory :
T(r, /), m(r, c9 /), N(r, c, /), FJ(r, c, /), N^r, /), θ(c, /) (*e=Cu {«>}), and we
assume that the reader is familiar with the basic results in Nevanlinna theory
as found in [2]. Further, we will use the notations defined in the following
(i)-(iv):

(i) Let /and g be distinct nonconstant meromorphic functions. For r>0,
put T(r)— max {T(r, /), T(r, g)} . We write σ(r)=S(r) for every function
σ : (0, oo)— >(— oo } oo ) satisfying σ(r)/T(r)— »0 for r— »oo possibly outside a set of
finite Lebesgue measure.

(ii) For a nonconstant meromorphic function /, ceCu{°o} and a positive
integer k, we denote by n(r, c, f k) the number of distinct roots of the
equation f=c with multiplicity k in \z <^r. We write

N(r, c, /; *)=Γ{ήtt c, /; fe)-ή(0, c, /; k)}/t dt+n(0, c, / ; fe)logr.
Jo

(iii) For a nonconstant meromorphic function /, c^C\J{oo\ and a positive
integer &, we denote by n(r, c, f ^k) the number of distinct roots of the
equation /— c with multiplicities less than or equal to k in \z\^>r. We write

dt+fi(0, c, f ^&)log r.

(iv) Let / be a nonconstant meromorphic function. If ceCuί00} and k
is a positive integer or +00, then we write Ek(c, f)—{z^C\z is a root of
f—c of order less than or equal to k.}.
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2. Results

The starting point of our argument in this paper is the following facts :

THEOREM A. Let f and g be nonconstant meromorphic functions. Assume
that there exist distinct 6 elements alf •••, a6 in CU{^} such that E2(aj, /)=
Ez(aJ) g) for j = l, <-,6. Then f=g.

THEOREM B. Let f and g be nonconstant meromorphic functions. Assume
that there exist distinct 7 elements alf •••, aΊ in Cw{°o} such that Eι(a3, /)—
Eι(a,9 g) for /=!, •••, 7. Then f=g.

These two results are due to Bhoosnurmath and Gopalakrishna [1]. As we
have already pointed out in [4, p. 458], in the above two results, the assumption
on the number of distinct elements {dj\ satisfying Ek(ajt f)=Ek(aJt g) cannot
be improved. Without loss of generality, we may assume that ^=00, α^O,
α3—1, a±—a, a*>—b (, α6=c). Then our examples in [4] show that

( I ) if {α, b} = {ω, ω2}, there exists a pair of distinct nonstant meromorphic
functions F and G satisfying F3ΞG3 and Ez(a}, F)=E2(β,, G)=0 for ;=3, 4, 5,
where ω (^=1) is a cubic root of 1 (Clearly, F and G share two values 0 and
oo CM (^counting multiplicities).), and

(Π) if {a, b, c\ — \i, — 1, —*'}, there exists a pair of distinct nonconstant
meromorphic functions φ and 1 satisfying 04=%4 and Eι(a}, φ)=Eι(a}, 5Q=0 for
/—3, 4, 5, 6. (Clearly, 0 and I share two values 0 and co CM.).

The main results of this paper are the following:

THEOREM 1. Let f and g be nonconstant meromorphic functions. Assume
that f and g share two values 0 and co CM, and further that they satisfy
Et(ajf /)=£2(α,, g) for ;=3, 4, 5, where α s=l, a^a, a^b. (i) // {α, ^} =
{ω, a)2}, then Γ=g*. (ii) // {a, b} Φ {ω, ω2}, then f=g.

THEOREM 2. Let f and g be nonconstant meromorphic functions. Assume
that f and g share two values 0 and oo CM, and further that they satisfy
Eι(ajf f^—E^aj, g) for j—3, 4, 5, 6, where α3=l, α^α, αδ=&, α 6—c. (i) //
{α, b, c} = {ί, -1, -*}, ί/zen /4Ξg4. (ii) // {α, 6, c} = {α, -1, -α} (α2^-!),
ί/z^n /2Ξ£2. (iii) // {α, Z?, c] Φ {a, -1, -α}, then f==g.

3. Elementary estimates on meromorphic functions satisfying
E2(ajf f)=E2(aJf g) for five distinct values a} 0 = 1, 2, 3, 4, 5)

In this section, we assume that / and g are distinct nonconstant mero-
morphic functions satisfying E2(ajf f)=E2(aJf g) for five distinct values a3

(/=!> 2, 3, 4, 5) in C\J \°o]. Under these assumptions we write N(r, a j f f ^
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THEOREM 3. // a^C 0=1, 2, 3, 4, 5), then we have the following estimates:

(3.1) Γ(r, /)=T(r)+S(r), Γ(r, *)=T(r)+S(r)

(3.2) Σϊ-i ff (r, α, ^2)=

(3.3) tf(r, 0, f-g)=N(r, 0, /-

(3.4) For any cΦas 0=1, 2, 3, 4, 5) m Cu{°o}

ΛΓ(r, c, f)=N(r, c, /)+S(r)=T(r)+S(r),

Mr, c, *)=ff(r, c, g)+S(r)=T(r)+S(r);

(3.5) N(r, a, £2)=ff(r, a,, f l)+S(r)=ff(r, c,, g l)+S(r) 0=1, 2, 3, 4, 5)

(3.6) N(r, a,, /)=ff(r, o,, / l)+3ff(r, α,, / 3)+S(r)=T(r)+S(r) ,

N(r, a,, g)=R(r, a,, g;l)+3Π(r, a,, g;3)+S(r)=T(r)+S(r)

0=1,2,3,4,5);

(3.7) m(r, 0, f-g}=S(r)

(3.8) T(r,/-ar)=2T(r)+S(r);

(3.9) // Λfί(r, /) refers only to those multiple points of f such that fφa,
(i—l, 2, 3, 4, 5) and if N{(r, g) is similary defined, then NΊ(r, f)=S(r]
and N((r, g)=S(r).

Proof. By the second fundamental theorem

(3.10) 3Γ(r, /)^ΣS-ι^(r, a,, f)-N((r, f)+S(r, /)

- ι ( r , a, ^

r, 0, /-

, 0, /-

-ί)+(5/3)T(r, f)-N((r, f)+S(r,

(r, /)+T(r, g)} +(5/3)T(r, /)+S(r, /

)+(2/3)T(r, ί)+S(r, /), i.e.,

(3.11) T(

(3.10) is still valid when we exchange / and g, so that

(3.12) T(r,g)£T(r,f)+S(r,g).

From (3.11) and (3.12), (3.1) follows, and further we see that equality (up to an
S(r) term) must hold everywhere in (3.10). Hence (3.2), (3.3), (3.5)-(3.9) are
derived immediately. Using the second fundamental theorem once again, we
have for any cφa, 0=1, 2, 3, 4, 5)
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r, c,

This estimate is still valid when we replace / by g, so that (3.4) follows by
the first fundamental theorem.

THEOREM 3'. // aλ — oo, ί/ien w e /ιαι^ f/ιe following estimates:

(3.1)' T(r, /)=T(r)+S(r), T(r, *)=

(3.3/ #(r, 0, /-*)=ff(r, 0, /-

(3.4)' For any cΦa3 (; = 1, 2, 3, 4, 5) m (7

, /)=ff(r, c, /)+S(r)=T(r)+S(r),

(3.5)' ff(r, α, ^2)=J7(r, α,, / l)+S(r)=J7(r, a,, g l)+S(r) (; = 1, 2, 3, 4, 5)

(3.6)' ΛΓ(r, a,9 /)=W(r, α,, / l)+3/7(r, α,, / 3)+S(r)=T(r)+S(r),

N(r, a,9 g)=N(r, aJ9 g l)+3N(r, α,, £ 3)+S(r)=T(r)+S(r)

(/=1,2,3,4,5);
(3.7)' m(r, 0, /-^)=S(r);

(3.8)' T(r, f-g)+fJ(r, oo ; ^2)-2T(r)+S(r)

(3.9)' // Λ/Ί'(r, /) rβ/βrs only to those multiple points of f such that fφa}

O'=l, 2, 3, 4, 5) and if NΊ(r, g) is similarly defined, then N{(r, /)=S(r)
and N((r, g)=S(r).

Proof. Let d&C be different from α^ (/— 2, 3, 4, 5), and let bj—(aj—dγl

0 = 1,2,3,4,5). Then blt - , bδ are all distinct and finite. If we put F=
(/-ίί)'1 and G=(g-dY\ then E2(fy, F)=£2(^, G) (;=1, 2, 3, 4, 5). Hence
(3.1)-(3.9) of Theorem 3 hold when /, g, a, (/=!, 2, 3, 4, 5) are replaced by
F, G, bj, respectively. Taking T(r, F)=T(r, /)+O(l) and T(r, G)=T(r, ^)+O(l)
into consideration, we immediately deduce (3.1)', (3.2)', (3.4)', (3.5)', (3.6)' and
(3.9)'.

Next, from (3.4) it follows that m(r, oo, F)=5(r) and m(r, oo, G)=S(r).
Combining these and (3.7), we have

o, FG/(G-F))

, F)+m(r, co, G)+m(r, oo, (G— F)~1)=S(r),

which gives (3.7)'.
Finally we prove (3.3)' and (3.8)'. Since F-G=(g-f)/(f-d)(g-d), we

easily see that {z: z is a zero of F— G}— Zι\jZι\jZ*\jZι\jZs, where Zi, Z2,
Z3> Z4 and Z5 are defined as follows :
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(i) Let ZieZi. Then f(zl)φdί oo g(zl)Φdί oo and f(z1)=g(zl). In this
case the multiplicity of the zero Zι of F— G is equal to the multiplicity of the
zero zl of f—g.

(ii) Let £2eZ2. Then z2 is a common d-point of / and g with the same
multiplicity, say p, and further z2 is a zero of f—g with multiplicity s^2p+L
In this case the multiplicity of the zero z2 of F—G is equal to s—2p.

(iii) Let z3eZ3. Then z3 is a common pole of / and g with the same
multiplicity, say p, and further z3 is a zero of f—g with multiplicity s. In
this case the multiplicity of the zero z3 of F—G is equal to s+2p.

(iv) Let z4eZ4. Then ^4 is a common pole of / and g with the same
multiplicity, say p, and further (f—g)(z4)^=0f oo. In this case the multiplicity
of the zero z4 of F—G is equal to 2p.

(v) Let £5eZ5. Then zδ is a common pole of / and g with the multi-
plicity, say p and <? respectively, and further (f—g)(z4)=oo with multiplicity s
(^max(/>, #)). In this case the multiplicity of the zero z5 of F—G is equal to
p+q—s^mm(p, q).

Hence by (3.3)

=ΣJ~ι#(r, ft,, F; ̂

r, 0, F-G}=N(r, Zί^jZ2\jZ3\jZ4\jZ5)^N(r, Z ̂  Z ,\J Z ,\J Z ,}

Q, f-g; f=£d, g=£d)+2^=i pN(r, 0, f-g f=g=^ with multiplicity

ί)
TO> f=g=:™ with multiplicity /> and f—gj=Q, ™)

, q)}N(r, oo, /— g; /=oo with multiplicity /> and ^— oo with

multiplicity <?)

r, 0, /-^ /=£=fl,)+ff(r, oo ^2)

r, 0, /-^ /=α, (; = 1, 2, 3, 4, 5))

r, 0, /-^ /^rf, flj 0=1, 2, 3, 4, 5))

+Σ!5-ι(2/>W(r, 0, /-^r; f=g=™ with multiplicity /?)

+Σp=ι(2jί>— l)JV(r, oo, f—g=zco with multiplicity /> and f—g^Q, oo)

+ Σ(p,<z> {min(/?, q)—l}N(r, oo, /—,§•; /— oo with multiplicity /> and g= -o

with multiplicity q),

which implies that

(3.13) M(r, 0, /-^ /=α, 0=1, 2, 3, 4, 5))=S(r),

(3.14) N(r, 0, /-^ /^ύ(, α, 0 = 1, 2, 3, 4, 5))=S(r),

(3.15) Σp=ι(2/>W(r, 0, /-^ f=g=oo with multiplicity />)=S(r),

(3.16) Σp=ι(2p— l)N(r, oo, f=g=oo with multiplicity /) and f-g^Q, oo)=S(r),

(3.17) Σ(P,Q) {min(/>, q)—l}N(r, oo, /— ̂  /=oo with multiplicity />

and ,§•— co with^multiplicity q)=S(r) and
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(3.18) N(r, 0, f-g f=g=a,)=N(r, a, <2)+S(r) (j=2, 3, 4, 5).

Combining (3.13) and (3.15), we have

(3.19) N(r, 0, f-g; f=g=oo)=S(r) and

M(r, 0, f-g; f=a, (j=2, 3, 4, 5))=S(r).

(3.14) and the arbitrariness of the selection of d give

(3.20) N(r, 0, f-g; fΦa3 (; = !, 2, 3, 4, 5))=S(r).

From (3.18)-(3.20) it follows that

N(r, 0, f-g) = N(r, 0, /-£)+S(r) = Σ!UN(r, α, ^2)+S(r).

This proves (3.3)x. Further from (3.3)', (3.7)' and (3.2)' we easily obtain
(3.8)'. This completes the proof of Theorem 3'.

4. Preparations for the proof of Theorem 1

Let fl! = oo, az—0, α3—1, a^—a and aδ—b. In this section, for these five
distinct values {a-,} we assume that two distinct nonconstant meromorphic
functions / and g satisfy E z ( a j f f)=Ez(aJt g). The following function Φ
corresponds to the function ψ in [3, p. 171] and plays an important role in the
proof of Theorem 1.

LEMMA 1. The function

satisfies

(4.1) m(r, oo, φ)^S(r) and N(r, oo, φ)

-3{/V(r, 0, / 3)+JV(r, 0, g 3)+#(r, oo, / ; 3)+A^(r, oo, ^ 3)} +S(r).

Proof. From (3.6)x of Theorem 3X we have m(r, α.,, /)— S(r) and m(r, α;, g)
=S(r). From the fundamental estimate of the logarithmic derivative it follows
that m(r, <^> /7//)=5(r) and m(r, oo, g' I g)— S(r). Combining these, we have
m(r, co, φ)=S(r). The second estimate of (4.1) is an immediate consequence of
(3.3)', (3.6)', (3.16) and (3.17).

In what follows, for the sake of simplicity we write
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+b-yΦ and

LEMMA 2. ( i ) For [/].,— [£], 0=1, 2) we

(4.2) Mr, oo, [/]j-[£],)£#(r, 0, / 3)+JV(r, 0, £ 3)4-/V(r, oo, / 3)

(ii) // ZQ denotes a simple zero of f which is also a simple zero of g, then
¥I(ZQ)=Q. Similarly, if z^ is a common simple pole of f and g, then ¥z(z00)= 0.

Proof, (i) Using (3.3)', (3.6)', (3.16) and (3.17), we obtain

N(r,«>, [/],•- [£L)=Mr, 0, / 3)+ff(r, 0^ 3)+Mr, oo, / 3)

+Mr, oo, g; 3)-Mr, /=0, £=<*> 3)-JV(r, /=oo, £=0 3)+S(r),

where Mr, /= 0, g= oo 3) £efers to common roots of /— 0 and £=oo with the
same multiplicity 3, and N(r, f—°°, g=Q 3) is also defined similarly. Hence
(4.2) follows.

(ii) Simple calculations give

and so ?PΊ(^0)=0. Next, if / and g have the following expansions at zw : f(z)=
A/(z-z^+O(l\ g(z)=B/(z-z^+0(l\ then we have

Hence ^J-O.

LEMMA 3. // there is a constant re[0, 1/15)

JV(r, 0, / 3)+JV(r, oo, / 3)^τT(r)+S(r),

then both ¥^=0 and Ψ2(z)=Q hold.

Proof. Assume that ¥1(z)^0. Using (3.1)', (3.5)', (3.6)', (4.1), (4.2) and the
fundamental estimate of the logarithmic derivative, we have

(4.3) T(r, ?Γι)=m(r, oo, ¥l)+N(r, oo, ψ,)

^6 {Mr, 0, / 3)+JV(r, 0, g 3)+JΫ(r, oo, / 3)

+N(r, oo, 5r;3)}+S(r)

r, 0, / 3)+/7(r, oo, / 3)} +S(r).
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From (3.5)' and Lemma 2 (ii) it follows that

(4.4) Mr, 0 ^2)^N(r, 0, Ψj+Stf^Tfr, Ψι)+S(r).

Combining (4.3), (4.4), (3.5)' and (3.6)', we obtain

r, 0, /; 3)+12JV(r, oo, /

which is impossible. This proves ?P\(z)=0. The proof of Ψ2(z)~0 is much the
same.

LEMMA 4. // both Ψι(z)=Q and Ψ2(z)=0 hold, then g/f is a constant.

Proof. Consider first the case that l + α^+ίΓ^l + α+ί^O, i.e., {a, b} =
{ω,ωz}. In this case [/]ι-[#]ι = [/],-.[£], (-0), and so f'/f=g'/g. This
leads to g/f = a constant.

Next, we consider the case that at least one of l-j-α^-f/Γ1 or 1 + α-fb is
not zero. Without loss of generality, we assume that 1-f 04-6^0. In this case

(4.5) [/]ι-Mι=W].-[£M,

where λ is a constant satisfying λ*=a'b\l + a-l+b-ιγ/(\. + a+b)<. If λ=l, then
f ' / f = g ' / g , which gives g/f^a constant.

Assume that λφl. We investigate the common zeros and poles of / and g.
By the assumption Ψ2(z)=ΰ

(4.6) {[/]2-[£]2}
6-64(l+α+W6Φ.

Let z0 be a common zero of / and g whose multiplicities are p and q (pφq\
respectively. Then since the residue at z0 of [/]2— [g]2 is 9(/>— ̂ )^0, the left
hand side of (4.6) has a pole of order 6 at z0. On the other hand, z0 is a
regular point of Φ since — 3—3+6 mm(p, <?)ί^0. This shows that if / and g have
common zeros, then their multiplicities are identical. In the same way, we see
that if / and g have common poles, then their multiplicities are identical.

Assume now that g/f is not a constant. Taking £2(0, /)=£2(0, g) and
Ez(<χ>, /)=jE2(°°, g) into consideration, the above conclusions imply that the
multiplicities of zeros and poles of g/f are all ^3 if any. Thus (9(0,
and <9(oo, g//)^2/3.

From (4.5) we have

K f" p "

f-t

From integration of (4.7) we obtain
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(A QΪ (fΎ{(g-^(g-a}(g-b)}2

 = ff_γ
1 ' ; (gΎ{(f~W-a)(f-b}r-*\g)'
where A is a nonzero constant and μ=6(l+λ)/(l—X). Substituting (4.7) and
(4.8) into (4.6), we have

( f ' ) \ f —
&4(1+a+b)6^7\7W:*

and hence

a-*//)

where J3 is a nonzero constant. We easily see that the left hand side of (4.9)
has poles of order at most 2. If g/f has a 1-point zlr then the right hand side
of (4.9) has a pole of order 3 at zlt This is impossible. Therefore θ(l, #//)=!,
so that θ(0, ^//)+θ(l, g/f)+θ(oo, g/f)^7/3. This is also a contradiction.
Thus we conclude that g/f is a constant.

LEMMA 5. // g/f is a constant C, then {α, 6} = {ω, ω2} αnύί C8=l.

Proof. Since / and g are distinct, all the 1-, α-, 6-ρoints of / and £ are
of order ;>3. Hence / maps 1, α, b on α, 6, 1 (or b, 1, α) respectively. There-
fore C3=l and {α, b} = {ω, ω2} . m

5. Proof of Theorem 1

Assume that f=£g. From (3.3)/, (3.16), (3.17) and (3.6)' we see that
N(r, 0, / 3)+N(r, oo, / 3)=S(r). Hence Lemma 3 holds, and so that from
Lemmas 4 and 5 it follows that {a, b} = {ω, ω2} and f*=g*. This completes
the proof of Theorem 1.

6. Elementary estimates on meromorphic functions satisfying
Eι(ajf / )—E^dj , g) for six distinct values a} 0 = 1, 2, 3, 4, 5, 6)

In this section, we assume that / and g are distinct nonconstant mero-
morphic functions satisfying Eι(ajy f)=E1(aJ, g) for six distinct values a-,
0 — 1, 2, 3, 4, 5, 6) in Cu{°o}. Under these assumptions we write N(r, a j f /; 1)
=N(r,a],g l}=N(r,a1 l).

THEOREM 4. // α^ eC (/=!, 2, 3, 4, 5, 6), then we have the following esti-
mates :

(6.1) T(r, /)=T(r)+S(r), T(r, ί)=T
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(6.2) ΣJ-i N(r, a, l)=2T(r)+S(r)

(6.3) N(r, 0, f-g)=N(r, 0, f-g)+S(r)=ΣS=ιN(r, a, l)+S(r)

(6.4) For any cφa} 0 = 1, 2, 3, 4, 5, 6) in C\J{oo}

N(r, c, f)=N(r, c, /)+S(r)=7»+S(r), and

N(r, c, g)=N(r, c, g)+S(r)=T(r)+S(r)

(6.5) N(r, a,, f)=N(r, a,, f l)+2N(r, a,, f 2)+S(r)=T(r)+S(r),

N(r, a,, g)=N(r, a,, g;l)+2N(r, a,, g ;2)+S(r)=T(r)+S(r)

0 = 1,2,3,4,5,6);

(6.6) m(r, 0, f-g)=S(r)

(6.7) T(r, /-*)=2T(r)+S(r)

(6.8) // NΊ(r, f) refers only to those multiple points of f such that fΦa,
0 = 1, 2, 3, 4, 5, 6) ana if N[(r, g) is similarly defined, then N[(r, f)=S(r)
and N((r, g)=S(r).

The proof is much the same as the proof of Theorem 3.

THEOREM 4'. // a1 = °o> then we have the following estimates:

(6.1)' T(r, /)=T(r)+S(r), T(r, g)=T(r)+S(r)

(6.2)' ΣJ., Mr, α, l)=2T(r)+S(r)

(6.3)' N(r, 0, f-g)=N(r, 0, /-ί)+S(r)=ΣJ=,^(r, α, l)+S(r)

(3.4)' For any cΦa, 0=1, 2, 3, 4, 5, 6) m C

N(r, c, f)=N(r, c, /)+S(r)=T(r)+S(r), αwrf

N(r, c, ί)=J7(r, c, g)+S(r)=T(r)+S(r)

(6.5)' Mr, α,, /)=/V(r, β,, / l)+2N(r, a,, f 2)+S(r)=T(r)+S(r),

ΛΓ(r, fl,, ί)=Mr, α,, ί l)+2JV(r, a,, g 2)+S(r)=T(r)+S(r)

0 = 1, 2, 3, 4,5, 6);

(6.6)' m(r, 0, /-g)=S(r)

(6.7)' T(r, f-g)+N(r, ~ l)=2T(r)+S(r)

(6.8)' // Mί(r, /) refers only to those multiple points of f such that fφa,
(/=!, 2, 3, 4, 5, 6) and if N[(r, g) is similarly defined, then N[(r, /)=S(r)
and N((r, g)=S(r).

The proof is much the same as the proof of Theorem 3'.
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7. Outline of the proof of Theorem 2

Let flι = oo, az=Q, α3—1, a4=a, ab—b and αβ—c. In this section, for these
six distinct values {α,} we assume that two distinct nonconstant meromorphic
functions / and g satisfy Eι(ajt f)=Eι(a3, g).

LEMMA 6. The function

_ (fΎ(g')\f-gY
- D(/- a)(g- a)(f-b)(g-b)(f-c)(g- c)}

satisfies

m(r, oo, Λ)=S(r) and N(r, oo, A)

=2{N(r, 0, / 2)+N(r, 0, g 2)+N(r, oo, / 2)+/V(r, oo, g 2)} +S(r).

In what follows, for the sake of simplicity we write

- 7 " L i r r r r— -

and

LEMMA 7. ( i ) For [/];—[#], 0=3, 4) we have

N(r, c«, [/],-[*],)^ΛΓ(r, 0, / 2)+ΛΓ(r, 0, ̂  2)+N(r, oo, / 2)

+JV(r, oo, g;2)+S(r).

(ii) // ^o denotes a simple zero of f which is also a simple zero of g, then
ΩI(ZO)=Q. Similarly, if z^ is a common simple pole of f and g, then β2(^oo)=0.

LEMMA 8. // there is a constant rxe[0, 1/10) such that

N(r, 0, / 2)+ JV(r, oo, / 2)^r'T(r)+S(r),

then both Ωfc^Q and Ω2(z)Ξ=Q hold.

LEMMA 9. Assume that f and g share 0 and oo CM. If both £?ιO)=0 and
Ω2(z)=Q hold, then g/ f is a constant.

LEMMA 10. // g/f is a constant C, then {a, b, c}^={a, —1, — a} with «^0,
±1 and C4=L

The proofs of Lemmas 6-10 are similar to the one of Lemmas 1-5. Com-
bining these we easily obtain Theorem 2.
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