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Abstract. The topology of a compact self-dual manifold whose twistor space has

positive algebraic dimension is studied. When the algebraic dimension equals three, it is

known by Campana [4] that the original self-dual manifold is homeomorphic to a con-

nected sum of copies of a complex projecitve plane. In the remaining cases where the

algebraic dimension is equal to two or one, we similarly determine the topology of the self-

dual manifold except in a certain exceptional case where the algebraic dimension equals

one.

1. Introduction and statement of results.

Let M be a compact connected oriented 4-manifold with self-dual structure

½g�. Let Z be the associated twistor space, which is a compact connected

complex manifold of complex dimension three. Campana [4] has shown that if Z

is Moishezon, then M is homeomorphic to a connected sum mCP
2 of m copies

of complex projective plane CP
2, where m is the second betti number b2ðMÞ of

M. As a generalization we study in this note the topology of M when the as-

sociated twistor space Z has a positive algebraic dimension, namely we consider the

cases where the algebraic dimension aðZÞ ¼ 2 or 1 and show the two theorems

below. (Note that the Moishezon case corresponds to the case aðZÞ ¼ 3.) We

also note that under our assumptions Ville [34] had obtained the estimate b1a 4

for the first betti number b1 ¼ bðZÞ.

The first theorem deals with the case of algebraic dimension two.

Theorem 1.1. Let ðM; ½g�Þ be a compact connected self-dual 4-manifold and

Z the associated twistor space as above. Suppose that the algebraic dimension

aðZÞ of Z equals two. Then one of the following is true:

1) M is homeomorphic to mCP
2, where m ¼ b2ðMÞ,

or
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2) there exists a finite unramified covering M̂M of M which is homeomorphic to

ðS1 � S3Þ]mCP
2, where m ¼ b2ðMÞ, and ] denotes the smooth connected sum.

Before stating the result in the case aðZÞ ¼ 1 we recall some definitions and

related known results. We call the self-dual manifold ðM; ½g�Þ of positive (resp.

zero) type if the conformal class ½g� contains a Riemannian metric of constant

positive (resp. zero) scalar curvature s. Typical examples of self-dual manifolds

of zero type are provided by Kähler surfaces of zero scalar curvature with re-

versed orientation. There exists a strong relation between the type of a self-dual

manifold and the algebraic dimension of the associated twistor space. In fact by

the results of Poon [28], Gauduchon and Pontecorvo [25, 3.5, 3.3, 4.3] we know

the following:

Lemma 1.2. Let ðM; ½g�Þ and Z be as above.

1) If aðZÞb 2, ðM; ½g�Þ is of positive type, and

2) If aðZÞ ¼ 1, ðM; ½g�Þ is of positive type or of zero type. If it is of zero

type, then one of the following is true;

a) ðM; ½g�Þ is flat,

b) M is a K3 surface with reversed orientation and ½g� is the classs of a

Calabi-Yau Kähler metric, and

c) a finite (nontrivial ) unramified Galois covering of ðM; ½g�Þ is isomorphic to

one of the self-dual manifolds in b), and in this case the fundamental group of M is

isomorphic to either Z=2Z or Z=2ZlZ=2Z.

Remark. 1) Here, ðM; ½g�Þ being flat in a) above means that ½g� con-

tains a flat metric. In this case the fundamental group of M is considered as a

4-dimensional crystallographic group, and the topological classification of mani-

folds is essentially known.

2) In case c) of the above lemma the fundamental group of M is isomorphic

either to Z=2Z or to Z=2ZlZ=2Z. The result on the fundamental group of

M in c) follows from [14, Theorem 1].

In any case, when aðZÞ ¼ 1 and ðM; ½g�Þ is of zero type, up to unramified

coverings the topology of M is essentially known. So, for our purpose of study-

ing the topology of self-dual manifolds we restrict ourselves to the case where

ðM; ½g�Þ is a self-dual manifold of positive type. In this case our result is stated

as follows.

Theorem 1.3. Let ðM; ½g�Þ be a compact connected self-dual 4-manifold and

Z the associated twistor space as above. Suppose that the algebraic dimension

aðZÞ of Z equals one and ðM; ½g�Þ is of positive type. Then the first betti number

b1ðMÞ of M is either one or zero. Moreover, either of the statements 1) and 2) of

Theorem 1.1 holds true except possibly in the following case: a general fiber of the
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algebraic reduction is a compact analytic surface of class VII which contains no

global spherical shells and with positive second betti number.

Remark. 1) It is expected that the exceptional case mentioned in the above

theorem does not occur. In fact, it is conjectured that there exist no compact

analytic surfaces of class VII0 which contains no global spherical shells and with

positive second betti number (cf. [23, 5.5]).

2) Typical examples which fall under the case 2) of Theorems 1 and 2

are primary Hopf surfaces ðM; gÞ with natural conformally flat metric g ¼

ðdz1 � dz1 þ dz2 � dz2Þ=kzk
2, where

M ¼ ðC 2 � f0gÞ=hhi; hðz1; z2Þ ¼ ðaz1; bz2Þ; jaj ¼ jbj0 1:

In this case M is homeomorphic to S1 � S3. According to the choices of

the complex numbers a and b the algebraic dimension of the associated twistor

space can take any of the values zero, one and two (cf. [13], [12]). So the case

2) of both the theorems also occur actually. In the Hopf case we have b2 ¼ 0.

However, LeBrun [21] constructed anti-self-dual metrics on certain blown-up

Hopf surfaces and it turns out that the associated twistor spaces is always of

algebraic dimension one. These give examples in which M is homeomorphic to

ðS1 � S3Þ]ðmCP
2Þ;m > 0, in Theorem 1.3.

3) It is known that as a consequence of a general theorem of Taubes [32] any

finitely presented group can be realized as the fundamental group of some com-

pact self-dual manifold. In view of the above theorems the associated twistor

space is in most cases necessarily of algebraic dimension zero.

Combined with a theorem of Kuiper [19] the following is a corollary of

Theorems 1.1 and 1.3 except for the exceptional case in Theorem 1.3.

Theorem 1.4. Let ðM; ½g�Þ be a compact oriented conformally flat 4-

manifold. Suppose that the algebraic dimension aðZÞ of the twistor space Z of M

is positive. Then ðM; ½g�Þ is conformally equivalent to one of the following:

a) the 4-sphere with standard conformally flat metric,

b) a flat manifold,

c) a finite quotient of a Hopf surface with standard conformally flat her-

mitian metric by a finite group of conformal transformations acting freely on the

manifold.

In fact, except for the exceptional case in Theorem 1.3 the fundamental

group of M contains a normal abelian subgroup of finite index. So we can

apply the theorem of Kuiper in [19] to conclude that M falls under one of the

classes a), b) and c). We shall give a complex analytic proof of the theorem

which is valid also in the above exceptional case in the final section 6.
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The proofs of Theorems 1.1 and 1.3 proceed as follows. Let F be a general

fiber of algebraic reduction of Z. Consider the natural image N of p1ðF Þ in

p1ðZÞ and the associated quotient Q :¼ p1ðZÞ=N, where p1 denotes the funda-

mental group. The key point of the proof is to show that Q is a finite group.

We shall show this by using Stein factorization and L2 method given in Sections

2 and 3 respectively. Our result, however, is formulated in the frame work of a

general compact complex manifold and its algebraic reduction (cf. Theorem 4.1 in

Section 4) since it might be of independent interest. If this is combined with the

estimate of the first betti number in Proposition 5.3, the rest of the proof is not

di‰cult and is given in Section 5.

The referee has kindly pointed out that by using Theorem 2.2 of Campana

[5] one can obtain simpler proofs of Theorems 1.1 and 1.3 which do not use the

methods of Sections 2 and 3 of this paper, although the intermediate results ob-

tained by the methods of those sections may be of some independent interest.

2. Stein factorization of certain holomorphic maps and

fundamental groups.

Let g : A ! B be a surjective holomorphic map of irreducible normal com-

plex spaces. Then a Stein factorization of g is a pair of holomorphic maps

ðh : A ! C; k : C ! BÞ with g ¼ kh where C is a normal complex space, h is a

proper surjective holomorphic map with connected fibers and k is a (possibly

ramified) covering. If g is proper, the existence and uniqueness of a Stein fac-

torization as above is well-known.

We are interested in the existence of a Stein factorization in the following

situation: Let X and Y be compact connected complex manifolds and f : X ! Y

a surjective holomorphic map with connected fibers. Let F be any smooth fiber

of f . Let N be the natural image of p1ðF Þ in p1ðXÞ, which is independent of the

choice of F. In fact, the following is well-known:

Lemma 2.1. N is a normal subgroup of p1ðXÞ.

Proof. Let U be a Zariski open subset of Y over which f is smooth.

Then, since f is topologically a fiber bundle over U, we get the associated

homotopy exact sequence in the usual sense

! p1ðFÞ !
i

p1ð f
�1ðUÞÞ ! p1ðUÞ ! 1:

In particular, the image Im i is a normal subgroup of p1ð f
�1ðUÞÞ. Then, N also

is a normal subgroup of p1ðX Þ as it is the image of Im i in p1ðXÞ by the natural

surjection p1ð f
�1ðUÞÞ ! p1ðXÞ. r
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Let Q :¼ p1ðXÞ=N be the quotient group and q : Q ! G an arbitrary quo-

tient of Q. Consider an unramified covering

u : ~XX ! X

corresponding to the natural quotient homomorphism p1ðXÞ ! G. Then we ask

if a Stein factorization of the composite map fu : ~XX ! Y exists or not.

Proposition 2.2. Let f : X ! Y ;G and u : ~XX ! X be as above. Suppose

that there exists a divisor D in Y with only normal crossings such that f is smooth

over Y �D. Then a Stein factorization ð ~ff : ~XX ! ~YY ; v : ~YY ! Y Þ of fu exists so

that the following diagram commutes

~XX ���!
u

X

~ff

?
?
?
y

?
?
?
y

f

~YY ���!
v

Y :

ð1Þ

Moreover, v is a ( possibly ramified ) Galois covering with Galois group G whose

branch locus on Y is contained in D, and any general fiber of ~ff is mapped iso-

morphically onto a general fiber of f by u.

The key to the proof of the proposition is a local lemma proved in [11,

Lemma 2.1], which we shall state and prove in our simple situation here (and also

make some minor corrections of [11]).

Let B be a polycylinder of su‰ciently small multi-radii in C
n ¼C

nðz1; . . . ; znÞ

for some n > 0. Define a hypersurface A in B by the equation z1 � � � zl ¼ 0 for

some 1a la n. We set U ¼ B� A. Let W be a complex manifold and f :

W ! B a proper surjective holomorphic map with connected fibers. We assume

that f is smooth over U. Fixing any point b A U we set F ¼ f �1ðbÞ.

In order to state the lemma exactly we introduce a terminology. Let Ai :¼

fzi ¼ 0g; 1a ia l, be the irreducible components of A. We take a point a i ¼

ða i
1; . . . ; a

i
nÞ of Ai �6j0i

Aj and consider the restriction fi : Wi ! Di of f over

the 1-dimensional disc Di ¼ fzj ¼ a i
j ; j0 ig, where Wi ¼ f �1ðDiÞ. If we take a i

su‰ciently general, then Wi is nonsingular. Let Sim; 1a ma di, be the irreduc-

ible components of f �1
i ða iÞ, and mim the multiplicity of Sim in f �1

i ða iÞ. Then we

call the greatest common divisor mi of mim the multiplicity of f along Ai. It is

standard to check that mi is independent of the choice of a point a i as above.

Then our lemma is stated as follows.

Lemma 2.3. Let the notations and assumptions be as above. Then, possibly

after restricting B around the origin, the cokernel of the natural homomorphism
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p1ðFÞ ! p1ðWÞ is a finite abelian group R which is a quotient of the finite abelian

group li Z=miZ; we have thus an exact sequence of groups

p1ðF Þ ! p1ðWÞ !
q
R ! 1: ð2Þ

Moreover, when n ¼ l ¼ 1, we have R ¼ Z=mZ, where m ¼ m1.

Proof. Let V ¼ f �1ðUÞ. Then the natural map t : p1ðVÞ ! p1ðWÞ is sur-

jective. On the other hand, since the restriction fV : V ! U of f to V is topo-

logically a fiber bundle, we get an exact sequence of groups

1 ! p1ðF Þ ! p1ðVÞ !
b
p1ðUÞ ! 1: ð3Þ

We claim that the image in p1ðUÞ ðGli ZÞ by b of the kernel K of t contains the

subgroup li miZ. (Note that the class gi defined by a loop which turns once

around the a i counterclockwise in the punctured disc Di � a i give canonical

generators of p1ðUÞ.) Take a 1-dimensional disc Dim in Wi which inter-

sect transversally with Sim at a general point yim and then consider the class gim
of p1ðVÞ defined by a loop in Dim turning once around yim. Since the induced

map Dim ! Di is an mim-ple covering ramified at yim, the image by u of gim in

p1ðUÞ generate the subgroup mimZ of the i-th component of p1ðUÞ. This con-

sideration for all i and m gives our claim that bðKÞ contains li miZ. Then by

taking the quotient of the sequence (3) by K we get the exact sequence (2).

It remains to show that RGZ=mZ assuming that n ¼ l ¼ 1. Define a

covering map h : B 0 ! B by z ¼ hðz 0Þ ¼ z 0m for an appropriate polycylinder B 0

in C . Then, if W 0 is the normalization of the fibered product W �B B 0, the

induced morphism u 0
: W 0 ! W turns out to be unramified. Hence, the image

bðKÞ must coincide with mZ. Then we have RGZ=mZ. r

Proof of Proposition 2.2. We define an equivalence relation on ~XX by the

following rule: two points ~xx and ~xx 0 of ~XX are said to be equivalent if they belong

to one and the same connected component of a fiber of fu : ~XX ! Y . Let ~YY be

the quotient space of ~XX by this equivalent relation. Denote by ~ff : ~XX ! ~YY the

quotient map and we put the quotient topology on ~YY . As usual, make ~YY a local

ringed space ð ~YY ;O ~YY Þ, starting from the presheaf U ! O ~YY ðUÞ ¼ fcontinuous

function f on U such that ~ff �f is holomorphic on ~ff �1ðUÞg, where U are open

subsets of ~YY (cf. [8, p. 74 1.26]). Then ~ff is a morphism of local ringed spaces.

Further, it is easy to see that we also have a natural morphism of local ringed

spaces v : ~YY ! Y such that fu ¼ v~ff and that there exists a naturally induced

e¤ective action on ~YY of the Galois group G of u such that ~YY=GGY as a local

ringed spaces.

We shall show that ~YY has a natural structure of a normal complex space
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compatible with the given local ringed space structure. In fact, then ~ff : ~XX ! ~YY

and v : ~YY ! Y above would automatically be holomorphic maps of complex

spaces and ~YY=GGY in the complex category.

For any point y of Y take a su‰ciently small coordinate neighborhood

B ¼ fðz1; . . . ; znÞ; jzij < eg of y in Y. If y A D, we assume that z1 � � � zl ¼ 0 is a

local equation of D in B for some l with 1a la n. Set W ¼ f �1ðBÞ. Then

applying Lemma 2.3 to the induced morphism f jW : W ! B, we have the fol-

lowing commutative diagram of exact sequences (of non-commutative groups)

p1ðFÞ ���!
c

p1ðWÞ ���! R ���! 1
�
�
�
�

a

?
?
?
y

b

?
?
?
y

p1ðFÞ ���!
d

p1ðX Þ ���! Q ���! 1

ð4Þ

where a is induced by the inclusion W ,! X , b is induced by a, c (resp. d ) is

induced by the inclusion F ,! W (resp. F ,! X ), and R is a finite (abelian)

group. This implies that the restriction of u to each connected component ~WWi,

i A I , of u�1ðWÞ is a finite unramified (abelian) covering. Hence the composite

map fu j ~WWi : ~WWi ! B is proper and we obtain the associated Stein factorization

ð ~ffi : ~WWi ! ~BBi; vi : ~BBi ! BÞ, and hence a commutative diagram

~WWi ���!
ui

W

~ffi

?
?
?
y

?
?
?
y
f jW

~BBi ���!
vi

B

ð5Þ

where vi : ~BBi ! B is a finite abelian covering whose branch locus in B is con-

tained inside DVB and the fibers of ~ffi are connected.

This implies that the restriction of the quotient map ~ff to ~WWi is naturally

identified with ~ffi and ~BBi with an open subset of ~YY as a local ringed space. Since

every point of ~YY is covered by an open subset of the form ~BBi as above, this shows

that ~YY is naturally a normal complex space. (Note that since ~BBi is normal, a holo-

morphic function on ~BBi is identified with a continuous function which becomes

holomorphic when pulled back to ~WWi.) Moreover, from the above description of

vi the branch locus of v is contained in D. Finally, the last assertion is clear

from the obvious fact that the image of p1ðFÞ in G is trivial. r

We call the diagram (1) in Proposition 2.2 the canonical diagram associated

to f and G; in particular when G ¼ Q, it is simply called the canonical diagram

associated to f .

We shall show the finiteness of Q in a special case.
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Proposition 2.4. Suppose that dimY ¼ 1 and that there exists a simply

connected rational curve C in X which is mapped surjectively onto Y. Then Q is

finite and isomorphic to a subgroup of the special orthogonal group SOð3Þ. The

order of Q is a divisor of the intersection number C � F on X.

Proof. Since C is simply connected, in the canonical diagram (1) associated

to f , u�1ðC Þ is a disjoint union of rational curves each of which is mapped iso-

morphically onto C by u. Moreover, each of them is mapped surjectively onto ~YY

by ~ff . Hence, ~YY is compact, and in fact is a nonsingular rational curve. In

particular, v is a finite Galois covering with Galois group Q, which is thus iso-

morphic to a finite subgroup of SOð3Þ. Let d be the order of Q. Then the final

assertion follows from the relation dðC � F Þ ¼ d ~CC � d ~FF ¼ d 2ð ~CC � ~FFÞ, where ~CC (resp.
~FF ) is a connected component of u�1ðC Þ (resp. u�1ðFÞ). r

Retaining the assumption that dimY ¼ 1 we also note a relation of the

ramification points of v and the multiple fibers of f . First of all, let D ¼

fy1; . . . ; ykg be the subset of Y of branch points of v, and ni the ramification index

at yi. On the other hand, let N ¼ fp1; . . . ; psg be the set of points of Y cor-

responding to multiple fibers of f , and mj the multiplicity of Fpj :¼ f �1ðpjÞ. (If

mj are the multiplicities of the irreducible components Fj, 1a ja k, of Fy :¼

f �1ðyÞ, m :¼ gcdðm1; . . . ;mkÞ is by definition the multiplicity of Fy. When

m > 1, Fy is called a multiple fiber.) Then we get:

Proposition 2.5. Under the assumption of the previous proposition D is a

subset of N and we have the bound 0a sa 3 for s; here if s ¼ 0 or 1;Q ¼ feg, if

s ¼ 2, Q is a cyclic group of order gcdðm1;m2Þ, and if s ¼ 3, then D ¼ N and we

have nj ¼ mi if yj ¼ pi.

Proof. Since v is a Galois covering between nonsingular rational curves,

the number of branch points k do not exceed 3. For any yj A D consider the

diagram (4) for a small neighborhood B of yj. By the last assertion of Lemma

2.3 we have RGZ=m 0
jZ with m 0

j the multiplicity of Fyj . Hence, in the diagram

(5) vi is a cyclic ramified covering of degree nj with njjm
0
j , where in general njm

means that n divides m. Therefore we have m 0
j > 1 and yj A N; the inclusion

DJN is verified. After suitable renumbering of fpig we may assume that yj ¼ pj
for 1a ja k so that mj ¼ m 0

j .

Suppose now that sb 3. Then by the solution of Fenchel conjecture (cf. [9])

there exists a finite ramified Galois covering v 0 : Y 0 ! Y which is ramified at pi
with ramification index mi and otherwise unramified. Let X 0 be the normal-

ization of the fibered product X �Y Y 0. Then the induced map X 0 ! X is un-

ramified and the general fiber of X 0 ! Y 0 is mapped isomorphically onto a gen-

eral fiber of f . Thus by the definition of Q u : ~XX ! X factors through X 0;
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~XX ! X 0 ! X :

Correspondingly, v : ~YY ! Y factors through Y 0;

~YY ! Y 0 !v
0
Y :

In particular, Y 0 also is a nonsingular rational curve. Combined with the

relation njjmj obtained above we conclude that mj ¼ nj and that ~YY ! Y 0 is

isomorphic; hence k ¼ s and D ¼ N. The rest of the assertions are immediate

to see. r

3. L2-method and covering maps.

In order to obtain the finiteness of Q we need an L2-method by Demailly [6 ]

which will be applied in a situation similar to [5] and [24].

Lemma 3.1. Let Y be a connected projective algebraic manifold. Let v :
~YY ! Y be a ( possibly ramified ) Galois covering of Y with Galois group G, where
~YY is an irreducible normal complex space. Then there exists a G-equivariant res-

olution r : ŶY ! ~YY of the singularities of ~YY such that on ŶY we have a G-invariant

complete Kähler metric ĝg and a G-invariant hermitian holomorphic line bundle

ðL̂L; ĥhÞ whose chern form is positive.

If G is finite, then for a suitable choice of r, vr : ŶY ! Y becomes a pro-

jective morphism with a G-invariant vr-ample line bundle F on ŶY ; in this case the

assertion is well-known; in fact, the line bundle L̂LN :¼ ðrvÞ�LN nF for a su‰-

ciently large N admits a hermitian metric with positive chern form. The point

here is simply that even if G is infinite, because of the compactness modulo G

of ŶY together with the G-invariance of L and F, the same argument still works.

So we shall give partly only a rough outline.

Proof. Take any holomorphic hermitian line bundle ðL; hÞ on Y whose

associated chern form c1ðL; hÞ :¼ �
ffiffiffiffiffiffiffi

�1
p

=2pqq log h is positive. First, we shall

construct on ~LL :¼ v�L a hermitian metric of the form ~hhe�f; ~hh ¼ v̂v�h, on ~YY with

positive chern form where f is some Cy function on ~YY . Take a finite open

covering V ¼ fVig of Y with each Vi su‰ciently small so that

a) if Vim; m A Mi, are the connected components of v�1ðViÞ, the induced maps

Vim ! Vi are mutually isomorphic finite Galois coverings whose Galois group Gim

is a finite subgroup of G which are conjugate to each other, and

b) on each Vim there exists a Gim-invariant Cy strictly plurisubharmonic

function cim which are mapped to each other by any isomorphism Vim GVim 0 over

Vi. Take a Cy partition of unity frig subordinate to the covering V, and set

~rri ¼ v�ri. Define a G-invariant Cy function c on ~YY by c ¼
P

i ~rrici. Clearly,
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ffiffiffiffiffiffiffi

�1
p

qqc is positive definite on the Zariski tangent spaces of each (0-dimensional)

fiber of v.

Then by the G-invariance of c we see immediately that

~oo :¼ c1ð~LL; ~hhÞ þ e

ffiffiffiffiffiffiffi

�1
p

2p
qqc

is positive if e is a su‰ciently small positive number. Then ~hhe�f with f ¼ ec is

the desired hermitian metric on ~LL.

From now on we denote this new metric again by ~hh so that the associated

chern form c1ð~LL; ~hhÞ is the Kähler form ~oo.

From the definition of ~oo it follows readily that, if we take e smaller if nec-

essary, the length of a path on ~YY with respect to the Kähler metric ~gg associated

to ~oo is greater or equal to that of its image in Y with respect to the Kähler metric

associated to o :¼ c1ðL; hÞ. This shows that ð ~YY ; ~ggÞ is complete.

Now we take a resolution r : ŶY ! ~YY of the singularities of ~YY according

to Hironaka [2, Theorem III], which is necessarily G-invariant and is locally a

finite succession of monoidal transformations with nonsingular centers. By the

G-invariance, however, it is in fact a finite succession of monoidal transforma-

tions. Then a suitable tensor product F of the holomorphic line bundles cor-

responding to the ideal sheaves of exceptional divisors of r is ample on each fiber

of r, or more precisely r-ample over ~YY . Furthermore, the G-action on ŶY natu-

rally lifts to F. Then we can find a G-invariant hermitian metric k on F whose

chern form c1ðF ; kÞ is positive on (the Zariski tangent spaces of ) each fiber of r

by using a Cy partition of unity subordinate to a suitable open covering of ~YY .

Let L̂L :¼ r� ~LL. Then by the G-invariance of k we see that for a su‰ciently

large n the hermitian metric ĥhn :¼ ~hhn
n k on L̂Ln :¼ L̂Ln nF has the positive chern

form ôon. Thus, ðL̂Ln; ĥhnÞ for such an n is a desired hermitian line bundle, and

ôon is then a desired Kähler form. Indeed, by our construction we conclude that

the length of a Cy path in ŶY with respect to the associated Kähler metric ĝgn is

greater or equal to that of its image in ~YY with respect to the Kähler metric as-

sociated to ~oo. Hence ĝgn is also complete. r

Using the L2 theory of Hörmander-Demailly (cf. [6 ]) in the same way as in

Campana [5, A.B.1] or Napier-Ramachandran [24] we shall prove the following:

Lemma 3.2. Let Y and v : ~YY ! Y be as in the previous lemma. We con-

sider the resolution r : ŶY ! ~YY , the complete Kähler metric ĝg, and the positive line

bundle ðL̂L; ĥhÞ on ŶY obtained in that lemma. Then, if v is an infinite covering, for

all su‰ciently large integer N, H 0ðŶY ;KŶY n L̂LNÞ is infinite dimensional, where KŶY

is the canonical bundle of ŶY .
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Proof. Let U be any open subset of Y over which v̂v :¼ vr : ŶY ! Y is an

unramified Galois covering. Let G be the corresponding Galois group. Be-

cause of the G-invariance, the restrictions ðL̂L; ĥhÞ j ÛU and ĝgjÛU descend to a her-

mitian line bundle ðL; hÞ and a Kähler metric g respectively on U, where ÛU ¼
v̂v�1ðUÞ. Then take any point y of U, and for a positive integer N fix a unit

vector a in the fiber ðKY nLNÞy with respect to the metric induced by g and

hN . Consider the set v̂v�1ðyÞ ¼ fŷyggg AG parametrized by G, and let ag be the

unit vector of ðKŶY n L̂LNÞŷyg induced by a. Denote by l2ðGÞ the Hilbert space of

square-summable sequences of complex numbers parametrized by G. Then for

the lemma we have only to prove the following

Claim. If we take N su‰ciently large, for any element ðagÞg AG A l2ðGÞ there

exists an element s of H 0ðŶY ;KŶY n L̂LNÞ which restricts to agag at ŷyg.

Proof. Take a coordinate neighborhood W of y in Y contained in U

such that ŴW :¼ v̂v�1ðWÞ is a disjoint union of neighborhoods ŴWg of ŷyg, each

mapped isomorphically onto W. Then, choose a non-negative Cy function r on

Y whose support is contained in W and which is identically equal to 1 in a neigh-

borhood of y. For the coordinates z1; . . . ; zn on W consider the function j :¼
r logð

Pn
i¼1 jzij

2Þ as a function defined on the whole Y with singularity at y and

with support in W, where n ¼ dimX . Set ĵj :¼ v̂v�j. Then take N so large that

No�
ffiffiffiffiffiffiffi

�1
p

2p
nqqjbo

as a current on Y. In particular, the singular hermitian metric ĥh 0
N :¼ ĥhNe�nĵj has

a positive chern form.

Now choose any holomorphic section s of ðKY nLNÞy on W with sðyÞ ¼ a,

which induces by pulling back a holomorphic section ŝsg of KŶY n L̂LN on each ŴWg,

giving ag at ŷyg. Define a holomorphic section ŝs on ŴW by ŝsjŴWg ¼ agŝsg for g A G.

Then s :¼ r̂rŝs defines a smooth section of KŶY n L̂LN on ŴW giving agŝsg at each yg.

We may extend this by zero to a Cy section on the whole ŶY with support con-

tained in ŴW . Set y :¼ qs. Then y is an L̂LN -valued ðn; 1Þ-form on ŶY with finite

L2 norm with respect to the singular metric ĥh 0
N and the Kähler metric ĝg. Then

by Demailly [6, Theorem 5.1], there exists an L̂LN -valued n-form h on ŶY with finite

L2 norm such that qh ¼ y. Thus, we get an L̂LN -valued holomorphic n-form b :¼
s� h which gives on each fiber ðKY n L̂LNÞyg over yg the element agag. (Note

that hðygÞ ¼ 0 by the L2-condition.) Thus the claim, and hence the lemma also,

is proved. r

4. Algebraic reduction and fundamental group.

Let Z be a compact connected complex manifold. We first recall the notion

of algebraic reduction. An algebraic reduction of Z is a diagram
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ẐZ ���!
m

Z

f

?
?
?
y

Y

ð6Þ

of compact complex manifolds with the following properties:

1) m is a bimeromorphic morphism,

2) Y is a projective algebraic manifold,

3) f is a surjective morphism with connected fibers, and

4) we have natural isomorphisms of meromorphic function fields

CðZÞ �!
m �

CðẐZÞ  �

f �

CðYÞ:

The algebraic dimension aðZÞ of Z is by definition the transcendence degree over

C of the algebraic function field CðZÞ, and thus coincides with the dimension of

Y. The diagram (6) is up to bimeromorphic equivalence determined uniquely by

Z. Let F be a general fiber of f , which is a compact connected complex man-

ifold. Then the fundamental group of F is independent of the choice of algebraic

reductions, as the fundamental group is in general a bimeromorphic invariant of

a complex manifold. Thus the natural image N of p1ðF Þ in p1ðZÞ is a normal

subgroup (cf. Lemma 2.1). The group N, and the corresponding quotient group

Q :¼ p1ðZÞ=N, also is an invariant of the complex manifold Z itself. We call Q the

algebraic reduction of p1ðZÞ. By definition we have the obvious exact sequence of

groups

p1ðF Þ !
b
p1ðZÞ ! Q! 1 ð7Þ

where the image of b is N.

Theorem 4.1. Let Z be a compact connected complex manifold. Let A

be an analytic subspace of Z. Suppose that A admits a fundamental system

fVngn¼1;2;... of neighborhoods Vn of A in Z such that dimH 0ðVn;FÞ < y for all

torsion-free coherent analytic sheaves F on X. Then the cokernel of the composite

map p1ðAÞ ! p1ðZÞ ! Q is finite. In particular if p1ðAÞ is finite, the algebraic

reduction Q of p1ðZÞ also is finite.

By [29, Cor. 1,ii)] together with Théorème 1 and Proposition 10 of [1] a

submanifold A with ample normal bundle always admits fundamental system of

neighborhoods as above. Thus we obtain the following:

Corollary 4.2. Suppose that A is a compact complex submanifold with an

ample normal bundle in Z. Then the conclusion of the theorem holds true.

Proof. Take an algebraic reduction (6) of Z in such a way that f is
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smooth over a Zariski open subset of Y whose complement is a divisor with

only normal crossings. Let G be the cokernel of the composite map p1ðAÞ !

p1ðZÞ!Q. Take an unramified covering u : ~ZZ! ẐZ corresponding to the natural

quotient map p1ðẐZÞG p1ðZÞ ! G. By Proposition 2.2 we can find a Stein fac-

torization ð ~ff : ~ZZ ! ~YY ; v : ~YY ! YÞ of fu, where v is a Galois covering with Galois

group G. It su‰ces to show that v is a finite covering.

Suppose on the contrary that v is an infinite covering. By Lemmas 3.1 and

3.2 there exist a G-equivariant resolution r : ŶY ! ~YY of ~YY , a holomorphic line

bundle L̂L, and a positive integer N such that H 0ðŶY ;KŶY n L̂LNÞ is infinite dimen-

sional. Then, F :¼ r�OŶY ðKŶY n L̂LNÞ is a torsion-free coherent analytic sheaf on
~YY with H 0ð ~YY ;FÞGH 0ðŶY ;KŶY nLNÞ. Thus, if we define ~FF to be ~ff �

F modulo

torsion, H 0ð ~ZZ;
~FFÞ also becomes infinite dimensional.

On the other hand, if W is a tubular neighborhood of A in Z, by our def-

inition of u, u�1ðWÞ is a disjoint union of open subsets which are mapped iso-

morphically onto W. Let ~WW be such an open subset and ~AA¼ ~WW V u�1ðAÞ. Then

by our assumption there exists a neighborhood ~VV of ~AA in ~WW such that H 0ð ~VV ;
~FFÞ

is finite dimensional. Since the space H 0ð ~ZZ; ~FFÞ injects into H 0ð ~VV; ~FFÞ, this is a

contradiction. Thus v is a finite covering as desired. r

When Q is finite, the sequence (7) shows that the main part of p1ðZÞ is

the image N of p1ðFÞ. We summarize some known facts on the structure of a

general fiber F in the following lemma (cf. Ueno [33, 12.5]) in the case where the

dimension of Z equals three.

Lemma 4.3. Suppose that dimZ ¼ 3. As above, let F be a general fiber of f

in (6).

1) If aðZÞ ¼ 2, any smooth fiber of f is a nonsingular elliptic curve.

2) If aðZÞ ¼ 1, a smooth fiber of f is bimeromorphic (or isomorphic) to one of

the following surfaces:

a) a Kähler surface with vanishing real first chern class,

b) a ruled surface of genus one,

c) a rational surface,

d) an elliptic bundle over an elliptic curve with trivial canonical bundle (Kodaira

surface),

e) a surface with b1 ¼ 1 (surface of class VII ).

Remark. The surface is Kähler in the cases a)–c) and not Kähler in the

cases d) and e). The exceptional case of Theorem 1.3 falls under the special case

of e) above.

In order to study the structure of N we review the structure of p1ðFÞ in

respective cases;
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F is bimeromorphic to: structure of p1

1) abelian surface or hyperelliptic surface Z
4 < p1

K3 surface or Enriques surface feg or Z=2Z

2) rational surface feg

3) ruled surface of genus one Z
2

4) Kodaira surface Z �H, 1 ! Z ! H ! Z
2 ! 1

5) surface in VII (, b1 ¼ 1) ?

in case b a global spherical shell Z < p1

Here, < shall denote a normal subgroup of finite index. In 4) the extension is

central and there exists no proper normal subgroup of H of finite index which

are mapped to a subgroup of finite index in Z
2. On the other hand, F is said

to contain a global spherical shell if it contains an open subset W which is iso-

morphic to the annulus Be for some small e > 0 such that F �W is connected,

where Be ¼ fðz;wÞ A C
2
; 1� e < jzj2 þ jwj2 < 1þ eg. In this case F is known to

be homeomorphic to a blown-up Hopf surface (cf. [22]).

5. Application to twistor spaces.

Let M be a compact (connected) oriented smooth 4-manifold and ½g� a self-

dual conformal structure on M represented by a smooth Riemannian metric g on

M (cf. [3]). We call ðM; ½g�Þ of positive (resp. zero) type if the conformal class

½g� contains a Riemannian metric of constant positive (resp. zero) scalar curva-

ture s. (½g� contains always such a metric cf. [30].)

First we note a topological result needed later.

Lemma 5.1. Let M be an oriented compact self-dual 4-manifold of positive

type.

1) If M is simply connected, M is homeomorphic to mCP
2, where m ¼ b2ðMÞ.

2) If the fundamental group of M is infinite cyclic, M is homeomorphic to

ðS1 � S3Þ]mCP
2, where m ¼ b2ðMÞ.

Proof. Since M is of positive type, by Le Brun [20] the intersection form on

H 2ðM;ZÞ is positive definite; then by Donaldson [7] the form is diagonalizable.

On the other hand, in case 1) (resp. 2) by a theorem of Freedman [10] (resp. of

Kawauchi [17]) the topological type is determined uniquely by the intersection

form. Thus M is homeomorphic to mCP
2 (resp. ðS1 � S3Þ]mCP

2). r

Let Z be the twistor space associated to the self-dual manifold M; it is a

compact complex manifold of dimension 3 with a natural smooth fiber bundle

structure t : Z ! M with typical fiber the complex projective line P
1 and with the

following properties:
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For each x A M, Lx :¼ t�1ðxÞ is a complex submanifold of Z, called a (real)

twistor line, with its normal bundle NLx=Z isomorphic to Oð1ÞlOð1Þ;

NLx=Z GOð1ÞlOð1Þ ð8Þ

where Oð1Þ is the line bundle of degree one on Lx GP.

We study the fundamental group p1ðMÞ of M with respect to some base

point. Since Z is a P
1-bundle over M, we have a natural isomorphism p1ðZÞG

p1ðMÞ. Thus we have only to study p1ðZÞ. In view of this and (8), as an im-

mediate consequence of Corollary 4.2 we obtain the following:

Lemma 5.2. For a twistor space Z as above the algebraic reduction Q of

p1ðZÞ is finite.

Remark. In case aðZÞ ¼ 1 we can alternatively use Propositions 2.4 and

2.5 without appealing to the L2-method by noting that the proper transform of

a general twistor line in ẐZ is mapped surjectively onto Y in (6) (cf. Lemma 5.5

below).

Next we study the first betti number of Z. For this purpose first we note

the following: If G is a subgroup of p1ðMÞ with the corresponding unramified

covering M 0!M and if ĜG is the corresponding subgroup of p1ðZÞ with the cor-

responding unramified covering Z 0 ! Z, or vice versa, then we have a commu-

tative diagram

Z 0 ���! Z

t 0

?
?
?
y

?
?
?
y
t

M 0
���! M

ð9Þ

where Z 0 is identified with the twistor space of M 0 with twistor fibration t 0, where

the self-dual structure on M 0 is naturally induced from M.

We also recall that a profinite completion of a group G is the group which

is obtained as the projective limit ĜG :¼ lim G=H, where H runs through all the

normal subgroups of finite indices. ĜG reduces to the identity if and only if G

contains no subgroup of finite index.

Proposition 5.3. Suppose that the algebraic dimension aðZÞ of Z is posi-

tive and that M is of positive type. Then for the first betti number of Z we have

b1ðZÞa 1. Moreover, if b1ðZÞ ¼ 0, then p̂p1ðZÞ ¼ feg, where p̂p1 denotes the pro-

finite completion of p1 as above.

Proof. First we show that

b1ðZÞa b1ðF Þ ð10Þ
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where F is a general fiber of f in an algebraic reduction of Z as in (6). By the

natural surjection p1ðZÞ ! H1ðZ;ZÞ, N is mapped surjectively onto the image I

of the natural homomorphism H1ðF ;ZÞ ! H1ðZ;ZÞ. Thus if b1ðZÞ > rank I ,

then Q would not be finite since Q is mapped surjectively onto the abelian group

H1ðZ;ZÞ=I of positive rank, which would contradict Lemma 5.2. Thus (10) is

proved.

Now let Z 0 ! Z be any finite unramified covering. Denote its degree by d.

Then we have

wðOZ 0Þ ¼ dwðOZÞ

where in general wðOX Þ denotes the arithmetic genus of X. On the other hand,

we also have

wðOZÞ ¼
c1c2

24
ðby Riemann-RochÞ

¼ ðw� tÞ=2 ðcf : Hitchin ½15; ð1:5Þ�Þ

¼ 1� b1 þ b�

¼ 1� b1 ðcf : Le Brun ½20�Þ

where ci are chern classes of Z, b1 ¼ b1ðZÞ, w and t are the topological Euler

characteristic and the signature of M respectively, and finally, b� is the dimension

of any maximal subspace of H 2ðM;RÞ on which the intersection form is negative

definite. Let ðM 0; ½g 0�Þ be the self-dual manifold corresponding to Z 0 (cf. (9)).

Then it is again of positive type, and the same conclusion also holds true for Z 0:

wðOZ 0Þ ¼ 1� b 0
1

where b 0
1 ¼ b1ðZ

0Þ. Then combining the above equalities we get

b 0
1 � 1 ¼ dðb1 � 1Þ: ð11Þ

Thus, if b1 ¼ 0, we must have d ¼ 1. So there exists no non-trivial finite un-

ramified covering of Z and p̂p1ðZÞ ¼ feg.

On the other hand, in general we may apply (10) to Z 0 instead of to Z

and obtain b 0
1 a b1ðF Þ, where we note that F is common to both Z and Z 0. On

the other hand, since aðZÞ ¼ aðZ 0Þ > 0, by Lemma 4.3 and Table 4 we have the

bound b1ðF Þe 4. Therefore from (11) we have

4b 1þ dðb1 � 1Þ: ð12Þ

Now if b1 b 1, there exists an abelian unramified covering of Z of arbitrarily high

degree d. Thus (12) forces b1 to be either equal to 0 or 1. r
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Remark. The result is not true if one only assumes that ðM; ½g�Þ is of pos-

itive type (cf. [18]).

Recall that N is the image of the natural homomorphism p1ðFÞ ! p1ðZÞ

(cf. (7)). From the above proposition we deduce immediately the following:

Lemma 5.4. Suppose that aðZÞ > 0 as above. Then for any subgroup N 0 of

finite index of N its abelianization N 0=½N 0;N 0� is at most of rank one.

Proof. N 0 is identified with the fundamental group of a suitable finite un-

ramified covering manifold Z 0 of Z and we can apply Proposition 5.3 to Z 0. r

We are now ready to prove Theorem 1.1, the structure theorem when the

algebraic dimension of Z equals two.

Proof of Theorem 1.1. By Lemma 5.2 p1ðZÞ is naturally an extension of

the finite group Q by the quotient group N of p1ðFÞGZ
2, since F is a non-

singular elliptic curve in this case (cf. [33, 12.4]). By Lemma 5.4 the rank of the

abelian group N is either zero (Case 1) or one (Case 2). In Case 1 the funda-

mental group of Z is finite, and hence by Proposition 5.3 Z is simply connected.

In Case 2 clearly p1ðZÞ contains an infinite cyclic group as a normal subgroup

of finite index. Let M 0 ! M be the Galois covering associated to this sub-

group of p1ðMÞG p1ðZÞ so that p1ðM
0ÞGZ.

On the other hand, in view of Lemma 1.2 our assumption that aðZÞ ¼

2 implies that the self-dual manifold ðM; ½g�Þ is of positive type (cf. [25, 3.5]).

Hence, by applying Lemma 5.1 to M we get the topological conclusion of The-

orem 1.1. r

Remark. In the situation of Theorem 1.1 the general fiber F of alge-

braic reduction f is a smooth elliptic curve and the image of the natural map

p1ðFÞ ! p1ðZÞ is an infinite cyclic group with finite cokernel. The map becomes

surjective after passing to a suitable finite unramified covering of M.

In passing we also note the structure of Y in the algebraic reduction (6) of Z.

Lemma 5.5. If aðZÞ ¼ 1, Y is a (nonsingular) rational curve and if aðZÞ ¼ 2,

Y is a (nonsingular) rational surface.

Proof. Take a general twistor line L on Z. Then there exists a neighbor-

hood W of L in Z such that m j m�1ðWÞ : m�1ðWÞ ! W is isomorphic since the

fundamental locus of m�1 is of codimension at least two (cf. (6)). Fix a point p

on L. Then as follows readily from the standard deformation theory, the union

of all the complex twistor lines passing through the point p and contained in W

contains an open subset, say V, of W. Identifying W with m
�1ðWÞ via the above

isomorphism, we obtain an analytic family of nonsingular rational curves in ẐZ
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which passes through one point and whose union contains an open subset of ẐZ.

Taking the images of the members of this family by f we see that on Y we get an

analytic family of rational curves with similar properties. This implies that Y is

a rational variety. r

Finally we treat the case where the algebraic dimension of Z equals one

and prove Theorem 1.3. So in what follows we assume that aðZÞ ¼ 1 and con-

sider the algebraic reduction (6). We call Z exceptional if a general fiber F of

f : ẐZ ! Y is a surface of class VII which does not contain any global spherical

shell and whose minimal model has the positive betti number b2 > 0.

Recall the exact sequence (7):

p1ðFÞ !
b
p1ðZÞ ! Q ! 1:

On the structure of the image of b we note the following:

Lemma 5.6. Let B be any quotient group of p1ðFÞ such that for any subgroup

B 0 of B of finite index its abelianization B 0=½B 0;B 0� is at most of rank one. Unless

Z is exceptional, B is either finite or contains an infinite cyclic group as a normal

subgroup of finite index.

Proof. This in fact can be checked case by case to be true according to

Table 4. (The verification is immediate except possibly for the case 4.) r

Lemma 5.7. Suppose that Z is not exceptional.

1) If b1ðZÞ ¼ 0, then Z is simply connected.

2) If b1ðZÞ ¼ 1, then p1ðZÞ contains an infinite cyclic group as a normal sub-

group of finite index.

Proof. 1) By Proposition 5.3 p̂p1 ¼ feg. So in the exact sequence

1 ! N ! p1ðZÞ ! Q ! 1 ð13Þ

Q, being finite by Lemma 5.2, reduces to the identity and hence the profinite

completion N̂N of N also reduces to the identity.

From Table 4 it follows easily that any nontrivial quotient of p1ðF Þ always

admits a subgroup of finite index > 1 if Z is not exceptional. Thus, N must

reduce to the identity, and hence p1ðZÞ ¼ feg.

2) In view of the sequence (13) and Lemma 5.2, after passing to a finite un-

ramified covering we may assume that

NG p1ðZÞ:

Then the lemma follows immediately from Lemma 5.6. r
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Proof of Theorem 1.3. By Proposition 5.3 b1 ¼ b1ðZÞe 1. Suppose that

Z is not exceptional. Then if b1 ¼ 0, Z is simply connected by Lemma 5.7. If

b1 ¼ 1, p1ðZÞ contains an infinite cyclic group as a normal subgroup of finite

index by the same lemma. Thus we may apply Lemma 5.1 to obtain the topo-

logical result of the theorem in the non-exceptional case.

Finally, we consider the case b2ðMÞ ¼ 0. Since ðM; ½g�Þ is of positive

type, this implies that ðM; ½g�Þ is conformally flat. Then we use Theorem 1.4 to

conclude that in our case of aðZÞ ¼ 1 and b2ðMÞ ¼ 0 M is conformal to a finite

quotient of a Hopf surface, and hence, falls under the class 2) of the theorem.

(The proof of Theorem 1.4 is of course independent.) r

Remark. In case aðZÞ ¼ 1, certain restrictions on the structure of Q is read

o¤ from Propositions 2.5 and 2.4. For instance if the real structure s on Y

induced from the canonical one on Z has a fixed point, the chern class c1ðF Þ of the

bundle ½F � is of the form ðk=2Þc1ðZÞ for some positive integer k. Then the in-

tersection number is: L � F ¼ ðk=2ÞL � F ¼ k. Thus from Proposition 2.5 we get

that the order of Q is a divisor of k.

6. Classification in the conformally flat case.

The puropose of this section is to prove Theorem 1.4 of Section 1. We

follow the idea of Pontecorvo [27] and in fact reduce the proof to his result.

Recall a general fact that if M admits a conformally flat metric, then the second

betti number b2 of M vanishes.

First we show the existence of an elementary divisor on Z, i.e., a divisor D

on Z with L �D ¼ 1 for any twistor line L, after possibly passing to a finite un-

ramified covering of M.

Since the metric is conformally flat, we have the developing map d : ~MM !S4

from the universal covering ~MM of M to S4. Correspondingly, we obtain the hol-

omorphic developing mapping h : ~ZZ ! P
3 from the universal covering ~ZZ of Z,

which is identified with the twistor space of the induced conformally flat man-

ifold ð ~MM; ½~gg�Þ. Here, on Z and ~ZZ we have the natural flat PGLð4;CÞ-structure

inherited from the conformal structure of the bases M and ~MM respectively, and

h is considered to be the developing map associated to this structure. We have

also the associated monodromy representation r : p1ðZÞ ! PGLð4;CÞ such that

hðg~zzÞ ¼ rðgÞhð~zzÞ; g A p1ðZÞ; ~zz A ~ZZ

with respect to the natural action of p1ðMÞ on ~ZZ as the covering transformation

group of ~ZZ ! Z.

Then by virtue of Lemma 5.9 of Ma. Kato [16 ], under our assumption

that there exists a nonconstant meromorphic function on Z, we can find a sub-

Topology of self-dual manifolds 605



group, say G, of finite index in p1ðMÞ which leaves invariant a hyperplane H of

P
3 with respect to the representation r. (Note that the assumption of Kato’s

lemma is that of [16, Theorem 5.2]).

We now set ~SS ¼ h�1ðHÞ, which is a p1ðMÞ-invariant smooth hypersurface in
~ZZ. In fact, if ~SS is empty, then ~ZZ is mapped locally biholomorphically onto a

domain contained in P
3 �HGC

3, which is impossible since ~ZZ contains twistor

lines which are compact curves. The image S of ~SS in Z 0
:¼ ~ZZ=G is then a closed

smooth complex surface in Z 0.

We show that S is an elementary divisor in Z 0 which is considered as the

twistor space of the finite unramified covering M 0 ¼ ~MM=G of M. Let L be a

twistor line in Z 0. There exists a neighborhood U of L which is evenly covered

by the natural projection u : ~ZZ ! Z 0. Let V J ~ZZ be a connected component of

u�1ðUÞ and ~LLJV the inverse image of L in V. Since we have u�1ðSÞ ¼ ~SS

and V V ~SS ¼ ðujVÞ�1ðSÞ, it su‰ces to show that ~SS � ~LL ¼ 1 in the sense that ~SS and
~LL intersect transversally at exactly one point. (Note that ~SS is in general open.)

We know that hjV : V ! P
3 is an embedding ([16, Lemma 3.1]); hence ~SS � ~LL ¼

H � l ¼ 1 as desired, where l is the line of P3, which is the image of ~LL by h (and

which is also a twistor line of P3 considered as a twistor space of S4). Thus we

have obtained an elementary divisor S on Z 0. Suppose first that S contains a

twistor line LGP
1. In the normal bundle exact sequence

0 ! NL=S ! NL=Z 0 ! NS=Z 0 jL ! 0; ð14Þ

associated to the inclusions LJSJZ we have NL=Z 0 GOð1Þ2. Moreover

from the equality of chern classes c1ð½S�Þ ¼ ð1=4Þc1ðZ
0Þ as c1ðHÞ ¼ ð1=4Þc1ðP

3Þ

together with the adjunction formula we get that NS=Z 0 jLGOð1Þ. Then it fol-

lows from (14) that NL=S GOð1Þ, which, as in [28], implies that S is a rational

surface. In particular S is simply connected, and then M 0 also is simply con-

nected so that M 0 ¼ M and the developping map Z ¼ Z 0 ! P
3 is isomorphic.

In particular, Z 0, and Z also, is Moishezon and thus M must be homeomorphic

to S4 by [4] or [28]. Then it is immediate to see that M ¼ M 0 (with its induced

conformally flat structure) is isomorphic to S4 with standard conformal structure;

thus we are in the first case.

On the other hand, if S contains no twistor line, then the twistor fibra-

tion t : Z ! M gives an orientation-reversing di¤eomorphism SGM 0 and gives

a complex structure on M 0, which is easily seen to define, together with the given

conformal structure ½g 0� on M 0, a (conformally flat) hermitian structure. Thus

we may assume from the beginning that ðM 0; ½g 0�Þ is a conformally flat hermi-

tian surface with the orientation reversed. In this case the classification is al-

ready known by Pontecorvo [27]. Under our assumption his result yields that

M 0 is one of the following: i) either a complex torus or a hyperelliptic surface
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with flat structure ii) Hopf surface with standard conformal flat metric. These

cases corresponds to the cases b) and c) of our theorem respectively. r

Remark. 1) Suppose that either aðZÞb 2 or aðZÞ ¼ 1 and the general fiber

of the algebraic reduction of Z is not a compact surface of class VII which does

not contain a global spherical shell. Then by Theorems 1.1, 1.3 and Lemma 1.2

above p1ðZÞ contains an abelian subgroup, say G, as a normal subgroup of finite

index. Then the existence of a G-invariant hyperplane follows at once without

using the above result of Ma. Kato [16 ], whose proof is done by case-by-case

checking.

In fact, if the above condition of existence of an abelian normal subgroup of

finite index is satisfied, the conclusion of the theorem follows by the same argu-

ment; the argument can also be used to give a complex analytic proof of the clas-

sical result of Kuiper [19] which classifies conformally flat manifolds with abelian

fundamental groups in any dimension.

2) A non-hermitian example in the class c) is given as follows. Consider

the fixed-point-free anti-holomorphic involutive isometry s of the Hopf surface M

with hðz1; z2Þ ¼ ðaz1; az2Þ induced by the corresponding isometry of C 2 � fð0; 0Þg

defined by ðz;wÞ! ðw;�zÞ. Then the quotient of M by s gives a desired surface.

3) When the conformal class is of positive or of zero type, by a theorem of

Schoen-Yau [31] h : ~ZZ ! P
3 is always an embedding; so in this case we need not

use Lemma 3.1 of [16 ].

Acknowledgement. The author is thankful to Mr. T. Kikuchi for in-
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