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On left-orderability and cyclic branched coverings
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Abstract. In a recent paper, Y. Hu has given a sufficient condition for
the fundamental group of the r-th cyclic branched covering of S3 along a
prime knot to be left-orderable in terms of representations of the knot group.
Applying her criterion to a large class of two-bridge knots, we determine a
range of integers r > 1 for which the r-th cyclic branched covering of S3 along
the knot is left-orderable.

1. Introduction.

A non-trivial group G is called left-orderable if there exists a strict total ordering <

on its elements such that g < h implies fg < fh for all elements f, g, h ∈ G. Knot groups
and more generally the fundamental group of an irreducible 3-manifold with positive
first Betti number are examples of left-orderable groups [HSt]. Left-orderable groups
have recently attracted the attention of many people partly because of their possible
connection to L-spaces, a class of rational homology 3-spheres defined by Ozsvath and
Szabo [OS] using Heegaard Floer homology, via a conjecture of Boyer, Gordon and
Watson [BGW]. This conjecture predicts that an irreducible rational homology 3-sphere
is an L-space if and only if its fundamental group is not left-orderable. The conjecture has
been confirmed for Seifert fibered manifolds, Sol manifolds, double branched coverings
of non-splitting alternating links [BGW], and certain Dehn surgeries on the figure eight
knot, on the knot 52 and more generally on genus one two-bridge knots (see [BGW],
[CLW], [HT1] and [HT2], [HT3], [Tr] respectively). A technique that has so far worked
very well for proving the left-orderability of fundamental groups is lifting a non-abelian
SL2(R) representation of a 3-manifold group to the universal covering group S̃L2(R),

and then using the result by Bergman [Be] that S̃L2(R) is a left-orderable group. This
technique, which is based on an important result of Khoi [Kh], was first introduced in
[BGW] and was applied in [HT1], [HT2], [HT3], [Tr] to study the left-orderability of
Dehn surgeries on genus one two-bridge knots.

The left-orderability of the fundamental groups of non-hyperbolic geometric rational
homology 3-spheres has already been characterized in [BRW]. For hyperbolic rational
homology 3-spheres, many of them can be constructed from the cyclic branched coverings
of S3 along a knot. Based on the Lin’s presentation [Li] of a knot group and the technique
for proving the left-orderability of fundamental groups mentioned above, Y. Hu [Hu] has
recently given a suffcient condition for the fundamental group of the r-th cyclic branched
covering of S3 along a prime knot to be left-orderable in terms of representations of the
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knot group. As an application, she proves that for any two-bridge knot b(p,m), with
p ≡ 3 (mod 4), there are only finitely many cyclic branched coverings whose fundamental
groups are not left-orderable. In particular for the two-bridge knots 52 and 74, Y. Hu
shows that the fundamental groups of the r-th cyclic branched coverings of S3 along
them are left-orderable if r ≥ 9 and r ≥ 13 respectively.

In this paper by applying Hu’s criterion to a large class of two-bridge knots, which
includes the knots 52 and 74, we determine a range of integers r > 1 for which the r-th
cyclic branched covering of S3 along the knot is left-orderable.

Let K = J(k, l) be the double twist knot as in Figure 1. Note that J(k, l) is a knot
if and only if kl is even, and is the trivial knot if kl = 0. Furthermore, J(k, l) ∼= J(l, k)
and J(−k,−l) is the mirror image of J(k, l). Hence, in the following, we only consider
K = J(k, 2n) for k > 0 and |n| > 0.

In the Schubert’s normal form b(p,m), where p,m are positive integers such that p

is odd and 0 < m < p, of a two-bridge knot one has J(k, 2n) = b(2kn − 1, 2n) if n > 0
and J(k, 2n) = b(1− 2kn,−2n) if n < 0, see e.g. [BZ].

For a knot K in S3 and any integer r > 1, let X
(r)
K be the r-th cyclic branched

covering of S3 along K. The following theorem generalizes Example 4.4 in [Hu].

Figure 1. The double twist knot J(k, l). Here k, l denote the numbers of half twists in each
box. Positive numbers correspond to right-handed twists and negative numbers correspond to
left-handed twists.

Theorem 1. Suppose m and n are positive integers. Then the group π1(X
(r)
J(2m,2n))

is left-orderable if r > π/cos−1
√

1− (4mn)−1.

Example 1.1. 1) For the knot 52 = J(4, 2), the manifold X
(r)
52

has left-orderable
fundamental group if r > π/cos−1

√
7/8 ≈ 8.69, i.e. r ≥ 9.

2) For the knot 74 = J(4, 4), the manifold X
(r)
74

has left-orderable fundamental group if
r > π/cos−1

√
15/16 ≈ 12.43, i.e. r ≥ 13.

Remark 1.2. Dabkowski, Przytycki and Togha [DPT] proved that the group
π1(X

(r)
J(2m,−2n)), for positive integers m and n, is not left-orderable for any integer r > 1.

We also prove the following result in this paper.

Theorem 2. Suppose m ≥ 0 and n > 0 are integers. Let q = 2n2 +
2n

√
4m(m + 1) + n2.
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(a) The group π1(X
(r)
J(2m+1,2n)) is left-orderable if one of the following holds:

( i ) n is even and r > π/cos−1
√

1− q−1.
(ii) n is odd > 1 and r > max{π/cos−1

√
1− q−1, 4m + 2}.

(b) The group π1(X
(r)
J(2m+1,−2n)) is left-orderable if one of the following holds:

( i ) n is odd and r > π/cos−1
√

1− q−1.
(ii) n is even and r > max{π/cos−1

√
1− q−1, 4m + 2}.

Remark 1.3. We exclude J(2m + 1, 2), for m > 0, from Theorem 2 since it is
isomorphic to J(2m,−2), and by Remark 1.2 the group π1(X

(r)
J(2m,−2)), for m > 0, is not

left-orderable for any integer r > 1.

Here is the plan of the paper. We study non-abelian SL2(C) representations and
roots of the Riley polynomial of the knot group of the double twist knots J(k, l) in Section
2. We prove Theorems 1 and 2 in Section 3.

We would like to thank the referee for his/her comments and suggestions.

2. Non-abelian representations and roots of the Riley polynomial.

2.1. Non-abelian representations.
By [HSn], the knot group of K = J(k, 2n) is

π1(K) = 〈a, b | wna = bwn〉,

where a, b are meridians and

w =

{
(ba−1)m(b−1a)m, if k = 2m,

(ba−1)mba(b−1a)m, if k = 2m + 1.

A representation ρ : π1(K) → SL2(C) is called non-abelian if ρ(π1(K)) is a non-
abelian subgroup of SL2(C). Taking conjugation if necessary, we can assume that ρ has
the form

ρ(a) = A =
[
s 1
0 s−1

]
and ρ(b) = B =

[
s 0

2− y s−1

]
(2.1)

where (s, y) ∈ C∗ × C satisfies the matrix equation WnA−BWn = 0. Here W = ρ(w).
Let {Sj(z)}j be the sequence of Chebyshev polynomials defined by S0(z) = 1,

S1(z) = z, and Sj+1(z) = zSj(z) − Sj−1(z) for all integers j. Note that if z = t + t−1,
where t 6= ±1, then Sj−1(z) = (tj − t−j)/(t − t−1). Moreover Sj−1(2) = j and
Sj−1(−2) = (−1)j−1j for all integers j.

The following lemma is elementary, and hence its proof is omitted.

Lemma 2.1. For all integers j, one has

S2
j (z)− zSj(z)Sj−1(z) + S2

j−1(z) = 1.
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Let x = trA = s + s−1 and λ = trW . The following propositions are proved in
[MT].

Proposition 2.2. One has

λ =

{
2 + (y − 2)(y + 2− x2)S2

m−1(y), if k = 2m,

x2 − y − (y − 2)(y + 2− x2)Sm(y)Sm−1(y), if k = 2m + 1.

Proposition 2.3. One has

WnA−BWn =
[

0 Sn−1(λ)α− Sn−2(λ)
(y − 2)(Sn−1(λ)α− Sn−2(λ)) 0

]
,

where

α =

{
1− (y + 2− x2)Sm−1(y)(Sm−1(y)− Sm−2(y)), if k = 2m,

1 + (y + 2− x2)Sm−1(y)(Sm(y)− Sm−1(y)), if k = 2m + 1.

Proposition 2.3 implies that the assignment (2.1) gives a non-abelian representation
ρ : π1(K) → SL2(C) if and only if (s, y) ∈ C∗ × C satisfies the equation

φK(x, y) := Sn−1(λ)α− Sn−2(λ) = 0.

The polynomial φK(x, y) is known as the Riley polynomial [Ri] of K = J(k, 2n).

2.2. Roots of the Riley polynomial.
In this subsection we prove some properties of the roots of the Riley polynomial of

the double twist knots J(k, l).

Lemma 2.4. One has

α2 − αλ + 1 =

{
(y + 2− x2)S2

m−1(y)(λ + 2− x2), if k = 2m,

(1 + (y + 2− x2)Sm−1(y)Sm(y))(2− λ), if k = 2m + 1.

Proof. If k = 2m then α = 1 − (y + 2 − x2)Sm−1(y)(Sm−1(y) − Sm−2(y)) and
λ = 2 + (y − 2)(y + 2− x2)S2

m−1(y). By direct calculations, we have

α2 − αλ + 1 = (y + 2− x2)S2
m−1(y)

× [
2− y + (y + 2− x2)

(
(y − 1)S2

m−1(y)− ySm−1(y)Sm−2(y) + S2
m−2(y)

)]
.

Since S2
m−1(y)− ySm−1(y)Sm−2(y) + S2

m−2(y) = 1 (by Lemma 2.1), we obtain

α2 − αλ + 1 = (y + 2− x2)S2
m−1(y)

(
4− x2 + (y + 2− x2)(y − 2)S2

m−1(y)
)

= (y + 2− x2)S2
m−1(y)(λ + 2− x2).
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If k = 2m + 1 then α = 1 + (y + 2 − x2)Sm−1(y)(Sm(y) − Sm−1(y)) and λ =
x2 − y − (y − 2)(y + 2− x2)Sm(y)Sm−1(y). By direct calculations, we have

α2 − αλ + 1 = (y + 2− x2)
[
1− (y + 2− x2)S2

m−1(y) + (2y − x2)Sm−1(y)Sm(y)

+ (y + 2− x2)S2
m−1(y)

× (
S2

m−1(y)− ySm−1(y)Sm(y) + (y − 1)S2
m(y)

)]
.

Since S2
m−1(y)− ySm−1(y)Sm−2(y) + S2

m−2(y) = 1, we obtain

α2 − αλ + 1

= (y + 2− x2)[1 + (2y − x2)Sm−1(y)Sm(y) + (y + 2− x2)(y − 2)S2
m−1(y)S2

m(y)]

= (y + 2− x2)
(
1 + (y + 2− x2)Sm−1(y)Sm(y)

)(
1 + (y − 2)Sm−1(y)Sm(y)

)

= (1 + (y + 2− x2)Sm−1(y)Sm(y))(2− λ).

This completes the proof of Lemma 2.4. ¤

The following lemma is well known. We include a proof for the reader’s convenience.

Lemma 2.5. For any integer k and any real number t, one has

| sin kt| ≤ |k sin t|.

Proof. Without loss of generality we assume that k ≥ 2. If k = 2m (m ∈ Z+)
then

sin kt =
m∑

j=1

(sin 2jt− sin(2j − 2)t) = 2 sin t
m∑

j=1

cos(2j − 1)t.

It follows that | sin kt| ≤ 2m| sin t|, since
∣∣ ∑m

j=1 cos(2j − 1)t
∣∣ ≤ m.

If k = 2m + 1 (m ∈ Z+) then

sin kt = sin t +
m∑

j=1

(sin(2j + 1)t− sin(2j − 1)t) = sin t + 2 sin t
m∑

j=1

cos 2jt.

It follows that | sin kt| ≤ (2m + 1)| sin t|, since
∣∣1 + 2

∑m
j=1 cos 2jt

∣∣ ≤ 2m + 1. ¤

Lemma 2.6. Suppose z ∈ R satisfies |z| ≤ 2. Then |Sj−1(z)| ≤ |j| for all integers
j.

Proof. If z = 2 then Sj−1(z) = j. If z = −2 then Sj−1(z) = (−1)j−1j.
If −2 < z < 2 we write z = 2 cos t, where 0 < t < π. Then Sj−1(z) = sin jt/sin t,

and hence |Sj−1(z)| ≤ |j| by Lemma 2.5. ¤
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Proposition 2.7. Let K = J(k, 2n) where k > 0 and |n| > 0. Suppose x, y ∈ R
satisfy |x| ≤ 2 and φK(x, y) = 0. Then y > 2 if one of the following holds:

(a) k = 2m (m ∈ Z+) and |x| > 2
√

1− 1/|4mn|.
(b) k = 2m + 1 (m ∈ Z+) and |x| > 2

√
1− 1/(2n2 + 2|n|

√
4m(m + 1) + n2).

Proof. If |x| = 2 then by [MT, Proposition 3.2], any real root y of φK(x, y)
satisfies y > 2. We now consider the case |x| < 2.

Suppose x, y ∈ R satisfy |x| < 2 and φK(x, y) = 0. Then Sn−1(λ)α − Sn−2(λ) = 0
and

1 = S2
n−1(λ)− λSn−1(λ)Sn−2(λ) + S2

n−2(λ) = (α2 − αλ + 1)S2
n−1(λ). (2.2)

(a) Suppose k = 2m (m ∈ Z+) and |x| >
√

4− 1/|mn|. By Lemma 2.4,

α2 − αλ + 1 = (y + 2− x2)S2
m−1(y)(λ + 2− x2).

Equation (2.2) then implies that

1 = (y + 2− x2)S2
m−1(y)(λ + 2− x2)S2

n−1(λ). (2.3)

Assume y ≤ 2. Since λ− 2 = (y− 2)(y +2−x2)S2
m−1(y), by Equation (2.3) we have

(λ− 2)(λ + 2− x2) = (y − 2)(y + 2− x2)S2
m−1(y)(λ + 2− x2) = (y − 2)/S2

n−1(λ) ≤ 0

which implies that x2 − 2 < λ ≤ 2.
Similarly, since (y− 2)(y + 2− x2) = (λ− 2)/S2

m−1(y) ≤ 0, we have x2 − 2 < y ≤ 2.
Since y ∈ R satisfies |y| ≤ 2, we have |Sm−1(y)| ≤ |m| by Lemma 2.6. Similarly

|Sn−1(λ)| ≤ |n|. Hence, it follows from Equation (2.3) that

1 = (y + 2− x2)(λ + 2− x2)S2
m−1(y)S2

n−1(λ) ≤ (4− x2)2m2n2

which implies that x2 ≤ 4− 1/|mn|, a contradiction.

(b) Suppose k = 2m + 1 (m ∈ Z+) and |x| >
√

4− 2/(n2 + |n|
√

4m(m + 1) + n2).
By Lemma 2.4,

α2 − αλ + 1 = (1 + (y + 2− x2)Sm−1(y)Sm(y))(2− λ).

Equation (2.2) then implies that

1 = (1 + (y + 2− x2)Sm−1(y)Sm(y))(2− λ)S2
n−1(λ). (2.4)

Assume that y ≤ 2. Since λ + x2 − 2 = (2− y)(1 + (y + 2− x2)Sm−1(y)Sm(y)), by
Equation (2.4) we have
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(λ + 2− x2)(λ− 2) = (2− y)(1 + (y + 2− x2)Sm−1(y)Sm(y))(λ− 2)

= (y − 2)/S2
n−1(λ) ≤ 0

which implies that x2 − 2 ≤ λ < 2.
Similarly, since S2

m−1(y) + S2
m(y)− ySm−1(y)Sm(y) = 1 we have

2− λ = (y + 2− x2)(1 + (y − 2)Sm−1(y)Sm(y))

= (y + 2− x2)(Sm−1(y)− Sm(y))2 > 0

which implies that y > x2 − 2. Hence, it follows from Equation (2.4) that

1 = (2− λ)S2
n−1(λ)

(
1 + (y + 2− x2)Sm−1(y)Sm(y)

)

≤ (4− x2)n2
(
1 + (4− x2)m(m + 1)

)

which implies that x2 ≤ 4− 2/(n2 + |n|
√

4m(m + 1) + n2), a contradiction. ¤

Proposition 2.8. Let K = J(2m + 1, 2n) where m ≥ 0 and n 6∈ {0, 1, 2} are
integers. Suppose x ∈ R satisfies |x| ≥ 2 cos(π/(4m+2)). Then the equation φK(x, y) = 0
has at least one real solution y > x2 − 2.

Proof. Recall that for K = J(2m+1, 2n), α = 1+(y +2−x2)Sm−1(y)(Sm(y)−
Sm−1(y)) and λ = x2 − y − (y − 2)(y + 2 − x2)Sm(y)Sm−1(y). It is obvious that if
y = x2 − 2 then α = 1 and λ = 2. Hence

φK(x, x2 − 2) = Sn−1(λ)α− Sn−2(λ) = Sn−1(2)− Sn−2(2) = 1.

We consider the following two cases.

Case 1: n ≥ 3. Note that the polynomial Sn−1(t)− Sn−2(t) has exactly n− 1 roots
given by t = 2 cos((2j − 1)π/(2n− 1)), where 1 ≤ j ≤ n− 1. Moreover

Sn−1

(
2 cos

π

2n− 1

)
> 0 > Sn−1

(
2 cos

3π

2n− 1

)
.

Suppose m = 0. Then α = 1 and λ = x2 − y. We have

φK

(
x, x2 − 2 cos

π

2n− 1

)
= Sn−1

(
2 cos

π

2n− 1

)
− Sn−2

(
2 cos

π

2n− 1

)
= 0.

In this case we choose y = x2 − 2 cos(π/(2n− 1)). Then φK(x, y) = 0 and y > x2 − 2.
We now suppose m > 0. Note that 2 − λ = (y + 2 − x2)(Sm(y) − Sm−1(y))2.

Consider the equation λ = 2 cos(3π/(2n− 1)), i.e. (y + 2 − x2)(Sm(y) − Sm−1(y))2 =
2 − 2 cos(3π/(2n − 1)). It is easy to see that this equation has at least one solution
y0 > x2 − 2. Note that x2 − 2 ≥ 2 cos(π/(2m + 1)). Since y0 > 2 cos(π/(2m + 1)), we
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have Sm(y0) > Sm−1(y0) > 0. Hence

φK(x, y0) = Sn−1(λ)α− Sn−2(λ) = (α− 1)Sn−1(λ)

= (y0 + 2− x2)Sm−1(y0)(Sm(y0)− Sm−1(y0))Sn−1

(
2 cos

3π

2n− 1

)
< 0.

Since φK(x, x2− 2) > 0 > φK(x, y0), there exists y ∈ (x2− 2, y0) such that φK(x, y) = 0.

Case 2: n ≤ −1. Let l = −n ≥ 1. We have

φK(x, y) := Sn−1(λ)α− Sn−2(λ) = Sl(λ)− Sl−1(λ)α.

Suppose m = 0. Then α = 1 and λ = x2 − y. In this case we choose y = x2 −
2 cos(π/(2l + 1)). Then φK(x, y) = 0 and y > x2 − 2.

We now suppose m > 0. Consider the equation λ = 2 cos(π/(2l + 1)), i.e. (y +
2 − x2)(Sm(y) − Sm−1(y))2 = 2 − 2 cos(π/(2l + 1)). This equation has at least one real
solution y0 > x2 − 2 ≥ 2 cos(π/(2m + 1)). We have

φK(x, y0) = Sl(λ)− Sl−1(λ)α

= −(y0 + 2− x2)Sm−1(y0) (Sm(y0)− Sm−1(y0))Sl

(
2 cos

π

2l + 1

)
< 0.

Hence there exists y ∈ (x2 − 2, y0) such that φK(x, y) = 0.
This completes the proof of Proposition 2.8. ¤

3. Proof of Theorems 1 and 2.

For a knot K in S3, let XK = S3 \K be the knot complement. Let I denote the
identity matrix in SL(2,C). The following theorem of Y. Hu is important to us.

Theorem 3.1 ([Hu]). Given any prime knot K in S3, let µ be a meridian element
of π1(XK). If there exists a non-abelian representation ρ : π1(XK) → SL2(R) such that
ρ(µr) = ±I, then the fundamental group π1(X

(r)
K ) is left-orderable.

Sketch of the proof of Theorem 3.1. Let S̃L2(R) be the universal cover-
ing group of SL2(R). There is a lift of ρ : π1(XK) → SL2(R) to a homomor-

phism ρ̃ : π1(XK) → S̃L2(R) since the obstruction to its existence is the Euler class
e(ρ) ∈ H2(XK ;Z) ∼= 0, see [Gh]. Using the Lin’s presentation [Li] for the knot
group π1(XK) together with the hypotheses that ρ(µr) = ±I and ρ is non-abelian,
Y. Hu [Hu] shows that the homomorphism ρ̃ induces a non-trivial homomorphism

π1(X
(r)
K ) → S̃L2(R). By [BRW], [HSt], a compact, orientable, irreducible 3-manifold

has a left-orderable fundamental group if and only if there exists a non-trivial homo-
morphism from its fundamental group to a left-orderable group. We have that X

(r)
K

is irreducible (since K is prime) and S̃L2(R) is left-orderable. Hence π1(X
(r)
K ) is left-

orderable. This proves Theorem 3.1.
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We are ready to prove Theorems 1 and 2. For the two-bridge knot b(p,m), it is
known that the Riley polynomial φb(p,m)(x, y) is a polynomial in Z[x, y] with y-leading
term ±yd, where d = (p− 1)/2, see [Ri].

3.1. Proof of Theorem 1.
Consider K = J(2m, 2n) where m,n are positive integers. Note that K = b(4mn−

1, 2n) and hence the Riley polynomial φK(x, y) is a polynomial in Z[x, y] with y-leading
term ±yd, where d = 2mn− 1. Since d is odd, for each x ∈ R the equation φK(x, y) = 0
has at least one real root y.

For any integer r > π/cos−1
√

1− 1/4mn, there is a non-abelian representation
ρ : π1(XK) → SL2(C) of the form

ρ(a) =
[
ei(π/r) 1

0 e−i(π/r)

]
and ρ(b) =

[
ei(π/r) 0
2− y e−i(π/r)

]

where y ∈ R. Note that x = tr ρ(a) = 2 cos(π/r) and φK(x, y) = 0.
Since x, y ∈ R satisfy 2

√
1− 1/4mn < |x| ≤ 2 and φK(x, y) = 0, Proposition 2.7

implies that y > 2. Since 2− y < 0, a result in [Kh, p. 786] says that the representation
ρ can be conjugated an SL2(R) representation, denoted by ρ′ : π1(XK) → SL2(R).
Note that ρ′(ar) = −I, since ρ(ar) = −I. Hence Theorem 3.1 implies that π1(X

(r)
K ) is

left-orderable. ¤

3.2. Proof of Theorem 2.
Consider K = J(2m + 1, 2n) where m ≥ 0 and |n| > 0. Note that K = b(4mn +

2n− 1, 2n) if n > 0, and K = b(−4mn− 2n + 1,−2n) if n < 0.
Let q = 2n2 + 2|n|

√
4m(m + 1) + n2. We consider the following two cases.

Case 1: n > 0 even or n < 0 odd. In this case we have K = b(p,m) for some integers
p,m such that p ≡ 3 (mod 4). Hence the Riley polynomial φK(x, y) is a polynomial in
Z[x, y] with y-leading term ±yd, where d = (p− 1)/2 is odd.

Suppose r > π/cos−1
√

1− q−1. Then, by similar arguments as in the proof of
Theorem 1, one can show that the group π1(X

(r)
K ) is left-orderable.

Case 2: n > 1 odd or n < 0 even. In this case we have K = b(p,m) for some integers
p,m such that p ≡ 1 (mod 4). Suppose r > max{π/cos−1

√
1− q−1, 4m + 2}.

Let x = 2 cos(π/r). Since x ∈ R satisfies |x| ≥ 2 cos(π/(4m + 2)), by Proposition
2.8 there exists y ∈ R such that φK(2 cos(π/r), y) = 0. Hence there is a non-abelian
representation ρ : π1(XK) → SL2(C) of the form

ρ(a) =
[
ei(π/r) 1

0 e−i(π/r)

]
and ρ(b) =

[
ei(π/r) 0
2− y e−i(π/r)

]
.

Since x = 2 cos(π/r) also satisfies |x| > 2
√

1− q−1, Proposition 2.7 implies that y > 2.
The rest of the proof is similar to that of Theorem 1.

This completes the proof of Theorem 2. ¤
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