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1. Introduction.

For a totally disconnected compact set £ in the extended z-plane C, we
denote by Mp the totality of meromorphic functions each of which is defined
in the domain complementary to £ and has E as the set of transcendental
singularities. A meromorphic function f(z) of Mz is said to be exceptionally
ramified at a singularity {<E, if there exist values w; 1<i=<g, and positive
integers v; =2, 1<t<q, with

:gl(l—i)>2,

Vi
such that, in some neighborhood of {, the multiplicity of any w;-point of f(z)
is not less than v;. Recently, we have shown that, for Cantor sets £ with
successive ratios {&,} satisfying &,,,=0(£2), any function of Mg cannot be excep-
tionally ramified at any singularity {& E(Theoren] in [5]). The capacity (in
this note, capacity means always logarithmic capacity) of these Cantor sets E
is zero, because they satisfy the necessary and sufficient condition

° 1 1
Zgnlgg =

to be of capacity zero.

The purpose of this note is to give Cantor sets £ of positive capacity im-
proving the above theorem. We shall prove

THEOREM. Let E be a Cantor set with successive ratios {&,} satisfying the
condition

‘Sn+1 - 0(571;0)’ r0:<1+' \/33)/4:

then any function of Mg cannot be exceptionally ramified at any singularity {=E.

We set”&,,,=E&5 (n=1, 2,3, ---) with r, »,<r<2. Then {&,} satisfies the
condition of the theorem and
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S

1
Hologg <+

&n

so that the Cantor set E having this {£,} as the successive ratios is one
wanted.

2. Preliminaries.

2.1. Let f be an exceptionally ramified meromorphic function in a domain
G in the extended z-plane having three totally ramified values {w;}i-; .2 With
{vi}i=1.2.s such that 3%, (1—(1/v:))>2, and let R be a doubly connected sub-
domain of G with RC G which is bounded by analytic curves I, and [%.. Sup-
pose that f(I';)) and f([,) are contained in discs D, and D,. Since f is excep-
tionally ramified, we have the following lemma from in [2].

LEMMA 1. Under the above setting,
DiND,#+ @ and f(R)C D,\UD,.

Now let 4 be a triply connected subdomain of G with 4CG which is
bounded by analytic curves {/7;}j=1 2 s. We assume that they satisfy the follow-
ing three conditions (1), (2) and (3):

(1) There exist mutually disjoint simply connected domains {D;} -, ..«
(1<a<3), the boundary curves dD; being sectionally analytic, with

1Dl <+ min Xws, wn)
2 k#+m

such that the images {f(/":)}iz1,5s are covered with {D;} ;- .., and each D,
contains f(/';) for at least one i/, where X(w,, w,) denotes the chordal distance
between w, and w, and |D;| denotes the diameter of D;.

(2) The number n of roots of the equation f(z)=w in 4 is constant and
=1 for weC‘——U;;l D;.

(3) f has no ramified values on each boundary 0D;.

We remove from 4 all relatively noncompact components of {f (D)} jo1. ...
with respect to 4. Then there remains an open set, each component of which
cannot be simply or doubly connected because of in [2]. Hence the
open set is a triply connected subdomain 4’ of 4, whose boundary curves [}
are homotopic to [I'; (=1, 2, 3). The following 1), 2), 3) and 4) hold (see
in [2]).

1) The Riemannian image of 4’ under f belongs to one of the 25 classes
listed in Table 1, where classes (8), (9), (19) and (22) are empty as we have
shown recently in [5]. (This is the reason why we deleted these four classes
from Table 1 by lining through them.)
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2) f has no ramified values other than {w;} =, ., in 4.
Each component of 4—4’ is doubly connected and its image is contained

3)

in one of {Dj} -y .. 4.

4) Each D; contains one of the totally ramified values {w;} = s s

Table 1.
yvi | va | vs l’ln; ;2": 7:1 nlo | o O
3 1 1 2 1

Ly 405y Zol| =4 | 6,,=5 |90 wy|
4 2 1 3

2 2 4 o ll,.i: lz,j:4 13,1:5 8 0 0 {1;1»1}
4 2 1 2 1

8121317\ ,=2| 1,23 Lo=7 181 %yl m
4 3 1 1 2
12030722 b= =7 | 2] O |
5 3 1 1 2

12131 T 1,22 n,=3 | 6,=7 |0 1| 02
5 3 1 1 2

6 2 3 7 ll.jzz lglj:3 13, 1:8 10 0 {1} {l) 1}
712137 5 1y L } 1 1wlol o 3

L=z el =7 1,11
Q (3 n lwd 6 4 1 19. Fal aY 3

U r4) JTT 11,122 lz,j:3 13,1=7 1L U \v) {1, 1, 3}
Q 9 [»] ” 6 4 1 19 O 0 3

v © v ! [1.1:2 lz,j:3 13,1:7 =Y v {1:2,2}
6 4 1 3

10 2 3 7 11|j=2 lgvj: 13,1=8 12 0 0 {1: 1: 2}
6 4 1 3

11 2 3 7 ll.j:2 lz,j:3 13’129 12 O O {1’ 1, 1}
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8 5 2 1 2
120203171 =2 n,=3 | =7 %1% 1| 1y
9 6 2 3
By213 17, 22| n,= =7 (18101 0 1472
123|717 9 6 i : vl18l o o 3
b= L=3 | g 1,1, 1)
12 8 3 3
1203\ Ty =2 6,=3 | Ly=7 [#]0] 0 1yt
1 1 3
161334/, L3 4 23 0 3]0 0 |4ty
2 1 3
17 2 4 5 ll_j:2 12‘1:4 0 4 O 0 {1’1’2}
2 1 1 2
19192 o) i 2 1 0 4 fa) 1 2
TTETY UL =2 [,,=3 v BRI 2,2}
1 1 1 2
200213171, ,=2| 1,,=3 O 13m0 @y
3 2 3
201203\ Ty =2| 1.,=3 0 16101 0 1yTy
09 [») >} v 3 2 O a 0O 0. 3
Lk y~3 J [ 11‘122 121:3 J U T \vJ {1’ 2, 3}
3 2 3
Bl2|3 |7/, 2 L 23 0 60| 0 |5,
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2 3 7 |
. ’ 3 | \
2,713 \ % | ,
o T T | o . 0 12 0o p} 2
;, ;2?4 5“111—-2 { \ | }‘{2} {1:1}!
* ! s 1 ‘ ! ! |
125 4 | | o |
| | | |
| | | | o
237 | | . |

1] 1 1
5245 0| o o ULl @ E
‘ |
1313 |4 } l | |
| l o o - B

NOTATIONS. m;: the number of w;-points of f(z) in 4’ (i=1, 2, 3).
{l:,;} j=1,...m; : the multiplicities of w,-points.
o;: the number of I'} in {I'}};o; .5 with f(I'})=éD,, D,>w,; where
;=0 means that none of {D,};., .., contains w;.

g3

{% 2 means that two of {I'}};.i.» s are mapped onto dD;, D,Dw, and

one of them has an image curve winding once around w, while the
other has an image curve winding twice.

2.2. We form a Cantor set in the usual manner. Let {£,} be a sequence
of positive numbers satisfying 0<£,<2/3, n=1, 2, 3, ---. We remove first an
open interval of length (1—¢&,) from the interval I,,: [—1/2, 1/2], so that on
both sides there remain closed intervals of length &,/2=%,, which are denoted
by I;,;and /.. Inductively we remove an open interval of length (1—&,)TT2=} Nps
with 9,=(1/2)§, (p=1, 2, 3, ---), from each interval I,_, . of length T1%z} n,,
k=1, 2, 3, .-+, 27, so that on both sides there remain closed intervals of length
I13-1 9p, which are denoted by I, ..., and I, ,,. By repeating this procedure
endlessly, we obtain an infinite sequence of closed intervals {I, z}n=1.2, .. £=1,2, 2"
The set given by

n

In.k

1

™

T

E =

n=1 k

[
]

is called the Cantor set on the interval [, , with successive ratios {&,}.
Set

n 1 n—1
Rn,k - {Zy p];[lﬂp<{z_zn,kl<§p];];7]p}

and
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[ = {Z; lz—2zp 1| = ;ﬁl%\/%ﬂ}

where z, , is the midpoint of 7, .. Denoting by p,=p(R, ;) the harmonic
modulus of R, ;, we have

— log o= log .2
{ln—' g377n_ ggsn'

Assuming that lim,_..&,=0, we have

LEMMA 2 (Lemma 4 in [2]). Let f be an exceptionally rami fied meromorphic
function in the domain G=C—E. Then, for sufficiently large n, we have

| f(n )] < Mexp(—pa/2),

where M is a positive constant depending only on E and f.

Let f be exceptionally ramified in the domain G=C—E. By our previous
result ([3]), f has just three totally ramified values {w;} ;1,25 Since |f([7 &)
<Mexp (—p,/2)=M+/38,/2=0, by Lemma 2, we can take a spherical disc D, ;
of radius 0, containing f(/7, »). We denote by 4, , the triply connected domain
bounded by ['n. k, [ ni126-1 and [',.1.:. Taking n so large that 9,<<(1/12)
-min.; X(w;, w;), we consider the union D=D, +\UDui1 24-1\UDpi1 »x, which
consists of at most three, say «, components.

If a=1, that is, D is connected, it is possible that D is doubly connected,
and we take a disc D), of radius at most 6,+20,., containing D. If a=2 or 3,
we denote the components of D by {ﬁj}yex,...,a, which are simply connected.

When a=1 and f takes in 4, , no values outside D,, 7(4, »)cD,, we say
that 4, , is degenerate(f). When a=1 and f takes in 4, , values outside D,
or when a=2 or 3, we say that 4, , is non-degenerate(f). Then f, 4, . and
{ﬁ,}jzl,...,a satisfy three conditions (1), (2) and (3) stated in 2.1, so that by 4)
stated there, each 5,- contains one w¥ of the totally ramified values {w;} i1 s 3
and the union \U%, ﬁj:)D is contained in \Ui_, D(w;, 2(0,+20,4,)), Where we
denote by D(w, 0) the spherical disc of radius ¢ and with center at w. We
assume 20,,,<08, and set Dj=D(w%, 44,), j=1, -, a. Then f, 4, , and
{IN)}} j=1,..« again satisfy three conditions (1), (2) and (3), so that there exists a
triply connected subdomain 4; , of 4, . such that 1), 2), 3) and 4) stated there
hold. The Riemannian image S, . of 47 . under f belongs to one of the classes
of Table 1. The boundary curves of 4; . are denoted by 7. i, 7ni1,26-1 and
Pne1,26 bDeing homotopic to /7n x, ['nir2e-1 @and ['nyq 2k, respectively. Each 7 of
them has an image curve winding around some w* of w,, w, and w,; and we
denote its winding number by s(y). The value w* corresponds to one w of
three totally ramified values for the class in Table 1 to which S, , belongs,
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and we can read the y-value, the minimum of the multiplicities of @&-points, in
Table 1, which we denote by u(y).

Suppose now that S, , belongs to a class other than (23). Reading Table 1,
we see that the image curves of at least two of 75 &, 7ri1 201 and 7,41 2. have
the winding number 1. Hence s(Pas1,26-1)=1 or $(Pnsi26)=1, 58y S(Pns1,26)=1,
where we assume v(7rn.1,26-1) V(P a1 2r) if S(Prur,20-1)=8(Fns1.2¢)=1. The adja-
cent 4,., ., is degenerate(f) or non-degenerate(f). Suppose that 4,.; ., iS non-
degenerate(f). Then #,.y0r and 7., . wind around the same totally ramified
value w* and bound a doubly connected domain where f takes the value w*.
Since f(Pns1,20)TD(w*, 40,) and f(7r.1,2)CD(w*, 40,,,), We see from
that f takes no values outside D(w* 44,) in the doubly connected domain
bounded by 7..12¢ and 7,1 2:. By the argument principle, we have

S(Pasr,2e)FS(Fnir2e) = MaX {¥(Pry1,2), V(j;n+1; 28)},
that is,
$S(Fns1,20) = MaAX{V(Frir,00), V(Fnsr,ee)t —1,

because s(7x.1,2:)=1. From Table 1, we see that only the pairs {4, &, dp.1, 22}
listed below satisfy this inequality.

Table 2.
R
i ‘ dpi o
class | u(fueror) | SFasnen) | 0SS u(Facsan) | SFasren) )
| @w oz 1
20 2 1 (0 2 1
| i
(25) 2 1
| _ N
3) | 3 1
® 3 1
18 | 3 1 @) 3 2
| | |
ey s 1
@) ' 3 1

REMARK. The pair of 4, :((20), 2, 1) and 4,.1,::((24), 3, 2) satisfies the in-
equality, but, under the assumption that f is exceptionally ramified, we can
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omit it, because S, ; and S,,; ., have branch points of multiplicity 2 over dis-
tinct totally ramified values.

From Table 1, we see that, if 4,,. .. of the right side of Table 2 is of
class (4), (20) or (24), one of 7n.24e-1 @Nd Trnio 4, SAY Tauz 4r, Satisfies s(Fayzan)
=1 and Y(Fn424:)=7, and if it is of class (25), s(7n+24x)=1 and v(Frpiz 42)=5.
Therefore 4.,s .x must be degenerate(f). Thus we have

LEMMA 3 (Lemma 2 in [5]). If 4. . ts non-degenerate(f) and belongs to a
class other than the class (23), then for at least ome of Tni120-1 QNA Tryi1 2k, SAY
Fosreey S(Pner2r)=1. If the adjacent d,., s is non-degenerate(f), then for at
least one of Pnio.ak-1 GNd Tnuo, sr, SAY Tnsz, 4kr S(Tnsz4x)=1 and the adjacent 4., 4
is degenerate(f).

We shall state a theorem due to Teichmiiller for the moduli of ring domains
as a lemma, which we shall often use later.

LEMMA 4. If a ring domain R in C separates two points 0 and r,e*®s from
two points ryet?z and oo (r;>0, r,>>0), then

har. mod. R < log (16? +8>
1

(cf. Lehto and Virtanen [4], pp. 54-62).

3. Proof of Theorem.

3.1. Now we shall prove our theorem. Contrary suppose that a function
f of Mg is exceptionally ramified at a singularity {,=FE. As mentioned after
f has just three totally ramified values {w;};-, .5 near {, with
{vi} i=1,2,5, satisfying

3 1 .
p| (1-4 ;) >2,

where we may assume without any loss of generality that w;,=o, w,=1 and
w,=0. From our assumption &,,;=0(E50), ro=(1++/33)/4, we can take n, so
large that 6,=M+/38,/2<<~/2 /24 and 8,,,<(1/2)d, for n=n,. Here we may
assume that /', x, surrounds §, and f is exceptionally ramified in the part G,
of G=C—E surrounded with I'ny ke 'Then if 4, , in G, is degenerate(f),
f(d, ) is contained in a disc D, ; of radius at most 0,-+26,.1<20,.

Now suppose that all 4, , in G, are degenerate(f). The image f([lno,ko) is
contained in ﬁno-ko' Since ﬁno_koﬂﬁnoJ,l,zko_ﬁb@ and 5n0,koﬂl~)n0+1,2k0;& D,
f(dug 2\ dnger,obg-1\Idnger,oe,) is contained in a disc D, of radius at most

~

200, + 405,41 < 20,,(1 +2°) and with the same center w, as D 4, If
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S(dny, 1)\ I(UFe1 (Ui dngep. ) is contained in a disc D, of radius at most
20,,,(14-27-1(1/227")) and with center at w,, then f([!,,o,,,oU(UZ‘:f (Uk dagep, 1))
is contained in a disc Dp,, of radius at most 28, (1437~ (1/277) 4405 s mi <
20,,(1+254{ (1/277")) and with center at w,, because Dmﬂﬁn0+m+1,k¢® for
each Ano+m+1,k in G,, where Ui 4, .p » means the union taken over all the
dn,4p. k'S in Gy. By induction, we conclude that f(G,) is contained in a disc of
radius at most 28,,(1+ 5.1 (1/277%))=60,,<+/2/4. This means that f is
bounded in G,. Since E is of linear measure zero, each point of £ in the do-
main surrounded with /7, ., must be a removable singularity for f (cf. Besi-
covitch [1]). This contradicts our assumption that f&Mg. Thus we see that
there are infinitely many 4, , in G, being non-degenerate(f).

We take such a domain 4,,,. If 4, . belongs to a class other than (23),
we may assume from that $(7n.1,24)=1 and the adjacent 4,,; ,s is
degenerate(f). We shall show that f(I'ni1,20)TD(Wy, 80r41) and f(Lnis sp_)\J
S ns2,40) T D(W3, 8042) for some w & {Wi}izy,s, s

For 4, ; being non-degenerate(f), the union D:Em_zUDm+1,zl—1UDm+1_gl is
contained in \Ud-; D(w;, 200, +20,,.1))C\Uio; D(w;, 40,) as mentioned after we
stated Therefore, if f(I'm, )% \Ui=1 D(w;, 89,), then d,,, is degener-
ate(f) and f(d..) is contained in a disc D, . of radius at most 20,. We
have D, iN\Uiey D(w;, 40,)=@. Since 20m,1<0n, We see that f(I'm.i s )&
Ui D(wy, 80my1) and f(Lmyr,20)ZE\Uics D(wy, 80m4y) S0 that Am+1,21—1 and dp,i 0
both are degenerate(f). Then, by induction, we see all 4, , in the part of G
surrounded with [, ; are degenerate(f). However, this is impossible as we
have seen above. Hence f(/'n, )C\Ui-1 D(wy, 80n). We see now that f(I'm,,)C

3.1 D(w;, 80n), whether 4, ; is non-degenerate(f) or degenerate(f). From this
faCt: f(Fn+1,2k)CU¥=1 D(wiy 85n+1) and f(['n+2.4k—1)Uf(]7n+2,4k)CUg=1 D(wi, 85",.,,2).
However, 4,.1.: is degenerate(f) and so we see that f(/n,.,2:)CD(w;, 80,.1)
and f(Fn+2,4k—1>Uf(Fn+z,4k)CD<wi, 85n+2) for some w;= {w;} i=1,2, 3 We may
assume w;=w,=0.

Set

Ie={z; [e=zau] = UGV o} and 1 =1,
where Y ,=II3-129,=(II5-1£,)/2" and 0<2s<7,—1. By the Cauchy integral
formula,
1 - A
@ = gl il 7S 0Ol

so that

)] < —%(Srﬂrkﬂpk)"cﬁa‘ 4.
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Since f(Inu1,26)CD(0, 80,.1) and f(IMuse, ak-)\JF(Inss,4)T D0, 8nss),

’ l 867Z+1 . 1 e
R SR ey BV G R )
1 8052 1

+2-

2 V(800 (/DY wlI— 3,/ 2 Yo/ B

_102 M 288 M Gufali™
= Y. Yo (1—3vE.0/68:%.)°

<§84 M’

Y,
for sufficiently large n, because 0,—0, &, —0, EY2,E:8,=0(85%* "= 0(&¥2,) and

Enba i =0(£2517"*")=0(1). Hence, for z, 2/&€ s s (7=0, 1),

FO— @) = (o 7@z

38;an 22 &Y s = 1BRMEN, = 5

This inequality implies that the images FF$®y ox-) and f(I'$)s 44) are contained
in discs D 4+ and D§)y ix of radius at most 55;’422, respectively. We shall
show that F(I'$s e DU SfLs 1) D0, E54$/®) for sufficiently large n. Con-
sider the triply connected domain zf,H“k_l bounded by 7§ .x_1, s sros
and [y, sk-2, Where f(I'n,ss1-3) and f(I'n.s sx-») are contained in discs D5 s5-3
and Dy, sx_: Of radius at most 8n,s=M~/(3/2)€n,s=0(E55$/®). If dpps oy is
non-degenerate(f) then the union D—f),‘flg -1\ I D b3\ D 5 552 1S contained
in Ul D(ws, 200824+28,.5)), so that f(I'§ S22 ax-1)C D(0, £558/®) for sufficiently
large n, because 08,=O0(EL)=0(EL¢/™) and 8,.,=0(£4¢®). Therefore if
f( e, 4x-0)Z D0, £554/7), then Zin+2 w1 18 degenerate(f) and f(Jn+2,4k—1)CD;
where D is connected and lD|§2(3§f+’2+25n+3) =0(&558®). Thus f(Inis sr-i3)C
D0, 80,.:) (=3, 2). It is obvious that f([ s, s sr_;)\{D(c0, 80,,s)\UD(1, 83,.5)}
=@ (j=3, 2), but, as we have seen above, any [, ; satisfies f(/ ', )CD(w;, 80,)
for some w;E {w;} ;=10 5. Contradiction. Thus we have f(I'$s (x_)CD(0, £L4/),
Quite similarly, we have f(I'$)s ) D(0, E$/2).

We consider now the part of Riemannian image of the quadruply connected
domain bounded by Im. &, Inii okt L' e 4x and '), ., under f over the an-
nulus R={w ; &R0 <0, w)<1/2}, s>0. Since s(Pn.1,2:)=1, f has no ramified
values other than {w;},oy .5 in 4n . and (5 sk )\ f(T s 0)T DO, ERED),
its component R containing f(7,,..2x) covers R univalently, so that R is also an
annulus and its harmonic modulus is equal to that of K. The inverse image
f_l(ﬁ) is a ring domain Sepafating [yn,kL/Fn+1,zk—1 from ﬁ7(134)—2,4k—1Uﬁ7(zslz,4k- By
we have

=
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log (16 Yfl(%_‘—snfl)« +8> > har. mod. R
n+1
g L V2VI(WDF
B/ VT—(ERET
and hence

32/&n1 = 1726558/, so that &3/2, > 1/64.

Thus there are only finitely many 4, . in G, being non-degenerate(f) which
belong to classes other than the class (23), for, otherwise, the inequality holds
for infinitely many » contradicting our assumption &,.;=0(§5%). Now we may
assume that all 4, , in G, being non-degenerate(f) are of class (23).

3.2. Let 4, . be non-degenerate(f) and belong to the class (23). Then the
image f(04, ) of the boundary of 4, , is contained in one of {D(w;, 40,)} i=1.5 3,
say D(ws, 40,), w;=0. Both of adjacent 4,,, 2:_, and 4,1 ., are degenerate(f).
In fact, if 4., .:-, is non-degenerate(f), $(Fni126-1)=S(Fns1.26-1)=2 because
Auir2x-1 is also of class (23), and f takes the totally ramified value w,=0 with
yy=7. Because [f(Fn.100-1)\JS(Funsr2e-1) C D(0, 40,), the image of the doubly
connected domain bounded by 7,1 2x-1 and 7n.1 221 i also contained in D(0, 49,)
by Lemma 1, consequently f has no poles there, and hence we have s(7n.1 26-1)
+8(Fns1,26-1)=7 by the argument principle. It is absurd, and hence 4,.; 2z-; is
degenerate(f). Similarly we see that 4,.,,. is also degenerate(f). Now at
least one of d,.z 4,1 and 4,54, Sy dn.z 4k, is degenerate(f). Contrary sup-
pose that both of them are non-degenerate(f). Then they are of class (23) and
f has the totally ramified value w,;=0 in the domain bounded by #,.; 2z,
Tnszax-1 and 7Tn.s 4, but has no poles there. In fact 4,,, . is degenerate(f)
and hence f might have poles only in the doubly connected domain bounded

by [Mnisark—1 and Frpiza6-1 OF L nio 4r and F4.s 4z, While this is impossible because
of Lemma 1. Therefore

5(?n+1, 2k)+3(fn+2, 4k~1)+3(7:n+2, 4k> =7

by the argument principle again, while $(Pn.126) = S(Fniz s0-1) = S(Frrs,ax)=2.
Contradiction. The other 4,,5 .1 is degenerate(f) or non-degenerate(f) and
of class (23).

Set

v

D' v =1{z;12—20 | =Y}

We shall show that the diameter of f(fn+2,4k) is O(&,..6,.2). By the Cauchy
integral formula,
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&= Z%igawnﬂ.skul‘n+a,4ku4n+z.4k> (53%_2 @, €l
so that
1)) < %(§F+SP+SF+SF)|%%' \dz|
S e e R e e AL
+ 2%{ ' «T%TT)— Y n;‘1<1—41«/5,:276)} 32740 a/6Y n
R N (B Sy ERC AT
190 DM BV

because 4,.1,2: and 4,,, . are both degenerate(f) and so f([n1,2)SD(0, 805.1),
f( 42, 46-1)CD(0, 83,,2) and f([,n+3,sk—l)uf(rn+3,8k)CD(O: 80,.5). Hence

f@-f@N sy 1@z

109M  32ME,.,  256ME,.,
=(Yn L T

= 3277.'M(3€n+1§n+2+$72z+2+165n+3)
< 26'377.'M5n+1§n+2 = MI$n+IEn+2 = 5n+2 )

because 5721+2:0($n+1€n+2) and En+3:O(E:Lo«}-z):O(E:zoiio_1)5n+2):0(5n+1§n+2>- This
implies that the diameter of the image f(fmz, «+) is contained in a disc Dn,s ok
of radius at most 8,.,,. We note here that if Ay 4x-1 is degenerate(f), the
curve fmz_“,,l has the same property.

<

)271'Yn+2

3.3. To show that f(fn+2,4k)CD(0, 85,,+2), we shall prove first

LEMMA 5. If 4, belongs to the class (23), f has no zeros in the doubly
connected domain bounded by I', . and ¥m., and f(I'n )CTD(O, Em_.), then the
image of the curve I, ,=1{z; |z2—2zm.1|=1/6)EYUY n_.E:Y4} is contained in
D(0, 24n2E2% EL).

PROOF. For small d>0, we denote by S, the covering surface of class (23)
over C—D(0, d). When d=43,, Sy is the Riemannian image S, , of the sub-
domain 47,; of 4,,. As the limit surface as d — 0, we have a six-sheeted
covering surface of C— {0} having three pinholes over 0. We stop up these
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holes and obtain a six-sheeted covering surface @ of €, which is planar and
has three branch points of multiplicity 2 over w;=co, two branch points of
multiplicity 3 over w,=1 and three branch points of multiplicity 2 over wy=0.
Let w=¢(w) be a conformal mapping of the extended w-plane onto @ with ¢(0)
=@(1)=¢(0)=0. Consider Sy, d=40n, as a subdomain of @. Its inverse
image ¢ (S4) is a triply connected domain C— i, B,, where 0B, =¢
f(Fmer21-1), OBa=¢ 7' f(Fmsr,21) and 0By=¢ ' f(7m.1)). We may assume that B,
2w,=0, B,2w,=1 and B;2w;=w. If m is sufficiently large, that is, d is
sufficiently small, for each 7, B, is nearly a circle of chordal radius a;+/d and
with center at w;, where {a;};-1. . s are positive constants not depending on d
and hence on m. The annulus R ={w;2a;+/d <X(w, ©)<1/+/5} separates
B.,\UB, from B,, so that its image f~'e¢p(R) is a ring domain in 4%, ,Cdn,;
separating ['m.1 00-1\J m41, 20 from ' ; and has the same harmonic modulus as
R. We set
r=min{|z—2zm. | ; 2EFn.1}-

By we have

log (16}71—/2 +8) = har. mod. R

V1—Qav/d )*/2a5+/d
5 .

= log

Hence
327/Y m = (1/8asv/d )—8 = 1/16a,/d ,
so that we have
¥ =Y n/2av/d = KY ,_ &30

with a constant K not depending on m. Similarly we have ;< K.Y ,&4* with
constants K; not depending on m, where r,=max{|z—zm, 1 01|} 2E P ms1, 204},
i=0, 1. Therefore the ring domain {z; Y n<|z2—2zm, | < KY n_ &4} C 4}, for
sufficiently large m and its image under ¢~'-f separates B,\UB, from B;. Thus
we have again by

16 min {|@|; o€ e f(ym. )} = K/E*=K'/~/d ,

where yn,: denotes the circle |z—zn, | =KY n_,6%*. This means that |f(2)|<
ad=4a0, on y,,;, where a does not depend on m.

Since f has no zeros and no poles in the domain bounded by I, ; and Tm.1
and s(7n, :)=2, the image curve of any closed curve in this domain being homo-
topic to /', ; winds twice around 0. Therefore f!/? is single-valued there. By
the Cauchy integral formula,
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= omi (C
We have
l f1/2< )l (2$m 1)1/2 Xln;l‘
- 277 (Y m_1/3—(1/~/ 6 EY2Y ,._ & 1/4>z 3
(4adn,)? )
((1/\/6)é§,{iYm EVAKY . EY ZWKYm_f?;{)
é Yf—'fi»*s%al 3
for sufficiently large m. Thus the length of the curve fl/z(f'm,z) is dominated

by

art R T Y O
. | @ 1421 < g, 2m gy gt

— 2x/6 71.51/4 5%2 .

Since the curve fY%[', ,) winds once around 0, we see that |fY%z)|<
246 wEY £ and hence |f(z)] < 24x%€42.&, on I'n, Thus f(I'n)C
D(0, 2472642 ,£,,). Our proof is complete.

Now we can show that f(I'n,ss:)CD(0, 80y2), Onse=M’En 1€nrs. Contrary
suppose that f(I"n.s4x)ZD(, 85ns2). Then Dn.y 2D, 40,..)=@, where
ljn+g,4k3f(fn+2,4k) is a disc of radius at most d,,.. Obviously s(ﬁm,”):o and
we see similarly as before that one of 4,,s sx_; and d,.s sk, SaY dnis se, iS de-
generate(f) and f(I!'n,La,sk) is contained in a disc D,.s s Of radius at most 5n+3
=M’'&,.26nss. Assume that 4,,ss.-; is non-degenerate(f) and of class (23).
Then f has no poles in the domain 4 bounded by I'niz.ex) Fres sior (F(Frss sps)
=0D(0, 40n.s), Onss=~/3/2MEY2) and [ 'n,ssr, because .o 4 and Ao, e are
degenerate(f) and f has no poles in the domain bounded by /.,ssz-. and
Pnvsse-1 by Cemma 1. If Do, se30, then s(/7n.se:)=0, so that f has two
zeros of order 1 or a zero of order 2 in 4, while w,=0 is a totally ramified
value of f with y,=7. Hence 0€ Dy 4 ss D0, 46,,2)ND(0, 49,,,). We take the
component 4’ of f~YC—Dy,ss:)\4d having f’n+2,4k as a boundary component.
The boundary 84’ has a boundary component I with f(f):@Dn,,a,Sk, which
separates fn+2,4k from f,Hmk in 4. We orientate [ positively with respect to
the domain 4’. Then f(f ) winds around 0 in the negative direction, so that,
if I" separates fn+2,4k from 7,.ss:-: too and 4’ is bounded by Iisas and I,
then f has at least one pole in 4/, because the winding number of I',s (s is 0.
Hence it is only possible that 04’ consists of fn+2,4k, Vnes, k-1 and I with
winding numbers 0, 2 and —2 around 0, respectively, and f has no zeros in
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4’. Since d,... is degenerate(f), f({nsss:-1)CD(0, &q,2) and we see from
Lemma 5 that f(I'a.s e-1)CD(0, AT E4En +5) CD(0, 45,,2). Thus f(I'uis )T
Dassstr Daro, s NDO, 40,.0)=@ and f(I'UT 1.5 56-)CD(O, 46,,,). Hence f is
not bounded in 4’Cd4, while f has no poles in 4. Thus 4,,5s:-1 must be
degenerate(f), so that f(fmg,gk_l) is contained in a disc Dn+3,8k,1 of radius at
most On.s and Dass s\ JDnss s6-1\JDnrsss is connected. Hence f(I'n.s sx-1)7
D(0, 85,.,) and f(fn+3,8k)¢D(O, 83,,:). By induction, we see that f is bounded
in the part of G=C—E surrounded with /.., ... This contradicts our assump-
tion f&eMz. We have now that f(I"n,s ) D(0, 85y.,2).

3.4. Recall that 4, , is non-degenerate(f) and of class (23), 4,., ., and
dyisux are degenerate(f) so that f(In.s ) CD(O0, 88,.10), Onss=M'&s.6n.s, and
Ao 4r-1 is degenerate(f) so that f(]!'7l+2,4k_1)CD(0, 80..2), or non-degenerate(f)
and of class (23). We denote by # the curve in 4, ; such that f(F)={w; |w]|
=1/2} and it is homotopic to 7,.: s, and by 4 the domain bounded by 7, I',=
l!',H“k_l and I’Z:fmmk if 4.,5 42—, is degenerate(f), or the domain bounded
bY 7, Puse.ar.: and Is=1In.s s if duis s, is of class (23). Assuming that
duisani is of class (23), we consider the component 4’ of f~*(C — D(0, 85“2))(\11
having 7 as a boundary component. The boundary 04’ has a boundary com-
ponent [/ with f(I"")=0D(0, 85,,.) which separates 7 and Trezae-1 from [’ or
7 from F,.24x-1 and /5. In the latter case, 4’ is the ring domain bounded by
7 and [/ and its Riemannian image under f covers divalently the ring domain
R={w; 80,.2<X(0, w)<1/+/5}, so that its harmonic modulus is equal to one

half of that of R, that is, (1/2) log(\/l — (80 42)? /160,“,2) Since 4’ separates
{Zn+2.4k—1, Zn+2,4k} from {Zn+1 2k-1, OO}; we have by [Lemma 4

Y all=%as1) 1 Vi (85 W)
log (16— 8 I n+2
o8 ( Voa(l— 7]n+2) + ) 2 8 165n+2

so that 22/62,,=1/2°M’E, . 1€n.s, that is, 0o(&r0)=1/2"M’. 1t is impossible for
sufficiently large n. Therefore only the former case is possible and 4’ is
bounded by 7, 7n..4r-1 and I/ with winding numbers 2, 2 and —4 around 0,
respectively, and f has no zeros there. Since 4,,,.: is degenerate(f),
f(Lavoar-0) © DO, énye) and we see from Lemma B that f(Fnseas-) C
D0, 247*€Y2.&,,,). We set I'i=1I"n,2 45—, in the case that d,,, ;.. is of class
(23). Noting that f(I')\Uf(T)CD(0, 24r%E42%€,,.), we consider the component
47 of f~N(C—D(0, 24n%€Y2.&,.,))N\4 having 7 as a boundary component. The
boundary 04” has two boundary components [’} and [I'% with f(I'))=fI"%)=
0D(0, 247842 &, . ,), being homotopic to ['; and [7;, respectively, or a boundary
component /77 with f(I'”)=0D(0, 24x*¢}/?,¢,.,) separating 7 from [, and I’,.
Quite similarly as before we see that only the former case is possible. Then
4” is bounded by 7, I'Y and I'% and its Riemannian image R under f covers

,



184 K. MaTsumoro and T. KurRokawA

the ring domain R’={w;24r%Y2E,,.<X(0, w)<1l/+/5} divalently. By the
Hurwitz formula, R has just one ‘branch point of order 2, whose projection we
denote by w*. Since the part of R over {w; lw*|<|w|<1/2} is doubly con-
nected, we have by

Yn(l_'f]n-u)
Yn+1(]-—ﬁn+2)

1

log (16 +8) = - log (1/2(w*]),

that is,
lw*| > &7../210.

The inverse image of the circle {w; |w|=|w*|} in 4”7 is an eightshaped closed
curve crossing at the point z* with f(z*)=w*, that is, it consists of two simple
closed curves C, and C, with CinC,={z*}, being homotopic to I’y and [,
respectively. Since s(Cp)=s(I"»)=1, one of A,,s -1 and dy.5 52, 52y dris e, 1S
degenerate(f) so that f(I'n.s s#)CD(0, 80nss), Onsa=M'Enyebnre, and dnysgro is
degenerate(f) so that f(f’n+3,sk~1)CD(0, 85n+3), or non-degenerate(f) and of class
(23). We denote by D the domain bounded by C,, C:fn+s,8k_1 and C’:fn+3_sk
if 4,.58r-1 is degenerate(f), or the domain bounded by C,, 7niss:-1 and C’'=
fn+3,8k if 4.5 se-1 is of class (23). Assuming that 4,5 s:-: is of class (23), we
consider the component D’ of f~%C—D(0, 85n+3))mD having C, as a boundary
component. The boundary 0D’ has a boundary component C with f(é):
aD(0, 85n+3) which separates C, and n,s.5:-1 from C’ or C, from 7,,ssx-1 and
C’. In the latter case, D’ is the ring domain bounded by C, and C and its
Riemannian image under f covers univalently the ring domain {w ; 85,,5<X(0, w)
<lw*|/\/1+|w*|§} Since D’ separates {Zn.,s se-1, Zn+s, g6} LTOM {Zni2 4x-1, },
we have by '

Yiiil=9n4a) ¥ V1= (8,50
10g <16Yn+2(1—7]n+3> +8) g log 85n+3 ’

so that
26/511-(-2 ->—:. i w* l /24M,En+25n+3 g 5721+1/217M/En+25n+3 .

Hence we have o($;§§2)>1/223M’, where 73—2>0. It is absurd.

Thus C separates C, and 7,5 s:-; from C’, D’ is bounded by C,, 7n.s sk-1
and € with winding numbers 1, 2 and —3 around 0, respectively, and f has no
zeros there. Since A,.. .x is degenerate(f), f(I n.s sx-1)CD(0, £,,2) and we see
from that f(fn+3.8k—1)CD(0; 24n%87/2En.s). We set C:fn+s.sk—1 in
the case that 4,.s sz—1 is of class (23).

Noting that f(C)UF(C)CD(0, 24n2€Y2,E,,5), we consider D” of f%C—
D(0, 24n2EY/2,6,,:))ND having C, as a boundary component. The Riemannian
image of D” under f covers univalently the ring domain {w; 24m26}/}:&n.s<
X0, w)< |w*|/+/1+ [w*|%, so that D” is a ring domain with harmonic modulus
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log (| w*| /1 —(2472EN 2,6, 1 5)? /24726 260 ,5).  Since D” separates {Zn.s,sk-1, Znss, sk}
from {zn.s4x-1, 0}, we have by

26/§n+2 = lW*i/487r2$;z/-E2 n+3 = E;i+1/217'35;1/-32 n+3

so that o(§79!{To= /172y =1/2%.3, where r,{r,—(1/2)} —2=0. It is absurd and now
our proof of the theorem is complete.
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