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0. Introduction.

This paper is concerned with a degenerate parabolic equation

(0.1 u—AB) = f in Q:=(f, o)X

with dynamic boundary condition
08(u) oV
At h =0

(0.2) aw Tt on 3 :=(t, )X,
V = B(w)

where f{,eR or t,=—co; £ is a bounded domain in RY (N=1) with smooth
boundary I":=082; (d/0v) denotes the outward normal derivative on I"; §: R—R
is a given nondecreasing function; f and % are given functions on @ and £,
respectively. In this paper, we denote by “SP on (, o)” the system {(0.1),
0.2)}.
Equation (0.1) represents the enthalpy formulation of the Stefan problem,
when
ci(r—1) forr =1,
Br)=10 for 0 <r <1,
Co7 for r <0

for some positive constants ¢,, ¢,. For the physical interpretation of boundary
condition we quote Langer and Aiki [I]. As far as initial-boundary
value problems for (0.1) with usual boundary conditions are concerned, there
are some interesting results (e.g., [16, 14, 13]) dealing with existence and
uniqueness of solutions. Recently, problems with similar boundary conditions
were discussed by Mikeli¢-Primicerio and Primicerio-Rodrigues [15].

In Aiki [1], the existence and uniqueness of a weak solution of
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w—ABw) = f in (0, T)XQ,

_aﬁ(uz+@l/:+g(¢, x, V=0 on (0, T)x/[,
Oy ot

V =8wu) on (0, T)XI,
u©, )=wu, in £,
V(O, ):VO on F}

were proved, where u, and V, are given functions on £ and [, respectively,
and g:(0, T)XI'XR—R. One of the purposes of the present paper is to
establish existence, uniqueness and comparison results on the initial-boundary
value problem for SP. These results are not covered by Aiki [I], since in
Aiki it is necessary to assume that the weak solution belongs to the class
L0, T)x ), and in this paper the boundedness of the weak solution is not
required.

In this paper, we are mainly interested in the asymptotic stability of weak
solutions to SP. This question is studied by reformulating SP as a nonlinear
evolution equation involving time-dependent subdifferential operators in a suitable
Hilbert space. Such a technique was already employed in Damlamian [5],
Damlamian-Kenmochi and Haraux-Kenmochi [7]. We shall show that SP
can be reformulated as a nonlinear evolution equation of the form

(0.3) V() +0pt () = [ L€ (b, ),

in the dual space X* of the Hilbert space

X={ee HW); ngdx+gpzd1’ =0}

with norm
, 1/2
2l ={] 170125}

where d[" is the surface element on /" and 0¢‘ is the subdifferential of a
convex function ¢! on X*.

Once the problem is represented in the form [0.3), we can apply some
general results in Kenmochi-Otani [9, 107 on asymptotic to SP. Under periodicity
conditions A(t+T)=h(t) on RX I, f(+T)=f(t) on RX & and

fdxdt— hdl'dt =0,
) aea=1

for some positive number T, we shall show that

(i) (existence of periodic solutions) SP has at least one periodic solution
on R;

(ii) (order property of periodic solutions) if u,, u, are periodic solutions of
SP on R such that
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Sgumo, x)dx«l—grﬁ(ul(o, 0l = Sguzm, x)dx+glﬁ(ug(0, )l

then B(u,)=p(u.) on RXQ;

(iii) (asymptotic stability of periodic solutions) if u is a solution of SP on
[f,, o), then there is a periodic solution w of SP on R such that B(u(nT +-))
—B(w) in L¥0, T ; HY(2)).

Similar questions were discussed in Haraux-Kenmochi [7] and Aiki-Kenmochi-
Shinoda [2].

Throughout this paper we use the following notations:

(1) For a real Banach space W we denote by W* the topological dual of
W and |- |w the norm in W. The duality pairing between W* and W is written
by <., ->w. As a special case the inner product on a Hilbert space W is denote
by (-, w.

(2) Let W be a Hilbert space and / be a compact subinterval of R, u,
U, eCyu(J; W) for n=1, 2, ---. We denote by u,—u in C,(J; W) if it satisfies
(Un(®), 2)w—u(t), 20w uniformly in teJ as n—oo for each z&W.

(3) We denote by |£2! and |/’ the volume of 2 and the surface measure
of I', respectively.

(4) For a proper lower semicontinuous (1. s.c.) convex function ¢ on W,
we denote by D(¢p) the effective domain {zeW; ¢p(z)<<+c} and by 0d¢ the
subdifferential of ¢, i.e., d¢ is a (possibly multivalued) operator which assigns
to each zeD(¢p) the set dp(z) in W defined by

0p(z) = {zx e W (¥, v—2)w < p()—¢(z) for all v & W}.

The domain of 6y is the set D(@p)={z=W ; d¢p(z)+0}. For general properties
of subdifferential operators we refer to Brézis [4].

1. Main Results.

Throughout this paper we assume that the function f: R—R satisfies the
following conditions (81) and (B2):

(B1) B is non-decreasing and Lipschitz continuous on R with Lipschitz
constant Cg and 8(0)=0.

(82) There are some positive constants Lg, /5 such that

|B(r)| = Lglrl—Ils for all r e R.
For the sake of simplicity of notations we put

Y =H'(2), W=LYQ)XLXI),

Aw, v)=| Tu-Todx  for u,v €Y,
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(u, v)y = Au, v)+(§gudx+gpudf>(ggvdx+grvdf) for u,veyl,

@, B = | wdx+| wrordl  for =@, up), 1 =@, vr) W,
and Cg is a positive constant satisfying that
ey = Colvly, [v]rean < Colvly foranyveVY.
Also, we define an operator E:Y—W by putting
Ev=(,vl|r) forvel,

and denote by Fy the duality mapping from Y to Y*. Clearly, Y and W are
Hilbert spaces with inner product (-, -)y and (-, -)w, respectively, and the range
of E, R(E), is a dense subspace of W and E is linear and compact. We identify
W with its dual W* and therefore, denoting by E* the dual operator of £ we
have

(E*w, vr), oy = ngrjdx—}—srvm;dl’ for any (v, vr)€eW and p €Y.

We introduce a notion of weak solution for SP.

DEFINITION 1.1. Let J=[t, t,] be a compact interval, Q=(t, )X,
2=(ty, t)XI" and feL¥Q), hel*2X). Then a couple {u, V} of functions
u: JX2—R and V:J/xI'—R is called a (weak) solution of SP on J if
usCy(J; LX), Bw)eLlJ;Y), Velyu(J; LX), Bu)=V a.e. on X and
the following variational identity is satisfied:

(L.1) —§Qumdxdz—Szvy;Ldrdt+gqv,s<u)-vy;dxdt+§2h1;d[’dt:Sandxdt

Y

for any y € Z,
where Z={y=C'(J;Y); n(t)=x(t)=0}.
DEFINITION 1.2. Let J’ be any interval in R and feLi.(J ; L¥Q)),
heLi,(J ; L¥I"). Then a couple {u, V} of functions u:J'XQ2—R and
V. J'xI'—R is called a solution of SP on J’ if for every compact subinterval

J=I[t, t;] of J’ the couple {u, V} is a solution of SP on J in the sense of
Definition 1.1.

Next, we formulate the Cauchy problem and the periodic problem in time
for SP.

DEFINITION 1.3. (i) Let J'=[{t, ;] or [t, t1), and let u,= L% Q), V., L¥I).
Then a couple {u, V} of functions u: J'—L*2) and V: J'—L¥I") is a solution
of the Cauchy problem and initial conditions u(t,)=u,, V({,)=V,, denoted by
CSP(u,, Vy) on J’, for problem SP on J/, if {u, V} is a solution of SP on J’
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with u(ty)=u,, V{t)=V,.

(ii) Let T be a positive number, and let {u, V}: R—V is a solution of SP
on R such that u@t+T)=u(t), Vit+T)=V () for all teR. Then {u, V} is called
a T-periodic solution of SP on R.

For a compact interval J=[1,, ¢,] let {u, V} be a solution of SP on J.
Then it follows from (1.1) that for some constant K=0,

| <E*, V), govdt = K{SQIVﬁ(u)!2dxdt+§£hzd[’dl+SQf2dxdt}llz

><1{Sq(7;2+|V17|2)afxdt}”2 for any 5 € Z.

Hence, we infer that E*(u, V)eW"*J; Y'*), the function t—=<{E*u(t), V(), n(t))r
is absolutely continuous on J and v

[ S Extute), Ve, @) de+| <Exw@), V@), pee)rde

= (CE*u(t), V@), n(O>r—<E*u(s), V(s)), n(s)>y  for any 5 € Z.

It follows that (1.1) can be written in the following form
d P
(1.2) SJ<~Z[E*(u, V), n) e+ Ip0) Vydxde+ | hpdrde=| _rrdxds

for any p € L*J;Y).
Besides, (1.2) is equivalent to

(1.3) < ----- -EXu(t), V@), 7)>Y+A(}3(u(t)), )+, Pz = (FO), e
for any €Y and a.e. t < J.
It is then quite obvious to see the following proposition.

PROPOSITION 1.1. Let J, f, h be as in Definition 1.1 and consider u: | X 2—R
and V:JXI'—R. Then {u,V} is a solution of SP on J if and only if
EXu, VYEW ] ;Y*), uel>(J; LXQ), BweL*J;Y), Vel=(J;LXI),
Bu)=V a.e. on X and (1.3) is fulfilled.

The first main result is concerned with existence and uniqueness of a
solution to SP.

THEOREM 1.1. Let [/, f, h be as in Definition 1.3. Then for any u,= L% Q),
Ve L¥I) there exists one and only one solution {u, V} of CSP(u,, V,) on J'.

The second one is concerned with a comparison result for SP.

THEOREM 1.2. Let {u,, Vi}, {us, Vi} be solutions of SP on J=[t,, t;]. Then,
for any s, te ] with s<t,



42 T. AIKI

(1.4) L) —u@] v +HILViO—= V(D] i
< [ Lua(s)—ue(8)1 1 Lray + 1 LVi(S) = V()] L1y

and

(1.5) [u1(t)—ua() | 1+ | Vit)— Vo)l Lrarm

= lul(s)_u2<S>ILl(Q)+l Vi(s)—=Va(s)| L1
In particular, if u(ty, -)Suyty, ») a.e. on & and V,(ty, )= V,(ty, +) a.e. on I, then

(1.6) U, < u, a.e. on JX8 and V., <V, aee on JXI

Next we mention some results on 7 -periodic solutions of SP on R.

THEOREM 1.3. We suppose that f& Lt (R; LYQ)), heLj(R; L¥I")). Let
T be a positive number, and assume that

(1.7) ft+T, )= f(t,+) a.e on 2 and

h(t+T, )= h(t,-) ae. on I' for any 1 & R,
and
(1.8) SZSQ 7, x)dxdt-—S:Sph(t, X)dIdt =0,

Then the following statements (i)~(iv) hold.
(i) For each a,=R there exists a T-periodic solution {u, V} of SP on R
such that

Sgu((), x)dx-}—SFV(O, Al = a,.

(i) Let {u, V} be a solution of SP on R. Then {u, V} is T-periodic on R
if and only if usL>(R; L*Q)) and VLR ; LXI")).
(iii) Let {u,, Vi}, {us, Vo) be T-periodic solutions of SP on R such that

Sguxo, x)dx+grvl<0, Xdl = SQuZ(O, x)dx—i—Ser(O, I

Then
B(u) = B(u,) a.e. on RXQ,

and there exist functions we L¥(Q), wre L*(I") with Snwdx+gl‘w/~d]’:0 such
that }
uy(t, )—ust, ) = w(:) a.e. on 8

} for any t = R.
Vilt, )—=Volt, ) = wr(-) a.e on I’

(iv) Let {uy, Vi}, {u., Vo} be two T-perz'odz'é solutions of SP on R such that

Sgul((), x)dx+S[,V1((), xdl > SQuZ(O, x)dx+grvz(0, x)dr.
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Then
(1.9 B(uy) = B(us) a.e. on RXQ.

We denote by %y the set of all T-periodic solutions of SP on R. In
it is mentioned that {8(u); {u, V}=®r} is a totally ordered set
with respect to the usual order of functions on RX&.

~ Finally, as to the asymptotic stability of T-periodic solutions we prove the
following.

THEOREM 1.4. Suppose that all the conditions of Theorem 1.3 are satisfied.
Let t, be any positive number and let {u, V} be any solution of SP on [t, ).
Then there exists a T-periodic solution {@&, V} of SP on R such that

SQu(t, x)dx+ng(t, 0dl" = Sgﬁ(t, x)dx-l—SFV(t, DAl for any t= 1y,

(1.10) u)—at) —0  weakly in L*8) as t — o,
(1.11) V@)=V —0  weakly in LXI") as t — oo,
and

(1.12) Bu(nT+-)— B(@) in L*0, T;Y) as n— oo,

2. Proof of Theorem 2.1.

Throughout this section we assume that f< L},.(I; LXQ)), he L. ; L¥I))
with I=[t,, +), tL,eR, u,=L¥Q) and V,eL¥ ).
First, we show a lemma about the solution of CSP(u,, V,).

LEMMA 2.1. Let {u, V} be a solution of CSP(uy, Vo) on I. Then {u, V}

satisfies

@2.1) Sgu(t, x)dx—i—SPV(t, Ol

= {utods+] viar+{ | rs, vdxds={ | nis, nards

v

for any t = 1.

PrROOF. Indeed, is an immediate consequence of the integration of
(1.3) with n=1 over [t, {]. Q.E.D.

We define a function a on I as follows:

L KB, Vo), 1>y+S ngdxds——g Splzdfds}.

@2 = 1e4p " .
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By it is obvious that for a solution {u, V} of CSP(u,, V,) on [
2.3) Sgu(t, x)dx—}—SrV(t, Al = (|21 +|Da(t)  for any t < 1.

From now on we use the following function spaces and operators.

(i) X:{zeY;Sdex—l—szdF:O} is a Banach space with norm |[z|y=
V2] L2

Gi) H={G, zp)eW;ngdx—l-SPZpdf’:O} is a Hilbert space with the inner
product (#, ¥)y induced from the Hilbert space W, i.e.,

(17, 5)H = (u, U)LZ(Q)+(u1‘, UIV)L2(1') for # = (uy u]'): U= (U, U]") € H.

We identify H with its dual H*.

(iii) E:X—H is the natural injection from X to H, that is, Ez=(z, z|r)
for zeX. Also, E*: H—X* is the dual operator of £ and R(E*) is the range
of E*; therefore

CEXz, zr), pOx = ngr;dx—!-grzmydf for (z, zr) € H and 5 € X.
(iv) Py:Y—X, Py:W-—H are operators defined as follows:
1 ,
PXZ = Z—W(SQZdX+SPZdF> for z =} y

Pu(z, zr) = (2—C(z, zr), zr—C(z, zr)) for (z, zr)e W,

where C(z, zr)=(|2] +{r|)-l<Sdex+Sl,z,~dr).
(v) Fyx:X—X* is the duality mapping from X to X*.
Obviously, we see that

E and E* are linear and compact;

X* is a Hilbert space with inner product (-,-)x« given by

(2.4) (w, 2)x« = <z, Fx'w)>x( =<w, Fy'z)x)  for any w, z € X*;
(2.5) Alw, z) = (FxPyw, Pxz)x for any w, z€Y ;
(2.6) [Prwly < |wly for any w Y.

Finally, we introduce
@7 Br) = S;@(s)ds for » = R,

and for each e/ we define a function ¢°: X*—(—oco, 4oo] by the formula
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[ 8 ta@dxt 5] rtawyar
(2.8) ¢'(z) = if 2% € R(E®) with (z, zp) = E*1(z%),
co otherwise.

Clearly, ¢' is a proper l.s.c. convex function on X* and D((p‘):R(E*) for
each t=I. Denoting by d¢' the subdifferential of ¢' in X* we obtain the
following lemma.

LEMMA 2.2. For each t€l1, 0¢' is singlevalued in X* with
D(@¢") = {z* € R(E*); B(z+a@t) € Y},
and for any z*=E*(z, zr)eD(0¢") with (z, zr)eH
0¢'(z*) = Fx PxB(z+a(t)) in X* and zp+a(t) = B(z+a(t)) a.e. on I

PROOF. Let 2/, zxeX*. If z/€0¢p'(z*), then there exists an element
(z, zr)e H such that E*(z, zr)=z*, and for any (w, wpr)eH

(2, w*—z%)xs = @ (Ww*)—¢'(z%),
where w*=E*w, wr). By using (2.4) this can be written as
(2.9) <(w*—z* Fx'z'>x

1

< [ oo+ emnax—{ peramiax+5{ wrtawpar—4

Sp(zr—}—a(t))zd]".
By definition of E* we see that
(2.10) w*—z* Fz'z/>y = Sg(w—Z)Fflz’dx+gr(wp—ZP)F;‘z’dP.

Choosing w=¢v+z, wr=c¢vr+zr, ¢>0 in (2.9) and dividing by ¢, we obtain
by (2.10) that

ngFglz’dx+Srva;‘z’df

< | 1Be+a+e—Bla+aw)) dx

g

| Aer+a®+evry—Gr+a®Pdl  for any o, vr) < H.
Then letting ¢ | 0 yields

| pFRzde+| prFezdl < | ppe+at)dr+| prir+a@)dr.

Hence,
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(2.11) ngpglzfdx+gpv,~F,;lz'd1’=Sgu/s<z+a(t))dx+grvp(zp+a<t>)d1’

for any (v, vr) & H.
Note here that

@12) | op+a@ds+ prizr+a@dl =@, vr), Pu(BG+a@), zr+a®)u,

since (v, vr)eH. (2.11) and (2.12) imply in particular that Py(B(z+a(?)),
zr+at)=E(F5'z’), and therefore Bzt+a)e€Y, z'=FxPxB(z+a(f)) and
Bz+a)=zr+a(t) a.e. on [

Conversely, for (z, zr)E H, let z¥=FE*(z, zr), f(z+a(®)€Y, 2=FyPxp(z+a(®))
and zr=(B(z+a())—a(t)|r. Then for any (v, vr)€H and v¥=FE*@, vr),

(Z', v¥—2%) xx

= (v*—z* Fx'z')x

= | 0=2PxBeta@dx+| @r—zrPsp+awyar
= SQ{(v+a(t))—(z+ a(t)} B(z+a(h)dx +Sr{(vr+a(t))—(2r+a(t>)} (zr+a®)dl’

4 1 1
< Sgﬁ(v-{—a(t))dx—ggﬁ(z+a(t))dx+~2—sr(vp+a(t))2d1"~——2—gr(zr+a(t))2df
= @' W*)—o'(z¥).
Therefore 2’ €0¢p'(z*) and has been completely proved. Q.E.D.

In order to apply the subdifferential theory to our problem we shall use
the following lemma.

LEMMA 2.3. Let {¢'}ic; be the family of proper l.s.c. convex functions on
X* defined by (2.8) with a(t) given by (2.2). Then for each compact interval
J=I[ty, t,1CI there is a constant K>0 such that

(2.13) lp*(2¥)—@'(z*)| < K|a(t)—a(s)|(1+|¢*(z¥)])
for all s, te | and z* = R(E*),
where K depends only on J, B and the restriction of a(-) to J.

ProOF. This is easily derived from [2.8] with the help of (81), (82) and
(2.2), Q.E.D.

We now consider the evolution equation

219 L O+ ) = R, 1e ] =Tt 1,
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where f*< L%J; X*). Under (2.13), the next result follows easily from Attouch-
Damlamian [3] and Kenmochi [8].

LEMMA 2.4. For any vi€ R(E*) there exists a unique function v¥: J—R(E*)
such that v¥eWvA(J; X*), Ex'(w¥)eL>(J: H) and v* satisfies (2.14) in X* a.e.
on J and the initial condition v¥(t,)=v¥ in X*.

The relationship between the original problem CSP(u,, V,) and equation
(2.14) is now clarified as follows.

PROPOSITION 2.1. Let J=[t,, t\] be a compact interval, Q=(t, t,)X8,
S=(ty, tOX I, fEL¥Q), heL¥Y), u,sL¥Q) and V.= L*I"). Then a couple
{u, V} of functions u:JXQ—R and V:]JXI'—R is a solution of CSP(u,, V,)
if and only if v¥:=FE*Qu, vr), with vi=u—a and vr:=V—a, is the solution of
(2.14) on ] satisfving the initial condition vH(t)=E*Pp(u,, Vo) in X*, where
f*e L] ; X*) is given by

S, dx = (fO), P2y —(h(®), Prery  for n € X and a.e. t € ].

Proor. First let {u, V} be a solution of CSP(u, V,). Then it follows
from (1.3) that for a.e. it/

@15)  ( SoEHu®, V), 1) +AB@E), DHAW, D = (O, Perca
Y for any y €Y and a.e. t € J.

By we see that (), vr®))=Pur(u(®), Vt))eH for any t</, that is,
v¥#)eR(E*) for any tJ. From (2.15) and (2.5) for any pX and a.e. {€]
we have

(2.16) <%v*(t), 77>X = <—57E*(u(t), V(t)), n>y—a’(t)(§g77dx+gp1;df)

_ <%E*(u(t), VD), 77>Y

= —ABu@®), 9+ @), ey — (A, Dzacr
= —(FxPxpu), nox+</*1), pox
= —(FxPxB®)+a®)), nd>x+<*®, pox-

It is clear that for a.e. te]

(2.17) vrt)+a(t) = Bw(D+a(t) a.e. on I

On account of (2.16) and (2.17) we infer that

%v*(t)—{-a(p‘(v*(t)) = fX¢t) in X* for a.e. t & ].
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Obviously, v*eW'%(J; X*) and E*'(v¥)=(u—a, V—a)e=L=(J; H). Hence v* is
the solution of on J satisfying v*(t))=E*(Pu(u,, V).

Conversely, if v* is the solution of [2.14) on J satisfying the initial condition
U*(tn):E*(PH(uo, Vo)), then E*u(l,), V(t)=E*(u,, Vo) and u(ty)=u,, V(t,)="V,.
Furthermore, ueL=(J; L¥Q2)), Vel=(J; LXI"), BweL*J;Y) and Bu)=V
a.e. on 2, and by (2.6) for any »<Y and a.e. t€]

<—57E*(u(t), V), 7,>Y = <%v*(t), PX77>X—|-a’(t)<SQ77dx+SF7;dF)
< [-Lo0)| 1 Paylat @@ il

= (|-5ov0]  +1001) gl

Therefore, E*(u, V)eW"*J;Y*). Moreover, for any y<Y and a.e. t] we
have

<§t. E*u(t), V1)), 77>Y

= <%v*(t), PX77>X—{—a’(t)(ngjdx+SP7;dF)

—@gHoH0), P x+<fH0), Pepdx+a®(| pdx+ par’)

= —(FxPxB0()+a®), Penyx+(f*0, Pepyx+a'@(| ndx+,ndl")

= —ABw®)+a®), 9+ (D), Pre—(h{®), Precrs .

Hence (1.3) holds. We conclude by [Proposition 1.1] that {u, V} is a solution of
CSP(uo, Vo). Q.E.D.

PROOF OF THEOREM 1.1. As a consequence of Cemma 2.4, for any v¥e< R(E*)
and any compact interval J=[t, ¢,]CI there exists a function v*W"*J; X*),
E¥\w¥el=(J; H) and Bw(t)+a(®)EY for a.e. te ], which satisfies in
X* a.e. on J and the initial condition v*({,)=v¥. The conclusion of
1.1 then follows immediately from [Proposition 2.1, Q.E.D.

3. Comparison result for SP.

The aim of this section is to prove Throughout this section
we suppose that feL¥J; L¥R2)), heL*J; L¥I")) for J=[t, t.].

Let {u, V} be a solution of SP on J and {8.}, {f.}, {h:} and {z.} be smooth
approximations of 8, f, h and u(%, <), respectively, such that
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O<s§v5;[85(r)§ Csz+1 for any » € R and 3.(0) =0,

B: — B uniformly on each compact interval of R as ¢ |0,

fe— fin LA(J; LX), h.— h in L*J; LXI')) as ¢ |0,
and
(ze, Be(z)| r) — (ulty), V(1) in H as ¢ | 0.

We use the following lemmas in our proof of
LEMMA 3.1. For each €>0, there is a unique function u.: J—L*£2) such that
@D u.e W] ; LX), B(u) € L=(J;Y) and B(u)l,r € WH(] 5 LX),

(3.2) (ue, 7})L2<9)+(ﬁs(us>z, 77)L2(1“)+A(,35(us), 7])+(he, 7])L2(1'> = (fe 7])L2<.Q)

for any p €Y and ae. t < ],
(3.3) udty) = z..

We can prove this lemma in a way similar to that of [1; Section 2]. So
we omit the proof.

LEMMA 3.2. For each ¢>0 let u. be a solution of (3.1)~(3.3). Then

u.—u in Cu(J; L¥Q)),
Bu)—V in Cu(J; LX),

(3.4) E*(u., B(u))— EXu, V) weakly in Wh*(]J;Y*),
(ue(to), B(uc(tn))| r) — (uo), V(&) in H,
B(u.) — B(u) weakly in L*(J; W),

as ¢ 0.

PROOF. Putting n=g.(u.) in (3.2), for a.e. te] we have
35) 4 fuudrty 4 BT 1B o+, Buluduscrs
= (fe(t): ﬂe(ue))LZ(!?) ’

. ¢
where ﬁs(é):goﬁs(r)dr for any é=R. For s=], integrating (3.5) on (4, s), we
see that

A 1 s 8
| Betusondztg | Bl dr+]) 198, s dt+{, (hey Buatuners e

A 1 ]
=| ﬂe(zs)dx+—g ﬁs<zs>2d1’+g (For Be(te)iardt,
Q 2J)r to
which implies that

(3.6) {(ue, B(ue)| r)} is bounded in L>(J; H),
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and

(8.7 {B:(us)} is bounded in L*J;Y).

In particular, from (3.2) and (3.7) it follows that

(3.8) {E*(u., B(u.))} is bounded in W"*J;Y*).

By estimates (3.6)~(3.8) it is possible to extract a sequence {e¢,} with ¢, |0
(as n—oo) such that

Be (e Myer =: Vu—V weakly* in L=(J; LX),
(3.9) E*un, Vo) — E  weakly in Wh3(J; Y#),
I(un(m, Valte)) — (u(ty), V() in H,
Be(ue)=:U,—U weakly in L];Y).

iuen =:u,— # weakly* in L=(J; L¥Q)),

Since E* is compact as an operator from W to Y* (3.6) and show that
(3.10) E*u,, V,)—E in C(J;Y¥).

Immediately, U=V a.e. on JxT, E=E*ii, V), u,—i in Cu(J; L¥Q)) and
V.—V in Cu(J; LXI")). Now, we note from the monotonicity of 8., that
(3.11) SJ(un—w, Un—Be,(W)ieydt 20 for any w & L] ; L*)).
According to and (3.10),

liminfSl(a——un, U)o dt

N—oo

M—»c0

= nminf(SJw*(a, V)= E*(ua, Vi), U,Z>Ydt—S,<V—vn, Vnm(/v)dt) =>0.
Hence, letting n—oo in (3.11), we obtain that
SJ(ﬁ*w, O —Bw)@dt =0  for any w & L¥J ; LY2)).

[t results from this inequality that U= B(it), because B is maximal monotone as
a mapping in L%/ ; L*&)), and {4, ¥} is the solution of CSP(u(ly), V(t,)) on J.
Thus #=u by uniqueness, and the convergences (3.4) hold.

PROOF OF THEOREM 1.2. For J=[t, t,] and =1, 2 let {u;, V;} be the
solution of SP on J and let u;. (¢(0, 1]) be the smooth approximate solutions
of CSP(ut), Vit,)) as constructed in [Lemma 3.1. Then, by the standard
L'-space technique, we have

[T e(D—uee(H)] | L1000 + | [ﬁs(ule(t))—ﬂs(qu(t>)]+ [Licr
S Lun () — e (80) 17 | 1oy + [ [Be(1e(t0) — Be(u2e(te))]1 " [ L1cry for any t & J.



Periodic stability of solutions to parabolic equations 51

Therefore, on account of letting ¢ | 0 gives for any (=s=t,.
By the same argument as above we see that holds for general t>s.
Inequalities and follow immediately from [1.4). Q.E.D.

4. Boundedness of solutions to SP on [, o).

In this section, we take I=[t,, «) and T>0, and we assume that f, A
satisfy the following conditions

f e Lie; LXQ)), h € L, (I; LX),
ft+T, )= f(t ) a.e. on Q for t & I,
4.1 h(t+T, )= h(t,-) a.e.on I for te I,

S“’”S fle, x)dxd —gwg h(z, x)dT'dz =0
Qz-,xxrtorr,)z'#.

to
The purpose of this section is to prove the following proposition.

PROPOSITION 4.1. Assume that f and h satisfy the conditions (4.1). Then
any solution {u, V} of SP on I satisfies that

4.2) wu:l— L¥Q) and V:I1— L¥I") are bounded,
and
(4.3) [ SWT VB(u(e) e de) s bounded

' 1 to+ (n=1T 271 L2 n=1 '

For the proof of Proposition 4.1 we prepare the following lemmas.

LEMMA 4.1. Under the same assumptions as in Proposition 4.1, there are
positive constants p,, K, depending only on Cg, Lz and £ such that for any
s, tel with s<t

@d) EXu), V)l
< 0 EHu(s), VoK (1410 14 1h@) a4 £@) 5200,

@5 w(]lu@kede+] | V©liarnd)

1 ¢
= §1E*(u(3), V(S))l?/*+KISS(1+10(?)12+1h(f)liz(m—l—If(f)lium)df,
where a is the function defined by (2.2) with us=u(t,) and Vy=V(t,).

ProOOF. By the definition of Fy, we see that for any te]
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(4.6) CEXu(), VD), Dy
= (Fy'EX(u(®), V(1), Dy
= (| P B, viyds+| Fe Exa, vy r)iei+ro.
On account of and we have
an | FrEo), V)dx+| FFEXu(®), V)T = a(t)  for te L.

Putting »p=Fy'E*u(t), V(?)) in (1.3), from definition of inner product <., )y
and [4.7) we infer that for a.e. te/

W8 - B, VOl

= <»§;E*(u(t), V), Fy'EX(u(?), V<f>>>Y

= —ABu®), Fr'EXu(), V(1))
+(f @), Fy ' EXu(®), V(O)ie—(h(®), Fy ' EXu(®), V())rer)

= —CEXu), V), a®Dr+a@(| Su®)dx+| Vodr)

+(f @), Fr'EXu(@®), V()2 —(h(t), Fy'EXu(t), VIO))raar -

Now, noting that for any te{

@) B, vy, fuwpy z w(| uord| vwrar)-2

where p,=min{L /2, 1},
4.10)  la®)| (Sgﬂ(u(t))dx—i-SrV(t)dF)

" 2 TG
< _4~Sg1u(z)| dx-+—SP|V(t)f dF)+T<C519i+lF!>

and
(4.11) |EX(u(t), V)3« = Sgiu(t)igdx+gl,l VI

From (4.8)~(4.11) it follows that for a.e. t=/

> LB, V) ot B EXlt), V)15

2C? \
CR (1 £0) |0 ) +-L2C)
m P

5
< (CHIQ1+1T 4511,

We put
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2 2 . 12
K= 2 o101 144191,
moom 5

then for a.e. 1=/
(4.12) gf{e"ltlE*(u(t), VN g« = Kie1'(|a@)1?+1h@®) | Lecr + 1 f (D112 +1).

Hence, for s, teJ with s<t, by integrating (4.12) on (s, ¢), we obtain [(4.4)
Moreover, it follows from (4.8)~(4.11) that

]. d 9 ﬂl 2 2
—E-EIE*(u(z), V(t)>|y*+"’2*‘<sglu(t)| dx+SF|V(t)| dF)

= K(la@)*+ [h®)]iear+ 1 FD 112 +1).
Clearly, we infer that holds. Thus we prove this lemma. Q.E.D.

Next, in order to get some other estimates for the solution of SP on I,
introduce a function j on H given by

(e 2r) = So‘é(z)dx—{—%grz%dl’ for (2, 2r) € H,
where 3 is the function defined in (2.7). Then we have:

LEMMA 4.2. We suppose that all the conditions of Proposition 4.1 are satisfied.
Then the following statements (1) and (2) are valid.

(1) ju(), V(@) is absolutely continuous on each compact subinterval [t t:]
of I and

(4.13) —;ii—t—j(u(t), V(D)) = <—§z—E*(u(t), V(t)), ﬂ(u(t))>y for a.e. tE L
(2) For any s, tel with s=t,
(4.14) juto), Vo)+| 19w e de

t
$

< (), Vs)+{ 51 F@) a0+ 5@ facr)de

+K (100 + | VO de,

and

@.15) (t=5)ju(®), V)+ (e V)| i dr
= | 5@+ Al far)ds

(55 )0 oo+ V) ),
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where K,=14+C%+C3/2.

PrOOF. (1) is already shown in [1; Lemma 4.2], so we omit the proof.
By virtue of (4.13) and (1.3) we see that for a.e. 7=/

(4.16) 2 i), Vo)

= (LB, V@), ),
= Bt b0, Kt 1, Bt

§~|V/9(u(f))lm<g>+ Ih(T)|L2<r>+ [t

+_‘ "|u(7)ll,2(9>+ | V(T 32y -

From [4.16) it is clear that [4.14) holds. Furthermore, multiplying by
(r—s) and integrating over (s, ), we have

(=)D, V)+| (7—3)| V8@ L e

= | 1@l + A e+ | THC U@ e+ | VO e )de
+| @, voydr

< | 5551 @) 5+ 1 5@ Gar)de

+KZS (*—-——Fl)( I u(T)ILZ(Q) + i V(f) l Lecl’ ))d‘f
has been proved. QED.

PROOF OF PROPOSITION 4.1. First, from [4.1) we observe that a(t+7)=a(t)
for tl. For simplicity, we put

B = K1+ aO1+ | O 52+ [A®) 5ar)  for te 1.
By [(4.4) for each n=1, 2, ---, we have
| EX(u(ty+nT), Vita+nT))|
< e | EXu(tyt(n=1T), Vil (= DT+ " kie)dr.
By an elementary calculation, we infer that

(4.17) {1 EXu(ty+nT), V(te+nT))| yx} 50 is bounded.

On account of [4.15) and [4.5), for each n=1, 2, ---, putting m=n—1, we have
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(4.18) Tj(u(to+nT), Vto+nT)

tag+nT — < tog+nT —_—
< | ke K () u@) e £ V) earn)de

to+mT 2

fiA

T (ty+nT
7)

k(z)drt
T

t0+7n

+(»T-+1)f2(§|5*<u<to+mﬂ, VitAmT) 4] k@de).

2 +m
1 0

It follows from [4.1I7), (4.18) and (82) that
(4.19) {lulto+nT)| L2} 7=0 and {[V({ty+nT)| 2} 5=0 are bounded.

As a consequence of [4.5), [4.14), (4.17), (4.18), (4.19) and (B2) we conclude that

holds. Immediately, [4.2) and [4.14) imply [4.3)] Thus we have proved
the proposition. Q.E.D.

5. Periodic solutions.

The assertions of (i)~(iii) are obtained as direct applications
of the abstract resulits Kenmochi-Otani [9, 10] concerning asymptotics as {—co
in the framework of problem (2.15).

Throughout this section we suppose that fe L, (R ; L¥8)), he Li. (R ; L*1I"))
and for some positive number T, f and h satisfy (1.7) and [1.8). Let a, and ¢,
be two real numbers. Here we can choose functions u,= L% &) and Vo= L¥I[")
so that a,=<{E*(u,, V,), L)y. Let a be a function defined by [2.2)and ¢* be the
function on X* defined by for each iR and for each (=R, f*t)eX* is
given by

X, nox = (f(8), ey —(A{), 92 for y» € X.

By assumptions a, f* and ¢‘ are T-periodic on R, that is, for all iR

a(t) = a(t+T),
X)) = f*@+T) in X*,
o' =T on X*.

PROOF OF THEOREM 1.3 (i) AND (ii). Let {u, V} be a solution of CSP(u,, V)
on [:=[t, ). Then, from [Proposition 4.1 we see that u:I—L%*£) and
V:I—-LXI") are bounded. Also, by [Proposition 2.1, v*:=E*(u—a, V—a) is a
solution of (2.15) on [ and {v*(t);tel} is precompact in X* because E* is
compact. Hence, by [9; Lemma 5],

(5.1) there is a solution ?* of (2.15) on R
and {0*(t); teR} is precompact in X*,
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Besides, from we see that d¢° is single-valued for each teR.
Hence, [9; Theorems 2 and 3] imply that 9* is T-periodic on R. Therefore,
by using [Proposition 2.1 again, we get the assertion of (i).

Moreover, on account of (5.1), Lemma 2.2, [Proposition 2.1land [9; Theorems
2 and 3], (ii) holds.

PrROOF oF THEOREM 1.3 (iii). For i=1, 2, let {u,, V;} be T-periodic solu-
tions of SP on R such that

SQul(O, x)dx+SrV1(0, Xl = SQM(O, x)dx—{—SrVg(O, Ol
From we have
| Sgul(t, x)dx—f—SFVl(i, XAl = Sguzu, x)dx—i—SFVg(t, x)dI" for any t € R.
Hence, for a.e. teR
1 d

(5.2) o gy E¥ s Vi) —EX(us, Vo)l ¥

d d
= (- E¥ G, V=¥, Vi), FPEXuw, V= Fe E¥uw, V),

= —A(Bu1)—B(us), Fy'EX(u,, Vi)—Fy E*(u,, Vs))
= —(E*uy, Vi)—E*u,, V), Bu)—Bu:)y

= —SQWI~uz)<ﬂ(u1>~ﬁ<uz))dx—§F< Vi— V)l < 0.
By periodicity of solutions
(5.3) %[E*(ul(t), Vi(8)— E*(uy(t), Vo(t) |3 =10 for a.e. te R.
According to and we see that for a.e. teR
[ B~ pundr+{ (Vi—vrdr=o,

which shows that B(u,)=p(u.) a.e. on RX £ and V,=V, a.e. on RX [, since
B is monotone increasing. Furthermore, (1.3) implies that

dit(E*(ul(t), Vi) —E*(uy(t), Vo(1))) =0 in Y* for a.e. t R,

that is, E*(u,(?), Vi()— E*(uy(t), Vu(t)) is independent on teR. Then Theorem
1.3 (iii) has been proved. Q.E.D.

Before proving (iv) we show [Theorem 1.4

PROOF OF THEOREM 1.4. Let {u, V} be any solution of SP on [¢, ). We
put v¥:=F*u—a, V—a), where a is a function defined by [2.2)] with u,=u(t,),



Periodic stability of solutions to parabolic equations 57

Vo=V(t,). In a similar way to the proof of (i) and (ii), we have
(5.1). By [9; Theorems 2 and 37, there is a solution w* of (2.15) on R satisfying
that w* is T-periodic and

(5.4) V() —w*(@) —0 in X* as n— oo,

By definition of ¢* it is clear that w*()e R(E*) for any tR. Therefore, there
are functions 7: R—L%Q) and #;:R—LXI") such that w*()=E*®(), vr ().
Hence, the couple {@, V} of functions @(¢):=0(t)+a(t), V(&) :=vr@)+a(t) is
T-periodic solutions of SP on R. (5.4) implies [(1.10) and [(1.11).

By Proposition 4.1 and (B81) there is a number 6 with d&[0, T] such that
{B(u(ty+0+nT))}%-, contains a bounded subsequence in Y. Therefore, we can
choose a subsequence {n,} (depending on &) of {n} such that

(5.5) EBu(to+06+n,T)—U in W as k— co.

Since u(t,+0+nT)—u(t,+0) weakly in LXQ), V(t,+0+nT)—V (t,+06) weakly in
L¥I") and B is maximal monotone on L*&), it follows from that
U=E((a(t,+d))) and

(5.6) Jute+0+n,T), V(tg+3+n:T)) — j(@(ty+0), V(t,+0)) as k — oo

We put ¢, :=4+0, u,(t):=u(t,+n,T+t) and V,():=V(t,+n,T +1t). Besides, by
taking a subsequence of {n,} if necessary, we may assume by [Proposition 4.]|
and (1.3) that

Bu)— U  weakly in L¥0, T';Y),
o0 E*uy, Vi)— E  weakly in W20, T; Y*).
Just as in the proof of we can prove that
Blati+) =0 and Exa(t,+-), V(,+-) = L.
From (i) we have
(5.8) —5;](5;@), V(t) = <—57E*(a(t), V), ﬁ(ﬁ<z>)>y forae (=R.

[t follows from (1.3) that
5.9 (-8 BX o), Vi), BBt +0)),

+A(B(u (D), Bu(1)— Bt +1))
+(ht+1), Bur(t)—p(alti+1)wza)
= (f(ti+0), Bur@®)—plalti+t))re  for a.e. t € [0, o).
Here, on account of and (5.7) we have
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ko

timin]| (- B5uu(0), Vi), Bes()—platti+0)) dt

= tim inf{ j(uA(T), Vi(T)—jus0), V4(0))
—S:<-{%E*(uk(t), Va(D), ﬂ(ﬂ(t1+t))>ydz}»
= j(@(T+t), V(T +t:)—5(@(t), V(t)
(I B, Ter), s ) de
=0,

since j is weakly I.s.c. on W and the last inequality due to (5.8). Therefore,
by integrating over [0, T] and letting k—oo, we have

lim sup| A(B(us(8), Sa(0)— T8t +0))dt < 0.

This implies that YB(u,)—VA@@(t,++)) in L*0, T ; L*2)), whence holds
without extracting any subsequence {n;} of {n}.

PROOF OF THEOREM 1.3 (iv). It is easy to choose pairs {z;, zr ;} (=1, 2)
of functions (z;, z, ;)W such that

z1<z, a.e on £, z2r < zp, a.e. on [,
Sgui(O, x)dx+§[,vi<o, X0dl = ngi<x)dx+grz,,i(x)dr.

Denote by {i;, V.} the solutions of CSP(z;, zr;) on J=[0, ). Then by

(5.10) #i,=2% ae on /xR and V,=V, a.e on JXI.

Now, applying [Theorem 1.4, we see that there is a T-periodic solution {w,, w, ;},
i=1, 2, such that

.10 () —w;(t) —0 weakly in L¥8Q) as t— oo,
Vit)—wr.(t)—0 weakly in LXI") as ¢t — oo,
(5.12) Sgui(O, x)dx+SFVi(0, X)dl = Sgwi(x)dx—i—spwp,i(x)d[’.
Moreover, by and (5.11), we have
w, Z w,, hence B(w,) = B(w,) a.e. on RXQ.

By (i), implies that
Bu;) = B(w;) a.e. on RXQ.
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Accordingly, (1.9) holds. Q.E.D.
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