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§1. Introduction.

Klee in asked what is the minimun number, n, of vertices for a simple
3-polytope with no Hamiltonian circuit, that is, no closed path on the edges of
the polytope which goes through each vertex exactly once. The smallest known
non-Hamiltonian simple 3-polytope has 38 vertices (see p. 359 in [5]), so n=38.
Lederberg proved n=20, Butler [2] and Goodey proved n=24, Barnette
and Wegner proved n=28. In this paper we show n=32.

THEOREM. Every simple 3-polytope of order 30 or less is Hamiltonian.

By Steinitz’s theorem [5, p. 235] a graph is the graph of a simple 3-polytope
if and only if it is planar, 3-connected and 3-valent. A set S of edges of a
graph is called a cut if the removal of these edges separates G into two con-
nected components and no proper subset of S has this property. If the cardi-
nality of the cut is 2 it will be called a k-cut. The components separated by
a k-cut are called k-pieces. A cut will be called non-trivial if each of its k-
pieces contains a circuit, trivial otherwise. A non-trivial k-cut will be called
essential if each of its k-pieces contains more than . vertices, non-essential
otherwise. A graph will be called cyclically k-connected if every [-cut with
I<k is trivial, it will be called cyclically exactly k-connected if it is cyclically
k-connected but not cyclically (k+1)-connected. The order of a graph G will
be denoted by |G].

§2. Preliminaries.

In this section we prepare some lemmas. By and we have Lemma 1.

LEMMA 1. In any simple 3-polytope of order 22 or less each edge is used by
some Hamiltonian circuit.

By we have

LEMMA 2. Any minimal non-Hamiltonian simple 3-polytope of order 34 or
less is cyclically exactly 4-connected and has no essential 4-cut.
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In what follows, let G be a minimal non-Hamiltonian simple 3-polytope of

order 30 or less. By we have |G| =28 or 30. By we have [Lemma 3.
LEMMA 3. G can not contain adjacent quadrilaterals.

The number of k-gons of G and edges of a face f will be denoted by p.
and e(f) respectively. Then the following equation holds [5, p. 254].

3P3+2P4+105:12+k§(k~6>17k . (1)
§3. Proof of Theorem.

LEMMA 4x. G can not contain a part as illustrated in Figure 1x (x=a, b, ---, f.
When x=e, let |G|=28).
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Figure 1.

Proor. If G contains one of the parts as illustrated in Figure 1, then we
replace this part by a part as indicated by heavy lines, producing a new graph
G’. In Figure 1 we have e(f;)=5(@=1, ---, 9) by If e(g,) or e(g.)=4
then G contains a part as illustrated in Figure la, thus we may assume that
e(g,), e(g,)=5. Similarly we may assume that e(gs:)=5 by Figure If.

First we will show that G’ is 3-connected. Note that if G has a non-trivial
4-cut, then one of the 4-pieces is a quadrilateral, since G has no essential 4-cut
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by Cemma 2. In Figure la G has no non-trivial 4-cut with 1, 6, 7 or 8, since
e(f)=53G=1, 2, 3, 4); and G has no non-trivial 5-cut or 6-cut with three or four
of 1,6,7,8 respectively. Thus G’ is 3-connected. Since e(f;)=5, in Figure 1b,
le G—{1, 3} is 3-connected, and so G’ is 3-connected. In Figure lc the only
non-trivial 4-cut with 2,4 or 6 is {2,6,10,11}, since e(g,), e(g:)=5; and G has
no cut with 2,4,6. Thus G’ is 3-connected. In Figure If the non-trivial 4-
cuts with 1,2,3 or 4 are {1,2,5,6} and {3,4,7,8}, and G has no non-trivial 5-
cut or 6-cut with three or four of 1,2, 3,4 respectively. Thus G’ is 3-connected.
In Figure 1d G’ is similarly 3-connected.

Now |G’|<22 and by Lemma 1 G’ has a Hamiltonian circuit H’ using the
edge marked by an asterisk. Then G is also Hamiltonian, since H’ extends to
a Hamiltonian circuit H in G. Indeed in Figure 1a if H'>4,9 then H=H’, if
H' 4,9 then H=(H—{3, 5})U{7, 9,6, 1, 4, 8, if H>4 and H 9 then H=
(H'—{31)u{7,9,6} and if H®»4 and H=9 then H=(H'— {6})U{1,4,8}. In Figure
b H'=26 or 7, say 6. If H'=211 then H=10 or 12, say 10, and H=
(H—1{6, 10})v {7, 8, 2,5,9, 4, 13, 12}. If H'®»11 then H'310,12 and H=
(H—-{6})ui{7,8,3,4,1,5. In Figure 2¢ if H'=23, H 5 then H=(H —
3hhu 4,5, 6,9, 2}, if H'3,5 then H=(H'— {8} )U{l, 2, 3, 4, 5,6, 7}, for other
cases similar. In Figure 1d if H'>7,8 then H=(H'— {5})U{l1,6,9}, if H'=7,
H' 58 then H=(H'—{3,11})V {4,8,12,2,6,10}, if H'®7, H'>8 then H=(H'—
8hHui4,s,2,6,10,11,12}, if H' 57,8 then H=(H'— {5})U {1, 2, 3,4,8,12, 11, 10, 9}.
For Figure le, 1f the proofs are similar to Figure 1b, 1d respectively.

We will show that G contains one of the parts as illustrated in Figure 1
to obtain a contradiction. By ps=0and p,>0. By [Lemma 3,4a every
k-gon with k=5 of G is adjacent to at most [ 2/3] (which is the greatest integer
=k/3) quadrilaterals.

We assume that |G|=28. It is obvious that G contains a part as illustrated
in Figure 1lc or le when ;pkga and when >3 if the following inequality (2)
is valid.

4p:> X [k/31ps. @
By (1) and képk:m, we have
p=bet = put T (k—6)ps—t. ®)
When }Ep »=4, we have (2) from (3) as follows.
4p,24 3 prtid 27(k—6)ﬁk—162 574(k—6)]>k> E7Ek/3]Pk-

kz1

Thus we have |G| =30.
We can not use Lemma 4e. If kZ pr=1 or the following inequality (4) is
27
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valid, then G contains a part as illustrated in Figure 1b or lc.
2p> 33 [k/3]ps - @

The other cases are in Table 1. Here, since kZ; p=17, if p,=6 then ps;+p.
=
=11 and we have (4) from (1) as follows.

2p,=12—ps+ kz,;(k—G)pk>p7+k§(k——6>m;k§7 Ck/3]pw .

Table 1.

b | b | P | b | 2 | Do
A 1 12 2 ] 2 0 0
B 1 13 0 } 3 1 0 | 0
C 1| o131 1 10
D 1 ' 14 0 0 2 0
E 1o M| 0 1 0o | 1

F 2 * * 2
G 2 11 1 | 3 0 0
H 2 12 0 2 | 1 0
I 3 9 2 3 0o | o
] 3 10 0 4 0 0
K 3 10 1 2 1 0
L 3 1 0 1 2 0
M 3 1 0 2 0 1
N 3 12 | 0 0 0 ‘ 2
0 4 8 1 4 0 0
P 4 9 N 1 0
Q 5 700 | 5 o | o

Let G be one type in Table 1. When p,=1, p,+pst+ps=3, and when p,=2,
(2) is valid, and so G has a quadrilateral adjacent to a pentagon. By Lemma
4b, 4c G contains a part as illustrated in Figure 2, where e(f;)=7 (i=3, 4).
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Figure 2.

By fi#f; 6Zi<j=<k). In G of Type (F), it is easy to see that G
contains a part as illustrated in Figure la, 1b or lc. When §6p1é4, if e(fy)

=5 (e(f2)=7) then f;, fs or f, (fsor f,) must be a pentagon, contrary to Lemma
4d. In G of type (I), (O) or (Q), e(fs)=D5, e(fs)=7 and fs or f, must be a quad-
rilateral, since 2p,=2p,+2ps+3p, and by Lemma 4a, 4b, 4c. If e(f,)=4, then
e(f:)=7 (=8 or 10); hence f;, f¢ or f, must be a pentagon, contrary to Lemma
4d. Suppose that e(fg)=4. If e(f)#5(@=5, 6, 7) then e(f;)=5 (=9, 10), con-
trary to Lemma 4d. This completes the proof of
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