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0. Introduction.

In [1] and [2] T. Kato gave some fundamental and important theorems
about evolution operator associated with linear evolution equations

$du/dt+A(t)u=f(t)$ , $0\leqq t\leqq T$ ,

of “ hyPerbolic type in a Banach space $X$. Here, $f$ is a given function from
$[0, T]$ into $X,$ $A(t)$ is a given linear operator which is a negative generator
of a $C_{0}$-semigroup in $X$, and the unknown function $u$ is from $[0, T]$ into $X$.
Those theorems are useful in applications to symmetric hyperbolic systems of
partial differential equations (for example, see [3] and [7]). The proofs were
carried out by using a device due to Yosida $[8, 9]$ , and the proof of Theorem
6.1 of [1] was simplified later by Dorroh [4]. It is assumed in those articles
that $A(t)$ is norm continuous from $[0, T]$ into $B(Y, X)$ , where $Y$ is a Banach
space densely and continuously embedded in $X$. However, we find it useful
to strengthen the theorems by replacing the norm continuity of $A(t)$ with
strong continuity. The purpose of the present paper is to show that Theorem
6.1 of [1] is still valid if we assume the strong continuity of $A(t)$ instead of
the norm continuity of it. In Section 1 our result is stated. In Section 2 we
give a proof of it. In this paper we refer to [1] for notations and definitions.

The author would like to express his hearty thanks to Professor T. Kato
for his valuable advice through his letter.

1. Statement of Theorem.

Let $X$ and $Y$ be Banach spaces such that $Y$ is densely and continuously
embedded in $X$. We denote by $\Vert\Vert$ and $\Vert$ IY norms of $X$ and $Y$, respectively,
and by $B(Y, X)$ the set of all bounded linear operators on $Y$ to $X$. The
operator norm of $A\in B(Y, X)$ is denoted by $\Vert A\Vert_{Y,X}$ . We write $B(X)$ for
$B(X, X)$ and $\Vert A\Vert$ for $\Vert A\Vert_{X.X}$ . Let $\{A(t)\}$ be a family of linear operators in
$X$, defined for $t\in I=[0, T]$ , such that $-A(t)$ is the infinitesimal generator of
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a $C_{0}$-semigroup in $X$ (see [5]). We assume that:
(A) $\{A(t)\}$ is stable with the constants of stability $M,$ $\beta$ in the sense of

Kato [1, Definition 3.1].

(B) $Y\subset D(A(f))$ for each $t$ , and $A(\cdot)$ is strongly continuous on $I$ to
$B(Y, X)$ .

(C) There is a family $\{S(t)\}$ of isomorphisms of $Y$ onto $X$, defined for
$t\in I$, such that $S(\cdot)$ is strongly continuously differentiable on $I$ to $B(Y, X)$

and
(1.1) $S(t)A(t)S(t)^{-1}=A(t)+B(t),$ $B(t)\in B(X),$ $t\in I$ ,

where $B(\cdot)$ is strongly continuous on $I$ to $B(X)$ .
Then we have
THEOREM. Under conditions (A), (B) and (C) there exists a unique family

$\{U(t, s)\}$ of linear operators on $X$, defined on the triangle $\Delta:T\geqq t\geqq s\geqq 0$, with
the following properties.

(a) $U(t, s)$ is strongly continuous on $\Delta$ to $B(X)$ and $\Vert U(t, s)\Vert\leqq Me^{\beta(t-s)}$ .
(b) $U(t, s)U(s, r)=U(t, r),$ $U(s, s)=1$ , $(t, s),$ $(s, r)\in\Delta$ .
(c) $U(t, s)Y\subset Y$, and $U(t, s)$ is strongly continuous on $\Delta$ to $B(Y)$ .
(d) $dU(t, s)y/dt=-A(t)U(t, s)y$ , $y\in Y,$ $(t, s)\in\Delta$ .
(e) $dU(t, s)y/ds=U(t, s)A(s)y$ , $y\in Y,$ $(t, s)\in\Delta$ .

2. Proof of Theorem.

In this section we assume that (A), (B) and (C) hold. Let $P=\{t_{k}\}$ be a
sequence such that $0\leqq t_{0}<t_{1}<\cdots<t_{k}<\cdots\leqq T$ and $t_{\infty}=\lim_{k\rightarrow\infty}t_{k}$ . Then, for such

a $P$ we define an operator $U(t, s;P),$ $t_{0}\leqq s\leqq t<t_{\infty}$, by

$U(t, s;P)=U_{j}(t-t_{j})\prod_{p=k+1}^{j-1}U_{p}(t_{p+1}-t_{p})U_{k}(t_{k+1}-s)$

whenever $t\in[t_{j}, t_{j+1}$), $s\in[t_{k}, t_{k+1}$), $k<j$, and

$U(t, s;P)=U_{k}(t-s)$

whenever $t,$ $s\in[t_{k}, t_{k+1}$), where $U_{p}(t)$ is a $C_{0}$-semigroup in $X$ generated by

$-A(t_{p})$ . Here we have used the convention that $\prod_{p=k}^{j}U_{p}=U_{j}\prod_{p=k}^{j-1}U_{p}$ if $j\geqq k$

and $\prod_{p=k}^{j}U_{p}=1$ if $j<k$ . Also, for an operator-valued function $F(t)$ defined on
$I$, we define a step function $F(t;P)$ by

$F(t ; P)=F(t_{k})$ , $t\in[t_{k}, t_{k+1}$), $k=0,1,2,$ $\cdots$

We note here that by conditions (A) and (C) $\{U_{p}(t)\}$ leaves $Y$ invariant
and forms a $C_{0}$-semigroup in $Y$ (see Proposition 4.4 of [1]). Hence, for each
$y\in YU(t, s;P)y$ is continuous in Y-norm in $t$ and $s$ . We note also that
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conditions (A) and (C) imply

(2.1) $\Vert U(t, s;P)\Vert\leqq Me^{\beta(t-s)},$ $\Vert U(t, s;P)\Vert_{Y}\leqq\tilde{M}^{\sim}e^{\beta(t-s)}$ ,

with suitable constants $\tilde{M},\tilde{\beta}$ (see (4.3) of [1]). On the other hand, the uniform
boundedness theorem and the strongly continuous differentiability of $S(\cdot)$

imply that $\Vert A(t)\Vert_{Y.X},$ $\Vert B(t)\Vert,$ $\Vert S(t)\Vert_{Y.X}$ and $\Vert S(t)^{-1}\Vert_{X.Y}$ are bounded in $t$ .
LEMMA 1. Let $P=\{t_{k}\}$ be a sequence such that $0\leqq t_{0}<t_{1}<\cdots<t_{k}<\cdots\leqq T$

and $t_{\infty}=\lim_{\iota\infty}t_{k}$ , and let $t_{k}\leqq t_{k}^{\prime\prime}<t_{k+1},$ $k=0,1,2,$ $\cdots$ Then we have

(f) for any $x\in X,$
$\lim_{k\rightarrow\infty}U(t_{k}^{\prime\prime}, t_{0} ; P)x$ exists in $X$

(g) for any $y\in Y,$
$\lim_{k\rightarrow\infty}U(t_{k}^{\prime\prime}, t_{0} ; P)y$ exists in $Y$ .

PROOF. To prove (f) it suffices to show that (f) is true for all $x\in Y$,
since $Y$ is dense in $X$. But this is obvious from the fact that

$\Vert(d/dt)U(t, t_{0} ; P)x\Vert=\Vert A(t;P)U(t, t_{0} ; P)x\Vert$

$\leqq\Vert A(t;P)\Vert_{Y.X}\Vert U(t, t_{0} ; P)\Vert_{Y}\Vert x\Vert_{Y}$

$\leqq c\Vert x\Vert_{Y}$

by (2.1) and the boundedness of $\Vert A(t)\Vert_{Y.X}$ in $t$ . Here and in what follows
$c$ denotes various constants, which need not be the same throughout. For
the proof of (g) we begin by showing the estimate

(2.2) $\Vert S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, t_{i} ; P)S(t_{i})^{-1}x-U(t_{k}^{\prime\prime}, t_{i} ; P)x\Vert\leqq c\Vert x||(t_{k}^{\prime\prime}-t_{i})$

for all $x\in X$ and $0\leqq i\leqq k$ . To verify this it suffices to show that (2.2) holds
for each $x\in Y$, since $Y$ is dense in $X$. To this end we use the identity

(2.3) $S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, t_{i} ; P)S(t_{i})^{-1}x-U(t_{k}^{\prime\prime}, t_{i} ; P)x$

$=S(t_{k}^{\prime\prime})(S(t_{k})^{-1}-S(t_{k}^{\prime\prime})^{-1})U(t_{k}^{\prime\prime}, t_{i} ; P)x$

$+\sum_{j=i}^{k-1}S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, t_{j+1} ; P)(S(t_{j})^{-1}-S(t_{j+1})^{-1})U(t_{j+1}, t_{i} ; P)x$

$-\int_{t_{i}}^{t_{k}^{\prime\prime}}S(i_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, \sigma ; P)S(\sigma ; P)^{-1}B(\sigma;P)U(\sigma, t_{i} ; P)xd\sigma$

for $x\in Y$ and $0\leqq i\leqq k$ , which is obtained by differentiating

$S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, \sigma ; P)S(\sigma ; P)^{-1}U(\sigma, t_{i} ; P)x$

in $\sigma$ and integrating over $[t_{i}, t_{k}^{\prime\prime}]$ (use (1.1) also). Since $S(\cdot)^{-1}$ is Lipschitz
continuous in $B(X, Y)$ (see [4]) and since $\Vert S(t)\Vert_{Y.X},$ $\Vert S(t)^{-1}\Vert_{X.Y}$ and $\Vert B(t)\Vert$ are
bounded in $t$ as noted above, it follows easily from (2.1) that the right hand
of (2.3) is majorized in norm of $X$ by $c\Vert x\Vert(t_{k}^{\prime\prime}-t_{i})$ . Thus we see that (2.2)
holds for each $x\in Y$ .
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Now let $x\in X$, and put $w_{i}=S(t_{i})U(t_{i}, t_{0} ; P)S(t_{0})^{-1}x$ and $W(t, s;P)$

$=S(t)U(t, s;P)S(s)^{-1}-U(t, s;P)$ . Then, by (2.1) and (2.2) we have

(2.4) $\Vert W(t_{k}^{\prime\prime}, t_{i} ; P)w_{i}\Vert\leqq c\Vert w_{i}\Vert(t_{k}^{\prime\prime}-t_{i})$

$\leqq c\Vert x\Vert(t_{k}^{\prime\prime}-t_{i})$ .
On the other hand, since $S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, t_{0} ; P)S(t_{0})^{-1}x=S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, t_{i} ; P)S(t_{i})^{-1}w_{i}$

$=W(t_{k}^{\prime\prime}, t_{i} ; P)w_{i}+U(t_{k}^{\prime\prime}, t_{i} ; P)w_{i}$ , we obtain from (2.4)

a $ k.j\equiv\Vert S(t_{j}^{\prime\prime})U(t_{j}^{\prime\prime}, t_{0} ; P)S(t_{0})^{-1}x-S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, t_{0} ; P)S(t_{0})^{-1}x\Vert$

$\leqq\Vert W(t_{j}^{\prime\prime}, t_{i} ; P)w_{i}\Vert+\Vert W(t_{k}^{\prime\prime}, t_{i} ; P)w_{t}\Vert+\Vert U(t_{j}^{\prime\prime}, t_{i} ; P)w_{i}-U(t_{k}^{\prime\prime}, t_{l} ; P)w_{i}\Vert$

$\leqq c\Vert x\Vert\{(t_{j}^{\prime\prime}-t_{i})+(t_{k}^{\prime\prime}-t_{i})\}+\Vert U(t_{j}^{\prime\prime}, t_{i} ; P)w_{i}-U(t_{k}^{\prime\prime}, t_{i} ; P)w_{i}\Vert$ .
Since $\lim_{i\rightarrow\infty}U(t_{k}^{\prime\prime}, t_{i} ; P)w_{i}$ exists in $X$ for each $i$ by (f), it follows that

$\lim_{k.j}\sup_{\rightarrow\infty}a_{k.j}\leqq c\Vert x\Vert(t_{\infty}-t_{i})$

for all $i$ . Therefore, by letting $ i\rightarrow\infty$ we see that $\lim_{k,j\rightarrow\infty}a_{k,j}=0$, which means

that $\lim_{k\rightarrow\infty}S(t_{k}^{\prime\prime})U(t_{k}^{\prime\prime}, t_{0} ; P)S(t_{0})^{-1}x$ exists in $X$. Obviously, this is equivalent

to (g).

The following is our key lemma.
LEMMA 2. For each $\epsilon>0$, $y\in Y$ and $s\in[0, T$) there exists a partition

$P=P(\epsilon, s, y):s=t_{0}<t_{1}<\cdots<t_{N}=T$ of the interval $[s, T]$ such that
(h) $t_{k+1}-t_{k}\leqq\epsilon,$ $k=0,1,2,$ $\cdots$ , $N-1$ ,
(i) $\Vert(A(t^{\prime})-A(t))U(t, s;P)y\Vert\leqq\epsilon$ for all $t,$ $t^{\prime}\in[t_{k}, t_{k+1}]$ , $k=0,1,2,$ $\cdots$ ,

$N-1$ .
PROOF. Set $t_{0}=s$ and inductively define $t_{k+1}$ in the following manner:

If $t_{k}=T$, then set $t_{k+1}=t_{k}$ ; if $t_{k}<T$, then set $t_{k+1}=t_{k}+h_{k}$ , where $h_{k}$ is the
largest number such that the following conditions (1) and (2) hold.

(1) $0<h_{k}\leqq\epsilon,$ $t_{k}+h_{k}\leqq T$ .
(2) $\Vert(A(t^{\prime})-A(t_{k}))u_{k}(t-t_{k})\Vert\leqq\epsilon$ for all $t,$ $t^{\prime}\in[t_{k}, t_{k}+h_{k}]$ , where $u_{k}(t)$

$=U_{k}(t)\prod_{j=0}^{k-1}U_{j}(t_{j+1}-t_{j})y$ .
Since $u_{k}(t)$ is continuous in $Y,$ $A(t^{\prime})u_{k}(t)$ is continuous in X-norm jointly in
$t,$

$t^{\prime}$ by virtue of (B). This implies that $h_{k}>0$ .
Now, if we can show that there is an integer $N$ such that $t_{N}=T$, then

the proof will be complete. To this end assume, for contradiction, that
$t_{k}<T$ for all $k$ ; and put $t_{\infty}=\lim_{k\rightarrow\infty}t_{k}$ and $P^{\prime}=\{t_{k}\}$ . By the definition of $h_{k}$ ,

we can see that for all sufficiently large $k$ there exist $t_{k}^{\prime},$ $t_{k}^{\prime\prime}\in[t_{k}, t_{k+1}$) such
that

(2.5) $\Vert(A(t_{k}^{\prime})-A(t_{k}))u_{k}(t_{k}^{\prime\prime} t_{k})\Vert\geqq\epsilon/2$ :
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Otherwise there would be an integer $k$ such that $ h_{k}<\epsilon$ and $\Vert(A(t^{\prime})-A(t_{k}))$

$u_{k}(t-t_{k})\Vert<\epsilon/2$ for all $t,$ $t^{\prime}\in[t_{k}, t_{k+1}$). Since $u_{k}(\cdot)$ is continuous in $Y$ and
$A(\cdot)$ is strongly continuous, we can take a $\delta>0$ such that $h_{k}+\delta\leqq\epsilon,$ $t_{k+1}+\delta\leqq T$

and $\Vert(A(t^{\prime})-A(t_{k}))u_{k}(t-t_{k})\Vert\leqq\epsilon$ for all $t,$ $t^{\prime}\in[t_{k}, t_{k+1}+\delta]$ . But this contradicts
the dePnition of $h_{k}$ .

On the other hand, according to Lemma 1 (g), the limit $\lim_{k\rightarrow\infty}U(t_{k}^{\prime\prime}, t_{0} ; P^{\prime})y$

$=z$ exists in $Y$ . Hence, by (B) we have

$\lim_{k\rightarrow\infty}A(t_{k}^{\prime})U(t_{k}^{\prime\prime}, t_{0} ; P^{\prime})y=\lim_{k\rightarrow\infty}A(t_{k})U(t_{k}^{\prime\prime}, t_{0} ; P^{\prime})y=A(t_{\infty})z$ .

Therefore, by letting $ k\rightarrow\infty$ in (2.5) (note that $u_{k}(t_{k}^{\prime\prime}-t_{k})=U(t_{k}^{\prime\prime},$ $t_{0}$ ; $P^{\prime})y$), we
have $\epsilon/2\leqq 0$ . This contradicts the fact that $\epsilon>0$ . Thus the lemma is proved.

LEMMA 3. Let $\epsilon_{i}>0,$ $s_{i}\in[0, T$) and $y_{t}\in Y,$ $i=1,2$ , and let $P_{i}=P(\epsilon_{i}, s_{i}, y_{i})$

be a partition of $[s_{i}, T]$ as in Lemma 2. Let $\tilde{P}_{i}$ be any Partition of $[s_{i}, T]$

which is a refinement of $P_{i}$ . Then we have

(2.6) $\Vert U(t_{1}, s_{1} ; \tilde{P}_{1})y_{1}-U(t_{2}, s_{2} ; \tilde{P}_{2})y_{2}\Vert$

$\leqq c\{\Vert y_{1}-y\Vert+\Vert y_{2}-y\Vert+\epsilon_{1}+\epsilon_{2}+(|t_{1}-t_{2}|+|s_{1}-s_{2}|)\Vert y\dagger\Vert_{Y}\}$

for all $t_{i}\in[s_{i}, T],$ $i=1,2$, and all $y\in Y$ .
PROOF. We start with the identity

(2.7) $U(t_{t}, s_{i} ; P_{i})y_{i}-U(t_{i}, s_{i} ; F_{i})y_{i}$

$=\int_{s_{t}}^{t_{i}}U(t_{i}, \sigma ; \tilde{P}_{i})(A(\sigma ; \tilde{P}_{i})-A(\sigma ; P_{i}))U(\sigma, s_{i} ; P_{i})y_{i}a\sigma$ ,

which is obtained by differentiating $U(t_{i}, \sigma ; \tilde{P}_{t})U(\sigma, s_{i} ; P_{i})y_{i}$ in $\sigma$ and inte-
grating over $[s_{i}, t_{i}]$ . Since $\tilde{P}_{i}$ is a refinement of $P_{i}$ , property (i) of Lemma
2 implies that $\Vert(A(\sigma ; \tilde{P}_{i})-A(\sigma ; P_{i}))U(\sigma, s_{i} ; P_{i})y_{i})\Vert\leqq\epsilon_{i}$ for $\sigma\in[s_{i}, T]$ . Hence
(2.1) and (2.7) give

(2.8) $\Vert U(t_{i}, s_{t} ; P_{i})y_{i}-U(t_{i}, s_{i} ; \tilde{P}_{i})y_{t}\Vert\leqq c\epsilon_{i}$ , $i=1,2$ .
Consequently, by (2.8) we have

(2.9) $\Vert U(t_{1}, s_{1} ; \tilde{P}_{1})y_{1}-U(t_{2}, s_{2} ; \tilde{P}_{2})y_{2}\Vert$

$\leqq c(\epsilon_{1}+\epsilon_{2})+\Vert U(t_{1}, s_{1} ; P_{1})y_{1}-U(t_{2}, s_{2} ; P_{2})y_{2}\Vert$

$\leqq c(\epsilon_{1}+\epsilon_{2})+I_{1}+I_{2}+I_{3}$ ,

where $ I_{1}=\Vert U(t_{1}, s_{1} ; P_{1})y_{1}-U(t_{1}, s_{1} ; P_{3})y_{1}\Vert$ ,

$ I_{2}=\Vert U(t_{1}, s_{1} ; P_{3})y_{1}-U(t_{2}, s_{2} ; P_{3})y_{2}\Vert$ ,

$ I_{3}=\Vert U(t_{2}, s_{2} ; P_{3})y_{2}-U(t_{2}, s_{2} ; P_{2})y_{2}\Vert$ ,

and $P_{3}$ is the superposition of $P_{1}$ and $P_{2}$ . But, (2.8) gives again that $I_{1}\leqq c\epsilon_{1}$
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and $I_{3}\leqq c\epsilon_{2}$, for $P_{3}$ is a refinement of both $P_{1}$ and $P_{2}$ . Thus the lemma will be
proved if we estimate $I_{2}$ . To this end we may assume, without loss of
generality, that $s_{2}\leqq s_{1}$ . For each $y\in Y$ it follows easily from (2.1) that

$ I_{2}\leqq Me^{\beta T}(\Vert y_{1}-y\Vert+\Vert y_{2}-y\Vert)+\Vert U(t_{1}, s_{1} ; P_{a})y-U(t_{2}, s_{2} ; P_{3})y\Vert$ .
On the other hand, since $\Vert(d/dt)U(t, s_{2} ; P_{3})y\Vert\leqq c\Vert y\Vert_{Y}$, we have

$\Vert U(t_{1}, s_{1} ; P_{3})y-U(t_{2}, s_{2} ; P_{3})y\Vert$

$\leqq\Vert U(t_{1}, s_{1} ; P_{3})y-U(t_{1}, s_{2} ; P_{3})y\Vert+\Vert U(t_{1}, s_{2} ; P_{3})y-U(t_{2}, s_{2} ; P_{3})y\Vert$

$\leqq\Vert U(t_{1}, s_{1} ; P_{3})(1-U(s_{1}, s_{2} ; P_{3}))y\Vert+c|t_{1}-t_{2}|\Vert y\Vert_{Y}$

$\leqq c\Vert(1-U(s_{1}, s_{2} ; P_{3}))y\Vert+c|t_{1}-t_{2}|\Vert y\Vert_{Y}$

$\leqq c(|s_{1}-s_{2}|+|t_{1}-t_{2}|)\Vert y\Vert_{Y}$ .

Hence we see that $I_{2}$ is majorized by

$c\{\Vert y_{1}-y11+11y_{2}-y\Vert+(|s_{1}-s_{2}|+|t_{1}-t_{2}|)\Vert y\Vert_{Y}\}$ .
Combining (2.9) with the estimates of $I_{1},$ $I_{2}$ and $I_{3}$ shown just above, we
conclude that (2.6) holds.

Now, fix $x\in X$ and $(t, s)\in\Delta$ . Let $\{s_{n}\},$ $\{t_{n}\}$ and $\{y_{n}\}$ be sequences such
that $0\leqq s_{n}<t_{n}\leqq T,$ $y_{n}\in Y,$ $s_{n}\rightarrow s$ , $t_{n}\rightarrow t$ , and $y_{n}\rightarrow x$ in $X$. Let $\{P_{n}\}$ be a
sequence of partitions of $[s_{n}, T]$ satisfying (h) and (i) of Lemma 2 with $\epsilon,$ $s$,
$y$ replaced by $1/n,$ $s_{n},$ $y_{n}$ respectively. We then define

(2.10) $U(t, s)x=\lim_{n\rightarrow\infty}U(t_{n}, s_{n} ; P_{n})y_{n}$

It follows from (2.6) that

$\lim_{n.m}\sup_{\rightarrow\infty}\Vert U(t_{n}, s_{n} ; P_{n})y_{n}-U(t_{m}, s_{m} ; P_{m})y_{m}\Vert$

$\leqq c\lim_{n,m\rightarrow\infty}\{\Vert y_{n}-y\Vert+\Vert y_{m}-y\Vert+1/n+1/m+(|t_{n}-t_{m}|+|s_{n}-s_{m}|)\Vert y\Vert_{Y}\}$

$=2c\Vert x-y\Vert$

for each $y\in Y$ . But, since $Y$ is dense in $X$, this implies that

$\lim_{nm\rightarrow\infty}IU(t_{n}, s_{n} ; P_{n})y_{n}-U(t_{m}, s_{m} ; P_{m})y_{m}\Vert=0$

Therefore the limit $U(t, s)x$ exists in $X$. Similarly, we can see from (2.6)

that $U(t, s)x$ is independent of the choice of such sequences $\{s_{n}\}$ . $\{t_{n}\},$ $\{y_{n}\}$

and $\{P_{n}\}$ as above.
LEMMA 4. We have
(j) $U(t, s)$ is a linear operator in $X$.
(k) $U(t, s)$ satisfies Properties (a) and (b) of Theorem.
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PROOF. (j) follows easily from the fact that $U(t, s)x=\lim_{n\rightarrow\infty}U(t_{n}, s_{n} ; \tilde{P}_{n})y_{n}$

for any refinement $\tilde{P}_{n}$ of the partition $P_{n}$ employed in (2.10). But, this fact
is a direct consequence of Lemma 3. Next, to obtain that $U(t, s^{\prime})U(s^{\prime}, s)$

$=U(t, s)$ for $s\leqq s^{\prime}\leqq t$ , we may let $ n\rightarrow\infty$ in the identity

$U(t_{n}, s_{n}^{\prime} ; P_{n}^{\prime})U(s_{n}^{\prime}, s_{n} ; P_{n})y_{n}=U(t_{n}, s_{n} ; P_{n})y_{n}$ ,

where $P_{n}^{\prime}=P_{n}\cap[s_{n}^{\prime}, T]$ and $s_{n}^{\prime}$ is a point of $P_{n}$ such that $s_{n}^{\prime}\rightarrow s^{\prime}$ as $ n\rightarrow\infty$ ;
note that if we set $y_{n}^{\prime}=U(s_{n}^{\prime}, s_{n} ; P_{n})y_{n}$ , then the partition $P_{n}^{\prime}$ satisfies prop-
erties (h) and (i) with $\epsilon,$ $s,$ $y$ replaced by $1/n,$ $s_{n}^{\prime},$ $y_{n}^{\prime}$ , respectively. Hence, by
definition $U(t_{n}, s_{n}^{\prime} ; P_{n}^{\prime})y_{n}^{\prime}$ converges to $U(t, s^{\prime})U(s^{\prime}, s)x$ as $ n\rightarrow\infty$ . Thus we
see that $U(t, s)$ satisfies (b). Finally, (2.6) gives also that $U(t, s)y$ is conti-
nuous on $\Delta$ to $X$ for all $y\in Y$, and hence is so for all of $X$ by continuity.
This shows that (a) is true.

To investigate (e) of Theorem we use the following lemma which cor-
responds to Proposition 4.3 of [1].

LEMMA 5. Let $r\in I$ be fixed. Then for $(t, s)\in\Delta$ and $y\in Y$

(2.11) $\Vert U(t, s)y-\exp(-(t-s)A(r))y\Vert$

$\leqq c\int_{s}^{t}\Vert(A(\sigma)-A(r))\exp(-(\sigma-r)A(r))y\Vert d\sigma$ .

PROOF. Let $P_{n}=P(1/n, s, y)$ be a partition of $[s, T]$ as in Lemma 2. By
differentiating $U(t, \sigma ; P_{n})\exp(-(\sigma-s)A(r))y$ in $\sigma$ and integrating over $[s, t]$ ,

we obtain that $\exp(-(t-s)A(r))y-U(t, s;P_{n})y$ equals to

$\int_{s}^{t}U(t, \sigma;P_{n})(A(\sigma;P_{n})-A(r))\exp(-(\sigma-s)A(r))yd\sigma$ .
Estimating the integral term by

$ Me^{\beta T}\int_{s}^{t}\Vert(A(\sigma;P_{n})-A(r))\exp(-(\sigma-s)A(r))y\Vert d\sigma$

and going to the limit $ n\rightarrow\infty$ , we can get (2.11) by Lebesgue’s dominated
convergence theorem.

PROOF OF THEOREM. (a) and (b) have been proved by Lemma 4. In virtue
of (2.11) a similar argument to that of [1, pp. 247, 248] gives that (e) is true
and that $d^{+}U(t, s)y/dt|_{t\Leftarrow s}=-A(s)y$ holds for all $y\in Y$ and all $s\in[0, T$). Thus
it remains to show that (c) and (d) are valid. It, however, suffices to show
(c) only (see [1, p. 253]). (c) will be proved as in [4] without any formal
changes, but the arbitrary partitions of the interval $[r, T]$ used there must
be replaced by the partition $P_{n}=P(1/n, r, y)$ constructed in Lemma 2 for
$\epsilon=1/n,$ $s=r$ and $y\in Y$ ; namely, in the argument of [4] we may replace $A_{n}(t)$

and $U_{n}(t, s)$ with $A(t;P_{n})$ and $U(t, s;P_{n})$ , respectively. Only a slight change
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of the argument is required to justify that (8) of [4] can be deduced from
(7) of [4] under our assumptions. (In [4], in order to deduce (8) from (7), the
norm continuity of $A(t)$ is used.) But, this is readily justiPed from the fact

that $\int_{s}^{t}\Vert(A(s)-A(s;P_{n}))U(s, r;P_{n})y\Vert ds$ tends to $0$ as $ n\rightarrow\infty$ in virtue of Lemma

2 (i).
Finally, the uniqueness of $\{U(t, s)\}$ will be proved as in [1, p. 248].

However, we must again use property (i) of Lemma 2 instead of the norm
continuity of $A(t)$ as used just above to obtain that the right hand of (4.6a)

of [1] tends to $0$ as $ n\rightarrow\infty$ . We omit the detail.
NOTE. After the theorem was proved, the author knew that Ishii [6]

had already obtained a similar result by using the Yosida approximation. In
[6] some additional assumptions are assumed on $S(t)$ , but the strong conti-
nuity of $A(t)$ is replaced with strong measurability.
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