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0. Introduction.

In and [2] T. Kato gave some fundamental and important theorems
about evolution operator associated with linear evolution equations

du/dt+A)u=£(1), 0=t<T,

of “ hyperbolic” type in a Banach space X. Here, f is a given function from
[0, T] into X, A(¢) is a given linear operator which is a negative generator
of a Cyp-semigroup in X, and the unknown function u is from [0, 7] into X.
Those theorems are useful in applications to symmetric hyperbolic systems of
partial differential equations (for example, see and [7]). The proofs were
carried out by using a device due to Yosida [8,9], and the proof of Theorem
6.1 of was simplified later by Dorroh [4]. It is assumed in those articles
that A(t) is norm continuous from [0, 7] into B(Y, X), where Y is a Banach
space densely and continuously embedded in X. However, we find it useful
to strengthen the theorems by replacing the norm continuity of A(¢) with
strong continuity. The purpose of the present paper is to show that Theorem
6.1 of is still valid if we assume the strong continuity of A(t) instead of
the norm continuity of it. In Section 1 our result is stated. In Section 2 we
give a proof of it. In this paper we refer to for notations and definitions.

The author would like to express his hearty thanks to Professor T. Kato
for his valuable advice through his letter.

1. Statement of Theorem.

Let X and Y be Banach spaces such that Y is densely and continuously
embedded in X. We denote by || || and || ||y norms of X and Y, respectively,
and by B(Y, X) the set of all bounded linear operators on Y to X. The
operator norm of A< B(Y, X) is denoted by |Aly,x. We write B(X) for
B(X, X) and ||A| for |Allx,x. Let {A(¢)} be a family of linear operators in
X, defined for t=I=[0, T], such that —A(t) is the infinitesimal generator of
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a Cy-semigroup in X (see [5]). We assume that:

(A) {A(t)} is stable with the constants of stability M, 8 in the sense of
Kato [1, Definition 3.1].

(B) YCD(A(t)) for each t, and A(-) is strongly continuous on [ to
B, X).

(C) There is a family {S(¢)} of isomorphisms of Y onto X, defined for
tel, such that S(-) is strongly continuously differentiable on [ to B(Y, X)
and
(1.1) S(HA()S() *=A(t)+B@1), Bt)e B(X), t=1,
where B(-) is strongly continuous on 7 to B(X).

Then we have

THEOREM. Under conditions (A), (B) and (C) there exists a unique family
{U(t, s)} of linear operators on X, defined on the iriangle 4: T=Zt=s=0, with
the following properties.

(a) U(t, s) is strongly continuous on 4 to B(X) and |U(t, s)|| < Me¢-9,

(b) U(t, s)U(s, r)=U(t, r), U(s, s)=1, (i, s), (s, r)ed.

() Ut, )YV, and U(t, s) is strongly continuous on 4 to B(Y).

(@ dU(t, s)y/dt=—A)U(, s)y, yeY, (t, s)ed.

(e) dU(t, s)y/ds=U(t, s)A(s)y, veVY, (t, s)ed.

2. Proof of Theorem.

In this section we assume that (A), (B) and (C) hold. Let P={¢,} be a
sequence such that 0=¢,<¢,<---<¢,<--=<T and toc,:lkimz‘,,. Then, for such

a P we define an operator U(t, s; P), {,<5=t<tw, by

Utt, 53 PY=U =) TL Ut t)Usltrn—)
whenever t&[t;, t.1), S€[ts, trer), B<J, and

U(t, s; P)=U,(t—s)
whenever ¢, s€[t,, tz41), where Uy(¢) is a C,-semigroup in X generated by
—A(t,). Here we have used the convention that pljk U,,:U,.;ii U, if j=k
J
and pI=Ik Uy,=1 if j<k. Also, for an operator-valued function F(¢) defined on
I, we define a step function F(¢; P) by
F(t; P)=F(ty), t€lts trer), £=0,1,2, .

We note here that by conditions (A) and (C) {U,(t)} leaves Y invariant
and forms a C,-semigroup in Y (see Proposition 4.4 of [1]). Hence, for each
yeY U(¢, s; P)y is continuous in Y-norm in ¢ and s. We note also that
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conditions (A) and (C) imply
(2.1) WU, s; PY|SMeP¢=9, |U(t, s; P)lly<Mee-9,

with suitable constants M, § (see (4.3) of [T]). On the other hand, the uniform
boundedness theorem and the strongly continuous differentiability of S(-)

imply that [|A(®ly, x, IB@OI, 1Sy, x and |S(¢) (|l x,» are bounded in .
LEMMA 1. Let P={t,} be a sequence such that 0=t,<t,<--<t,<-+<T
and tmz}‘im ty, and let t, St <ther, B=0,1, 2, ---. Then we have

(f) for any x€X, %im U(tY, te; P)x exists in X
(g) for any yeY, lkim U(tY, te; P)y exists in Y.

Proor. To prove (f) it suffices to show that (f) is true for all x€Y,
since Y is dense in X. But this is obvious from the fact that

I(d/dt)U(t, to; P)xlI=1A(t; P)U(t, to; P)x]|
=IA; Ply. xIUG, to; Pliyllxlly
=clxly

by and the boundedness of | A(¢)lly.x in ¢. Here and in what follows
¢ denotes various constants, which need not be the same throughout. For
the proof of (g) we begin by showing the estimate

(2.2) ISGDUE, to; P)S(t) ' x—U(t], ti; P)xli=cllxl(tf—10)

for all xeX and 0<i=<k. To verify this it suffices to show that holds
for each xeY, since Y is dense in X. To this end we use the identity

(2.3) SEDU(tE, te; P)S@) ' x—U(tY, ti; P)x
=SSE ) =SENHUY, ti; P)x

k-1
+ jgis(t'é)U( b tiers PUS()7* =St 540) YU (t ja4, ti; P)x

n
|, \SunU, o5 P)S(; Py Blo s PUGs, ti; P)x do
for x€Y and 0=<:=Fk, which is obtained by differentiating
StPUE%, o5 P)S(o; P)*U(o, ti; P)x

in ¢ and integrating over [t;, t}] (use also). Since S(-)! is Lipschitz
continuous in B(X, Y) (see and since [|S(H)ly,x, 1S() Y| x.» and | B(t)|| are
bounded in ¢ as noted above, it follows easily from that the right hand
of is majorized in norm of X by c||x||(¢¥—¢;). Thus we see that
holds for each x&Y.
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Now let x€X, and put w;=S(,;,)U(t;, te; P)S(t,)"*x and W(t, s; P)
=S()U(t, s; P)S(s)"*—U(¢, s; P). Then, by and we have

(2.4) [W(ts, ti; Plwill=cllwsl|(th—12)
Scllx|(tr—t).

On the other hand, since S(t})U(t%, to; P)S(to) 'x=SE)U(t%, ti; P)S(t:)'w,
=W(t{, t;; P)w;+U(t%, t;; P)w;, we obtain from (2.4

ar=ISENURY, to; P)S(t0) ' x—SUNU(E, to; P)S(to) x|l
=IW(t5, to; P)will +IW(tE, to; P)will+1U@YS, t; Pywi—U(tE, ts; Plwi
Scllx{@ =)+ =t} HIU@T, to; P)w— U, ti; Plwil .
Since ilgl U(t?, t;; P)w; exists in X for each i by (f), it follows that

lign_sup ap i =cllxl|(te—ts)
s ]

for all 7. Therefore, by letting i—co we see that lim a, ;=0, which means

k, jooo

that }eim SHNU(tY, te; P)S(ty)™*x exists in X. Obviously, this is equivalent

to (g).

The following is our key lemma.

LEMMA 2. For each >0, yeY and s<[0, T) there exists a partition
P=P(e, s, ¥): s=t,<t,<--<ty=T of the interval (s, T] such that

(h) tpi—1ti=e £k=0,1, 2, ---, N—1,

(1) WARN—=A)U(t, s; P)yllse for all i, t'€[ts, teerd, £=0,1,2, -,
N—1,

PrROOF. Set t,=s and inductively define ?,,; in the following manner:
If t,=T, then set t,,,—1t,; if t,<T, then set t,,,—t,+h, where h, is the
largest number such that the following conditions (1) and (2) hold.

(1) O0<h,=Ze, t,+h,=T.

(2) A=A D) u(t—t)lI<e for all ¢, t’E[t,, tp+h,], where u,(f)
—U (1) ';HO Ut je1—t)3.
Since u,(t) is continuous in Y, A(t")u,(t) is continuous in X-norm jointly in
t, t’ by virtue of (B). This implies that h,>0.

Now, if we can show that there is an integer N such that ¢y=7T, then
the proof will be complete. To this end assume, for contradiction, that
t,<T for all k; and put tmzkiﬂrg t, and P'={t,}. By the definition of h,,

we can see that for all sufficiently large & there exist t}, t7&[ts, tr+1) Such
that

(2.5) ICACGD)—AG Du ety tR)l=e/2:
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Otherwise there would be an integer %k such that h,<e and [[(A()—A(t.))
cup(t—tl <e/2 for all ¢, t’E[ts, tsss). Since u,(+) is continuous in Y and
A(+) is strongly continuous, we can take a 6>0 such that h,+0=e, ts,+0=T
and [[(A(t")— At Nu(t—t )l =Ze for all ¢, t’E[ty, trs+06]. But this contradicts
the definition of 4,.

On the other hand, according to (g), the limit lim U(ty, te; Py
=z exists in Y. Hence, by (B) we have -

lim AU, to; Py=lim At QUL to; Py=Alt)z.

Therefore, by letting k—oco in (note that u,(t}—1t,)=U(ty, to; P)y), we
have ¢/2=<0. This contradicts the fact that ¢>0. Thus the lemma is proved.

LEMMA 3. Let ,>0, s;€[0, T) and y;€Y, i=1, 2, and let P;=P(e;, si, ;)
be a partition of [s;, T] as in Lemma 2. Let P, be any partition of [s;, T]
which is a refinement of P;. Then we have '

2.6)  NU(ty, s1; Pyyi—Ults, 525 Po)ysl
éc{“J’l_y”+i|y2_YI|+€1+5z+(| tl"tzl + | 51_521)“.""}'}

for all t;€[s;, T, i=1, 2, and all y<Y.
Proor. We start with the identity

2.7 U(ts, si; Pi)yi—U(ty, si; ﬁi)yi
={"Uts, 03 PG ; Po—Alo s PO, 515 P)vias,

which is obtained by differentiating U(t;, o ; ﬁi)U(a, s;; P;)y; in ¢ and inte-
grating over [s;, t;]. Since P, is a refinement of P;, property (i) of
2 implies that |(A(c ; ﬁi)—A(o ; PO)U(o, si; P)y)l<e; for ¢€[s;, T]. Hence
and (2.7) give

(2.8) WUty si5 Po)ye—U(ts, si; Pyl Scer,  i=1, 2.
Consequently, by we have
(2.9) |UCts, 515 P)yi—Ults, 525 Po)yal
=c(erte)+ Uty s1; Pr)yi—U(ts, S25 Po)ysl
Zcleyte)+ 1 +1,+15,
where Li=||U(ty, s1; P)y:1—U(ty, s1; Payall,

L=\U(ty, s1; Po)y:1—=U(ts 53 Po)yall,
I,=\U(ts, so; Po)y,—U(ts, 525 Po)yall,

and P, is the superposition of P, and P,. But, gives again that I,<ce,
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and I;=ce¢,, for P, is a refinement of both P, and P,. Thus the lemma will be
proved if we estimate [,. To this end we may assume, without loss of
generality, that s,=s,. For each yeY it follows easily from that

L=Me” (| y1—yll-+ 1l ye—yD)+H1U(ty, s15 P)y—U(ty, so;5 Po)yl.
On the other hand, since |(d/dt)U(t, s;; Ps)yll<c|yly, we have
1U(ts, s15 Pe)y—U(ts, s25 Po)yll
=NUy, 515 P)y—U(ty, 25 P)yI+IU(E, 825 Pa)y—Ults, 525 Ps)yll
SU(ty, 515 P)A—=U(sy, s25 P)yl+clti—tallyly
=cllQ=U(sy, s25 P)ylltclti—2:1lyly
Sc(lsi—so| + 18— :DIY]r-

Hence we see that I, is majorized by

clyi=yl+1ye=y1+Usi—s: |+ 81—t DIl ylr}.
Combining with the estimates of I, I, and I, shown just above, we
conclude that (2.6) holds.

Now, fix x€X and (¢, s)ed. Let {s,}, {t,} and {y,} be sequences such
that 0Zs5,<t,=T, y,€Y, s,—s, t,—t, and y,—x in X. Let {P,} be a
sequence of partitions of [s,, 7] satisfying (h) and (i) of with e, s,
y replaced by 1/n, s,, vy, respectively. We then define

(2.10) u(t, 5>x:173§l Ultn, Su; Pa)yn
It follows from (2.6) that
Hm supllUlta, sa; Pu)yn—Ultm, Sm; Pn)ynl
écn!iTnn}w{llyn-yll+||ym—y|l+1/n+1/m+(|tn—tml+lsn—5ml)||ylly}
=2cllx—yl
for each yeY. But, since Y is dense in X, this implies that

lim “U(tn; Sn;Pn)yn_U(tm, Sm s Pm)ym”:O

n, M-

Therefore the limit U(¢, s)x exists in X. Similarly, we can see from (2.6)
that U(¢, s)x is independent of the choice of such sequences {s,}. {t.}, {¥,}
and {P,} as above.

LEmMMA 4. We have

(i) UC(t, s) is a linear operator in X.

(k) U(t, s) satisfies properties (a) and (b) of Theorem.
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PrROOF. (j) follows easily from the fact that U(t, s)x=Llim U(t,, su; Pu)va

for any refinement P, of the partition P, employed in [2.10). But, this fact
is a direct consequence of Next, to obtain that U(t, s")U(s’, s)
=U(t, s) for s<s’<t, we may let n—oo in the identity

U(tm Sn; P;)U(S;,, Sn s Pn)_yn:U(tn’ Sns Pn)yn s

where P,=P,N\[s,, T] and s, is a point of P, such that s,—s’ as n—o0;
note that if we set y,=U(s,, s.; P.)y., then the partition P, satisfies prop-
erties (h) and (i) with ¢, s, ¥ replaced by 1/n, s, y., respectively. Hence, by
definition U(t,, s,; P,)y, converges to U(¢, s)U(s’, s)x as n—co. Thus we
see that U(¢, s) satisfies (b). Finally, (2.6) gives also that U(¢, s)y is conti-
nuous on 4 to X for all ye€Y, and hence is so for all of X by continuity.
This shows that (a) is true.

To investigate (e) of we use the following lemma which cor-
responds to Proposition 4.3 of [1].

LEMMA 5. Let vl be fixed. Then for (t, s)ed and yeY

(2.11) 1UC, s)y—exp(—(t—=5)A(r)y|
<l IA0)— Aexp(—(a—r) Ay do

Proor. Let P,=P(l/n, s, y) be a partition of [s, T] as in By
differentiating U(t, o ; P,)exp(—(c—s)A(r))y in ¢ and integrating over [s, t],
we obtain that exp(—(t—s)A@)y—U(¢, s; P,)y equals to

[[vtt, o5 P)AG 5 P~ ACYexp(—(o— A0y do .

Estimating the integral term by
t
Mo (Ao ; Pr)— A)exp(—(o— ) Al do

and going to the limit n—oo, we can get [2.1I) by Lebesgue’s dominated
convergence theorem.

PROOF OF THEOREM. (a) and (b) have been proved by Lemma 4. In virtue
of a similar argument to that of [1, pp. 247, 248] gives that (e) is true
and that d*U(t, s)y/dt|,-s=—A(s)y holds for all y€Y and all s€[0, T). Thus
it remains to show that (c) and (d) are valid. It, however, suffices to show
(c) only (see [1, p. 253]). (c) will be proved as in without any formal
changes, but the arbitrary partitions of the interval [», T] used there must
be replaced by the partition P,=P(l/n, r, ¥) constructed in for
e=1/n, s=r and y€Y ; namely, in the argument of [4] we may replace A,(t)
and U,(¢, s) with A(¢; P,) and U(t, s; P,), respectively. Only a slight change
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of the argument is required to justify that (8) of can be deduced from
(7) of under our assumptions. (In in order to deduce (8) from (7), the
norm continuity of A(t) is used.) But, this is readily justified from the fact

that S‘n(A(s)—A(s; P)UGs, r; Po)yllds tends to 0 as n—oo in virtue of

2 ().

Finally, the uniqueness of {U(f, s)} will be proved as in [1, p. 248].
However, we must again use property (i) of instead of the norm
continuity of A(#) as used just above to obtain that the right hand of (4.6a)
of tends to 0 as n—oo. We omit the detail.

NoOTE. After the theorem was proved, the author knew that Ishii [6]
had already obtained a similar result by using the Yosida approximation. In
[6] some additional assumptions are assumed on S(¢), but the strong conti-
nuity of A(¢) is replaced with strong measurability.

Acknowledgement. The author wishes to express his sincere gratitude
to the referee whose suggestions improved the proof of our key lemma very
much.
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