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§1. Introduction.

1.1. The purpose of the present paper is to establish the asymptotic
formula for the number of representations of an integer as a sum of two
integral squares and a product of four positive integral factors.

QOur problem is obviously equivalent to the study of the asymptotical
behaviour of the sum

1) 2 r(N—n)d,(n) (as N—oo),
n<N

where r(n) and d,(n) stand for the number of representations of n as a sum
of two squares and as a product of four factors, respectively.

Our problem and the so-called additive divisor problem are similar in
that each sum can be expressed as a combination of sums of iterated divisor
functions over arithmetic progressions with variable modulus, whose size
depends on the parameter N. But our problem has much greater difficulty
caused mainly by the inner structure of »(n). The same fact has been already
noticed by Hooley [1] between the divisor problem of Titchmarsh and a con-
jecture of Hardy and Littlewood. Hence our proof depends on various devices
of Hooley, and also the large sieve method plays an important role in this
paper.

1.2. Notation: To avoid the unnecessary complications we assume that
throughout this paper the parameter N is a sufficiently large odd integer.

¢ is assumed to be positive and sufficiently small, and the constants in
the symbols “0O” and “«” depend on ¢ at most.

(m, n) stands for the greatest common divisor of m and n. A prime
number is denoted by p, and p%|n means that p* is the highest power of »p
which divides n. The symbol m Cn indicates that all prime divisors of m
divide n.

w(n) and Q2(n) are respectively the numbers of different prime factors of
n and the total number of prime factors of n. d(n) is the number of divisors
of n, and di(n) is the number of representations of n as a product of £ factors.
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p(n) and ¢(n) denote the Mobius and the Euler functions, respectively.

X denotes generally a Dirichlet character and X, is the principal character
mod g. s=o+it is a complex variable, and {(s) and L(s, X) are the Riemann
zeta-function and the Dirichlet’s L-function attached to X, respectively.

§2. Fundamental decomposition of the sum.

2.1. As is well known, r(n) has the expression
r(n)=4qZ|Y)Lp(q),

where p is the non-principal character mod 4.
Using this we decompose our sum (1) into three parts:

@ - Br(N-mdn)

=%dml = e+ 3 oe@+ B e@)

qsNY210g7B N ¢zNY210gB N N2 10g7B N<g<N 2 10gB N
=2r+2n+2m,  say.

The sums >; and Xu contribute to the main-term of the asymptotic
formula, while the sum > is of a lower order of magnitude and its esti-
mation presents considerable difficulty.

To X; and Xu we apply the large sieve method, and for this sake we
need to deform them.

2.2. We have
€) = 2 el X dn)

q§Nl/2 log—BN n=N (mod q)
n<N

= 2 0@ > d((N, gn)

a=sNY210g7 By n=N/(N,q) (mod ¢/(N,q))
nN/(N,q)

= 3 pw > el X dyun).
u|N (g, N/u)=1 n=N/u (mod q)
usN2108" BN gs(vY2/u) 108 BN n<N/u
For the sum X we need a little careful treatment. We have
Zu= > d,(n) > P(CI)
n<N gt=N-—n

qul/z logBN

= > > o (g ) d4(n)

t<N 21057 BN (N2 10gBNcqi=N—n

and, classifying ¢ by mod 4, we see that
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Su= X | > d,(n)— > d,(n)} .
1<NY210g7BN n=N—t (mod 4) n=N-+t (mod 4t)
nsN—iNY210gB N nsN—tNY2 10gB N

We decompose this right side into three parts according to ¢ mod 4 as
follows:

2= Z%H“

t=N (mod 4) =-—N (mod 4)
= 2, + 2, + 21, , say .
2.3. Now, since N is odd, we have for even ¢
(N—t, 4t) = (N+t, 4= (N, 1),

and thus, as the decomposition (3) of X}, we have

@ Zm= X > { = d,(un)— 2 7 dun)}.
u| N 2|t n=N/u—t (mod 4t) n=N/u+t (mod 4t)
u<:N1/210g—BN (t,N/u)=1 ngN/u—tNl/zlogBN 'rz_s_l\’/'zszNl/2 logBN

t< (V2 /uy 108 BN
In the sum X, we have t= N (mod 4), and then we have

(N—t, 4)=4(N, t), (N4t 4)=2(N, 1),

which give
2= 2 > { 2 d,(4un)— > d,(2un)} .
ul N t=N/u (mod 4) n=(1/4)(N/u—t)(mod t) n=(1/2)(N/u+t)(mod 2t)
u<NY210g7 BN (1, N/u)=1 ns(1/4) (V/u—tNY2 1ogB ) ns(1/2) (N/u—12 10gP )

< (NP uylog™ By

In the same way we have

= X > { > d,(2un)— p dy(4un)} .
u| N =—N/u (mod 4) n=(1/2)(N/u—t)(mod 2t) n=(1/4) (N/u+t) (mod t)
u<¥210g7 By (1, N/u)=1 ns(1/2) (W/u—tNY2 10gB ) n=(1/4) (N/u—tNY2 10gB )

t< (N2 y10g "By
Comparing these expressions of >u, and X, we find easily that

G Dt = p(N) = e 2 p(t)

(¢, N/u)=1
u<210g By t< (N2 ) log “B
d,(dun)— » d,(2un)}.
n=(1/4)(N/u—p(tN/u)t) (mod t) n=(1/2)(N/u+p(tN/u)t) (mod 2t)
ns (/) (N/u—tNY2 10g B) n<(1/2)(N/u—tNY2 10g B )

This completes the decomposition of >; and Xm.

2.4. Thus the estimation of X} and Xy is reduced to the study of the
asymptotical behaviour of the sum

dy(hn),

n=! (mod q)
ns

where (¢,1)=1 and % is an arbitrary positive integer. Namely we need a
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very uniform estimation of the rest-term in the asymptotic formula for the
above sum, since in the above expressions of >); and X the corresponding
parameters to ¥, h, ¢ and [ depend heavily each other. This is the problem
to be solved in the next paragraph.

§3. A mean value theorem.

3.1. The aim of this paragraph is to prove an analogue to Bombieri’s
mean value theorem for the rest-term in the prime number theorem for
arithmetic progressions: we are going to estimate the expression

>} max max » d4(hn)———1—— > d,(hn)
g=Q yszx (q,LL)=1 nztr(g;d Q) §0<Q) (n.nqéjl

with @ as large as possible.
3.2. For (q,1)=1 we have

d,(h R
(6) 1nELn(AZn:yodq)d4(hn) 10g SD((]) anJI 4( TL) lOg

1 2 (n)d4(hn) y
- 2mip(q) xqaxq%:nodq) O (z)nz_3 ds -

Here we have, for ¢ >1,

> X(n)7;is4(hn) :{7% X(n)d4(hn) }{(n > X(ﬂ)d4(n) }

{E X(n)d (hn) }

Obviously the last product represents the analytic continuation for ¢ >0, and
moreover we have, uniformly in the region ¢ =1/2, the inequality

{2 X(n)d {hn) }

X(P) V7 4
T) L (S, X) .

plh

1) | <amm (1) 5 40

plh nCh n

= a I (1+ ¢15> I (-5 L
< d"(h) .

Thus, shifting the line of integration from ¢=2 to ¢=1/2 in the expession
6), we get

) max max >, d,(hn) log > d,(hn) log A
y=x 1 n=( (mod q) QD(Q) (1) 1
(¢.)=1 nsyY
x2d**(h) |ds]
= N7 L 4
< o(9) ﬁexq(zmodq) \f u/z)l (s 2l [s|®
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3.3. Now let X* denote a primitive character mod ¢* which induces %
mod ¢, then we have
*
Lis, 0= 11 (1= L(s, 19).
pl—?l.— b
Here we quote the following result of Montgomery [2]: for T =2 we
have the inequality
1/2+
s [ s, %) 14 ds| < o(g)T(log aT)*,

x mod q ¥ 1/2—iT

where >* denotes a sum over all primitive characters mod q.
Thus we have, for any Q =2,

® >

1 Id |
9=Q 90((]) xixq(zmod )

[IREZCRALES et
(1/2)

=z > [ (L0l Slzg‘:*)_ﬂ< -5

¢*<Q x mod ¢* s |2

(LG, 0149
<<10ng22 (Q) xn%dq‘y(llz)l (s, 0l [s]?
< Q(log Q)°.
3.4. Hence, combining (7) with (8), we get the inequality
Y 1 v |
©) > max max > d(hn)log = ——F d,(hn) log ~—ﬂ
g=Q ysz (q,LL)=1 nzlérén;/)d ) n 90<Q> nq) 1 n

< Qx'*d**(h)(log Q)° .

Now, by the standard way of smoothening, we have for any 0< A1

1) 2| B dm— > d )
n=! (mod q) SD( )
n=y
<A s dm
D iy ey
+max| X d(hn)log S——L_ S d(hn)log i
é’éexy n=l( (nn'<1%d q) n (Q) (n, Q)&‘ 1

To estimate the first sum of the right side we quote the following well-
known result: if 2= x°, we have

2 dn)Kzlog’x.

rEnsxtz

Thus if we restrict the value of A by

xTM<a<1,
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then we have

(11) max >, d,(hn)<max >+ max >,
ysz e_xyénée v ysxl/z x1/2<1/$x
< d,(W){x****4 max 3}
712 <ysr
& d,(h)(x*?+4Ax log® x)
L 2d¥(h)xlog® x.

Finally, collecting (9), (10), and further putting
A= (log x)—(1/2)(B—-1) ,
Q=x"log 8 x,

we obtain the crucial result:

(12) > maxmax| 2 d,(hn)— 2 d4(hn)
qul/Z log_B;p Y=z L n={ (mod q) SD( )
= (g,0)=1 nsy 1/

L d¥h)xlog™ x,

where B=2A-+9 and the constant in the symbol “«” depends only on A.

3.5. It seems very probable that the inequality of the same type holds
also for di(n) with £=5. And we would like to remark that, if we have
such inequality for di(n), then our method employed in this paper can be
used without any alterations to prove the asymptotic formula for the number
of ¥representations of an integer as a sum of two squares and a product of
k factors. Moreover it may be easy to see that even in this general case
the sum corresponding to 2 of our problem can be treated completely
analogously and the proof is free from any hypothesis.

§4. Estimation of >;.

4.1. Having obtained the inequality [12), we are now ready to start the
evaluation of the sums 2); and Xu. First in this paragraph we treat only
>, since 21 has a little difference and we have to be more careful in its
estimation.

4.2. Now from (3) we have

= 2 ew s LD s g

u|N (g, Nju)=1 SD(Q) (n,9)=1
usN210g By g2 (323106 BN n<hN/u
+o{ 3 > 2 dn——ls = dn)}
wlN (q, N/u)=1 n=N/u (mod ¢) (q)
u§N1/2 log_BN qé(Nl/Zlu)log—BN n<N/u n<N/u
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= % o(u) 2;+0{ u% 2.}, say.

u
usN1/2 log_BN usNY2 log"BN

In the sum >, we have

N2 N2 - N
0= log PN () log oy

and thus, putting x=N/u and A=u in the inequality [12), we get

15
22<< d (u) Nlog" N

which gives

S D Nioganz d”’(“)

|
usNY210g7 By

K Nlog“‘Npll'IIv (1———;—)415

& Nlog 4N (log log N)**° .
Hence we have
13) 0= EN p(w) 2, +0(Nlog' 4N).

ul
wsNY210g By

4.3. Now for X, we have

_ £(9)
El n<21\’/ud4(un) (q.n(%t))zl sD(Q> )

as(¥2/u) 108 BN

The inner sum can be estimated by applying Perron’s formula to the
function

[40))
(q.n(1§u))==1 q*(q)

—L(s+1, p) 11 (1_ e(p) )W(M)@_ p(p> e(?) (1 p) )

o (V) p8+1 ps+1 p8+1
where the inner product converges absolutely for ¢> —1. Thus we get
easily

14 (@, n(du)=1 ©(q) 4 PIn(N/u)(

1— P;Q) )(1_ pép) i pép) (1_%)‘ )‘

-I-O(x‘l/zd(n%) log x) ,
where
1

ooy (12 2 (1o 1)),

From this formula we have
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(16) E’:%@n%:md"(”n) I (1_ Pl(bp) >(1_ pfbp) n p;p) (1_715_>-1)-1

pl n(N/u)

+0{log N = ( N 1og2 N) " d,um) d(n))
:%@E3+O(N3’4+E) , say.

4.4. Next we have to estimate the sum ;. For this sake we introduce
the function

a7 G(s) = d (un) F( )

where

(18) F(m):pl’;n 1_£;ﬂ>(1_%@+ﬂ%<1_%)_ )
Then we have

19 co—{ZAP N 3, Are)

=B S AP () )05

O S RGP

piN

= 'é— H(5){*(s),  say,

where & is defined by and it is easy to see that H,(s) converges abso-
lutely for ¢ >0 and moreover we have uniformly for ¢ =1/2

(20) Hu(s><<le}7<1+ \/1 nC ’V :(/unn) lF(

< Ne&.

Hence applying Perron’s formula in conjunction with the mean value
theorem of |{(s)|* on the line ¢ =1/2 we get easily

(21) zd (un)F(—n) & ResH (S)Z4(s) —}—O(x”zN ).
4.5. Now we see that
(29) Res Hu<s)c4(s)£ss_ - %.Hu(l)x log?* x+0(x log" x max | HO (1))
s=1 0=j=

Thus we have to estimate HP(1) (j<3).
By Cauchy’s theorem we have
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H(s)
Zm"‘ (s— 1)fJrl

(23) HP(1) =

where C is the circle of radius (log log N) ' with the center s=1. On this
circle we have, putting ¢,=1—(log log N)7},

| @) | < T (1) 32450 ()|

N nao

d (un) 1
)
since by the definition of F(m) we have

Fom) | <TT(145).

And so we have on C

2 | B < di) T (145 ) (145 e

Hl oo

po°

1 8
& d,(u) log log Np1|_1[v (1+ o0 ) .

Here we have

11 (1+ pﬂo) = exp {82 S0 TOM}

pI¥

and further we have

1 1 1
<
X =, 2 5 T (log N 22

= (log N)vieslos ™ 37— +0( Tog N 241

p=log N pIN
=(14+0(1))e log log log N .
Hence we get
II 1+—% p,,o <<(10g log N)*,

which, with [24), gives
| Hu(s)] € d(w)(log log N)*
uniformly on C.
Now from this inequality and we get

max |HP(1)| < d(u)(log log N)* .
J
This gives, with and (22),

2 dumE (An) = Hul)x log? x-+0(x log? xd(w(log log N)™).
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Turning to the formula (16), we have

1Hu

(25) 2= (@) N log +O<% N log? —]ui(log log N)“)

1 H,

=5 24U Niog* N+0(““X) 1og u Nlog® N(log log N)*) .

By the way we notice here that
(26) PRPELNES
4.6. Now from and (16) we have

Si=4© % p)De+0(Nlog NY

ule/Z log BN

— 5 STpWEA0( B IZ)+0(Nog N4
us¥210g-By

_ %@u%p(u) >:+O0(N(log N)*-4),

since from we get
E 123| << N1/2+2521 << N1/2+3s R
u N u N

u>N2 log_BN

Inserting the result (25) into the above expression of X;, we have
=5y Nlog' N %M+O<Nlog2 N (log log N)* 33 ) 1og )

Here we have

2% log u < (log log N)*®,

u|N

which can be proved similarly as the estimation of H(1) of the preceding
section.
Thus we get

@) Ti=-2 Nlog' N 2M+0(Nlog N (log log N)*)
_ Tz s @) (p) 1y\?
=7 Nlog Npg](l—-——"p +——”p (1—7))

RO ) 1) 5 2 5 )

pIy uiv U nC

+0O(Nlog® N (log log N)*'),
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since H,(s) is defined by (19).
4.7. Let N=pupg .- p2r and u=pl'pP... pr be the prime-power de-

compositions of N and u, then we have

» 4(“") ( N ) — § dA(pfﬁal p§r+5r) F(pill—ﬁl‘*'al pgfﬂﬁr’*“”)

ncN -0 pit ... pdr

:H{ﬁzo 4(17] J) F(;Ddf ,BJ+5)}

jsr pj
Thus we have

d, N
oy 5L x ) pl)

wiN U ncwN

_ v (o) - p(pl) d <p #) p(pai-bse
—ﬂl-“%r:o £ pﬁﬁl ...;ﬁr J<T{ ] L F(pyi- 8j 5)}

— {i P(P) E 4(17 ‘B) F(pa ﬁ+6)}
PX| N Y8=0 =0

Here we notice that, only when a=,8 and 0 =0, we have
F(p-p*0) =1

and otherwise
F(p*P*2)=F(p).

And so we have

B o+B 5
(29) ﬁ;o P;f; ) Bg()) d4(§5 )F(pa-ﬁ+o)

=(1—F(p)) "“f) 45

+F()(1=) " +F() S50 54070
=Fp(-1) " (- 1) 5 22 5 M;Z*“
+ 28 4, (1-5) (1 22) 7}

=Fp)(1-—) (pa}, say.

Inserting this into the right side of we get
w g gt

ulN U acN
(-2
— I (o},
= p;p>+p<p>(1 11)) o 1
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which, with (27), gives rise to the final result of this paragraph:
s p(p) _op) . pP) 11 V?
(B Bi=ggNlog' NTT(1—L P (1-Z2 422 (1-—-) ) 11 (2, a}
+O(N log? N (log log N)“) .

§5. Estimation of X

5.1. This sum is divided into three parts as (3). The estimation of X,
has no difficulty: we have

EIII = Z E

ulN 2/t
u<N1/2 log*BN (t,N/u)=1

t< (2 uy108 By

d,(un d,(un )
{<nEN/u—§mod 4t) ( ) 90(41") (n, 4t)=1 ‘ )
néN/u—tNl/Zlog N n<N/u—tN1/210gBN
1
— d,(un) ——— )3 dy(un))} .
(nEN/u+L (mod 4t) 4( ) @(4t) (n,4t)=1 ' )
n<N/u—tNY2 10gB N nEN/u—tNY2 108 5
And since
N N
“———tN¥21ogBN < —
) giiv< u’
we have obviously
] 2111 |
& > > max max > d(un)— d,(un)|,
ulV b V2 iy 1og~ By YSN/w L In=t (modar) (41‘) (n, 4&) .
ugNl/zlog"BN (4t,0)=1 n<y n<y

which, with [12), gives

(32) Sl < Nlog N 3, A,

&« N(log N)'-4.

5.2. In the same way, applying [12) to the right side of (5), we get
(33) 2o, 2o,

1
= HR ——~ d,(4u
p(N) a%v o) (c.N/Eu):1 o ){ () (n,tz)]=1 (dum)
w2107 By t<(vV2/u) 108 BN n5(1/8) (¥ /u—tNY? 10gB )
_—]‘._ 1—-A4
e LZ . dlzum)}+O(N(log Ny~
n=(1/2)(N/u—tNY2 10g5 )

_ o) d(dun
o p(N) uEIN p(u){ (¢, N/u) 1 90(t> (n.§:1 4( )

<N 2107 By t<(v 2y 10g By n=(1/4) (¥ /u—tNY2 10gB W)
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- p(®)

A -4
) i dy(2un)}+O(N(log Ny—4)
1< (V2 /u) 10g By 25 (1/2) (N /u—tNY2 1og By
= p(N) %1\, p(w{Z,—3:} +O0(N(log N)"4),  say.

u<N1/2 log-BN

5.3. In the sum X, changing the order of summation, we have

t
S= 2 dum > yau'y
n= (/)N /u—NY2 10gBN) (2, (N/u)n)=1 ‘/’( )
t§(N/4u—n)(4/N1/2logBN)
To the inner sum we apply the result (14), and we get, using the notation
(18),

(34) >, = ) d4(4un)F(—]uin)

n=(1/4)(¥/u—NY2 10gBN)
-1/2
() )

= TS Z+O(NY*),  say,

4

+O<N1/4+s

n=(1/4) (N/u— Nl/2 logBn)

since we have

—1/2 W N u=-NY210gBN) N —1/2
Xy, (i)
n=(1/4)(V/u—N12 10gB N) U

/
< (5D + N 10gP NN,

Thus we have to estimate >}, and to do this we need to investigate the
function

2 4(4un) F(N )

n=1

which obviously can be treated similarly as G(s) defined by [17). And we get

(35) Ed4(4un)F< n) = o 1@vd@un) F( N )}

- 2= 1) )0 )

piN
p(p) | p(P) I 5
><plgv 1—T+—T(1—T> )xlog x

+0(x log® xd,(u)(log log N)*)
9é@ T, xlog® x+0(x log® xd,(u)(log log N)*®), say.

Hence we have, from [34),
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: N N
%= a5 Tw(y V" log” N) log* (4= N log” )
+0(%Nlog2 N (log log N)“)
N N
= Tog6 Tuy 108’ (=N log? )

+O<—di—u)N10g2 N (log log N)”) .

5.4. Now turning to the expression (33), we have

. _ T o(WT,, s( N g B
(36) 3 pWE=gEN % ST logt (N log" N)
u<N 21078y u<N1/2 log_BN

+O(N log® N (log log N)*)

T

= m—NZ7+O(N10g2 N (loglog N)*), say.

We divide 3}, into two parts as follows

(37) 2= u%v + uZI}V =35+, say .
wxN/4 N4y N2 10 By

In the sum >}; we have obviously
log* (X N** log? ') = log* ¥+ O((u/ N*™) log»*N)
=log® N+O(log® Nlog ),
and thus
Y. =log* N EN —‘9(lzzrji+0(log2 Nu%)vﬁi—ulTul) .

u§N1/4

Here we notice that we can prove easily

(38) |Tu| < d(u)(log log N)°,
which gives
39 Ss=1log* N E‘_,‘N,‘O—(M,L%T—“—{—O(log2 N(log log N)*).

The inequality (38) yields also
(40) | 2] K N~Hate

Collecting [(37), [(39) and [40) we get

>r=log* N 2—“1@2”—+0(log2 N(log log N)*),
wlN u
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which, with (36), gives
Z;v o) 2,

ul
u<NY210g~ By

s o) p(D) r1_1\?
= 1gge Nlog’ NI (1—-# 2+ 25 (1-—-))

<, (- AP 0 (1= 5) ) ()

x5 LW 5 d“(i“") F(%n)JrO(Nlogz N(log log N)*),

ulN U pcon

since T, is defined by (35).
5.5. Now we have, since N is odd,

i) Ny $ A 5 ddaun) p Ny

2 nCN

—52 3 d(un) (N )

nCN

nC2N

and thus, by the result of the preceding paragraph, we have

» () » d4(iun) F(—?{—n)

ulN U nCoN
)
W e +p<p> (1 1>1p«1}N“” o
p

4

where {p, a} is defined by [29).
Inserting this into the right side of (41) we get

8 p(p)
S W= anog NI (1—5 L2

u<N1/2 log-BN

11, (LD (1Y) 1

pPtN
+O(N log? N(log log N)*).
Comparing this with the expression (31) of X; we find
42) T P D=1 S0V log® Nllog log ).
u<N1/zlog‘BN
Completely analogously we can prove
(43) 3 6 Se=—4 Di+O(Nlog* N(log log N)*)..

u<NY210g By
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Hence collecting (32), (33), (42) and [43) we get the final result of this
paragraph:

(44) =g p(N) Z;+0(Nlog* N(log log N)*")

§6. A decomposition of d,(n).

6.1. The estimation of X, which is defined by (2), is our main object
hereafter. Our proof depends on a kind of analogue to the so-called quasi-
prime numbers of Hooley [1].

6.2. We introduce the quantity

(45) N: N(log log N)*?’
and we define the following decomposition of any integer #:
(46) Y= II p°, n®= II p“.
p¥iln  _ pXln
Pi2N, psSN pI2N or p>>iN

Then we decompose d,(n) into two parts:
(47) Jfm)y=d,(n®), gn)y=d,n®).

Here we should call one’s attention to the fact that from the expression
of n® the prime numbers which divide 2N are excluded. This will turn out
to be useful at the last stage of our estimation of i

To simplify the notations in what follows we introduce the symbols 4y
and I'y which are the sets of all positive integers composed entirely of prime
numbers that does not exceed N nor divide 2N, and that exceed N or divide
2N, respectively. And we assume that both 4y and 'y contain the integer 1.

6.3. We now investigate the summation property of f(n) over arithmetic
progressions, or the sum

f(n),
n={ (mod q)
n=y

where (g, [)=1 and the size of ¢ and y is arbitrary.

First if
(43) g>y
then we see easily that
(49) 2 <y 3
n={ (mod q) n=! (mod q)
n<y nsy

<<y5’2(~z—+1)

Ly,
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since we have obviously
fn) <y
Thus next we assume that
(50) g yroee,

We have
J(n)= MZU)V dy(u),

ucdy

and we decompose the sum as follows:

6 T = (% W+ % dw)

n n=! (mod q) u|N
nsy n=y uEdy ucdy
Q(u) = (41 log log N)2 Q(u)>(41 log log N)2

=20+, say,

where A, is a constant to be determined later.
In the sum 3,, we have, by

2
A%/log log N
u=N™ ,

and thus we get

(52) 2= > du)y > 1
(u,9)=1 n={ (mod q)
usEdyN n=0 (mod u)
2(u)=(4; log log N)2 n=y
_J dy(u)
7 (u%)zl - TO( > dy(u))

2
ued wsN Alllog log N

N
R(u)=(4; log log N)2

. dy(u) . dy(u) R
q {(u.%jz:l u (u,zqd)=1 u }+O(N )'
ucdnN ue

N
2(u)>(4; log log N)2

We have for the first term

ds(u) _ 1 -?
®) S S0
ucdy p=N

and the second term is estimated as follows:

(54) 2 M << 9—(4; log log N)2 2 29(“’d3(u)
(u,q;=1 u - ucdy u
ucdnN

2(u)>(41 log log M?

< (log N)—Aflogzxoglogzv H_(l—%>—3

2<{p=EN

2
L (log N )6—‘41 )
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From and (54) we get

(55) Su=-g L (=) +0(5(tog Ny~ +n7)

P=EN
We turn to the sum 3},;. Obviously we have

(56) 2uX > d,(n),

n={(mod q)
n<y
2(n(12)>(4; log log N)2

which is divided into two parts according to the number of different prime
factors of n:

(67 > d(n)+ b d,(n) =3+, say.
n={(mod q) n=l(mod q)
n=Y nsy
2(n1))>(4; log log N)2 2(n1)>(41 log log N)2
w(n)=4; log log N w(n)>A; log log N

In the sum X);; we have

d(n) > 2A1 loglog N
and thus we have
(58) s =2 4legles N 3% d(n)d,(n)
nflf(;gzd )

= (log N) 41log 2n=l(§od )
“asy |

d‘(n).

Here we quote the following well-known result: under the condition
we have, for any j,

j Y 2j-1
(59) "Eéiodq)d (n)« P (log ¥)¥*.

Applying this to the right side of we get, under [50)
(60) PITRS %(log N)41182(log y)**.

To estimate >),, we apart two cases: first if
y< N 241/¢(log log N)2
we have obviously

(61) T Ne

for sufficiently large N.
Second we assume that

62) ) y > N24v/e(log log mz

We apply the Cauchy-Schwarz inequality to X;,:
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(63) (O:P) > i(n) > 1
nEt(;réZd q) n={(mod gq)

n=sy
2(n12)>(4; log log V)2
w(n)=(4 log log N)

L %— (log »)* 2.,  say,

since we have and [(59).

In the sum X3,, the condition on the number of prime factors of n and
n® implies that there is at least one prime power p* such that

pn

with a’ > A, loglog N and 2<p=<N.
Hence Y),, does not exceed the sum, with a,=[A, loglog N],

(64) > > 1.

2<p<N n=l(mod gq)
ptqg n=0(mod p%0)
nsy

Here by virtue of the definition of N we have
pao é N 41/(log log N)2 < ye/z )

since we have [(62), and the condition on ¢ implies

g <y.
Thus we have, from [64),
- 1 L -A;log 2
2u < 7 E3 5 <7 (log N)~41lee2,

which, with (63), gives
(65) PHTRS %(log N)~ v lee2(]og y)*2,

From (57), and we get, under the condition [(50),
PHTR S %(log N)~ 2 log2(]og y)*24 N¢

This, with (51) and [(55), gives rise to the following result: if y< N and
(g, D=1, then we have

S _ 1y a -EL Ne
(66) i = 2 (1—5) +0(- log Ny =+N°),
n P

where E is a constant which can be made as large as desired, and here we
should remark that the size of y is restricted only by y< M.

6.4. Now we turn our attention to the function g(n), for which we shall
later need the estimation of the sum

gin),

n={(mod q)
n=y
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where y< N and (¢,/)=1 and ¢=<y'"".

Our proof of the estimation of this sum depends on the following recent

idea of Wolke [3]: let 0< 5§—;~ then the inequality

(67) d(n) < { }l:n 1} e@log 3=~

VER

holds with an absolute constant c.
In this inequality we take

@ ot =max{[exo (L)) [ 2Tp+1,
then we have

v € € .
(69) 6c(3log 57) ' S5 <[5 [+1=7, say.

And we have

2 gZ(n> << 2 dG(n(Z))
n=((mod q) n=l(mod q)
nsy n=y
X {Xn,
n=l(modq) vln
ny v=l'y

'usn5

where the inner sum is less than

> > 1= X di),
tin  t=[vy, vyl tn
tEFN tEFN

tsy97 t<y®
since we have, from (68) and [69),

£

2
Hence we get the inequality, noticing that ¢ <y'",
> gkn) <<<LZ)) ai 2 1
»q)=1

n=[(mod q) n=[(mod q)
nsy te TN n=0(mod t)

t<y¢€ n=Y

y dn(t)
<K
q 55;1\7 t
tSN

s —+o=se.

1\
<<% p:ll—ZIN (1_7> )
or

N<psN

Thus, by the definition of N, we have proved the following result:

y=<N, (q,))=1 and ¢<»'° then we have

(70) > g%(n) < 2-(log log N)™**,
nslT(lrg;:;d 2 q

if
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where 7 is defined by [69).
6.5. Further we estimate the sum

L, e )

n

under the condition:
(1) N¥#=y=N, (gh=1, q=y"=.
We divide the sum into two parts as follows

™ B fmem=_ % gm{ I  dwt+ T dw)
n=t£:2$dq) n:t;xg;l)dq) I

uin uln
uc Ay ucdN
Q(w)<(4z log log M2 Q(u)>(4 log log N)2

= 215+216 ’ say,

where A, is a constant to be determined later. Obviously we have

2= 2 a*(n),
nEl(rgod Q)

nzyY
2(n(1))>(4, log log N)2

which can be treated just like the sum X;; of [56), and we find

(73) zmg—g— (log N)~&1

with an arbitrarily large constant E,.
Now for 3,5 we have

(74) 5= 2 d(w) 2 g*n)
(u,g)=1 n=lmod q)
u=4dnN n=0(mod u)
(u) (45 log log N)2 n=<y
= > d(w) 2 g%(v)
(u,g)=1 uwv=I[{mod q)
uEdy vsy/u

2(u) £(43 log log N)2
since for u = 4y we have
g(uv) =d,(u®v®)=d,(w®) =g ).

Now, by the definition of NV and the condition [71) on ¥, we have in the sum

1-¢/2

e (D
q :y — ( u ) ?
and so we can apply the result to the inner sum of Thus we get

(75) PINRG —g_aog log N)* 5 Jéaéy)

4N
< .z—(log N)*(log log N)¥,

where K depends on ¢ at most.
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From (72), and we get the following result: under the condition
we have

(76) D, fin)g?(n) < - (log N)¥log log N)*.
nsyY

6.6. Finally we estimate the sum

> d(N—n)f(n)g*(n) .
N
This sum does not exceed

2% fng z(n)q %1

g=NY2

< 2 fwgkuw) X > fn)g*n).
wlN (g, N/u)=1 n=(N/u)(mod q)
usN/? a=NY2/y n<N/u

Now noticing that

= Nul/z <<%)1/2,

we apply to the inner most sum. Thus we find

fmgim)y < 3 Y (log Ny log log N)X
) g=N qU

(g, N/u)=1 n=(N/u)(mod ¢
gsNY2y n<N/u

< ——Ji\[——(log N)‘(log log N)¥,
which gives

(0T X dN-mfmg*(n) < Nlog N)(log log Ny< 33 L&)
& N(log N)*(log log N)*

with an absolute constant K.

§7.‘ Estimation of ZIII; (I).

7.1. We are now ready to start the estimation of >y along the line of

Hooley [1].
Let

(78) H(im)= IZ 1,
N2 log_B ]‘\ll'<q<N1/2 logBN

then, using the fact that
d,(n)=f(n)g(n),

we have the fundamental inequality
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(79) Cm'={ % fgim{ X f(n)] 2 p(D)1%}
AV <m0 ns 32 10g—B yge /2 10gB N

= {Zml} {Zmz} ’ say.

The aim of this paragraph is to estimate X, while in the next para-
graph we treat X,
7.2. Now we divide X, into two parts as follows

(80) 2y = 2 f(m)g*(n)+ > f(n)g*(n)
H(l?—n)#o H(I7\L’§n)¢0
w(N—n)=p log log N w(N—n)>f log log N

=2 t2s, say,

where 8 is in the interval
1<B<2

and to be determined explicitly later.
We treat X, first. The condition on the number of different prime
divisors of N—n implies

d(N—?’l) = 28loglog N
And thus we have

81 Dips 2P leslosl 33 d(N—n)f(n)g*(n)

& N(log N)+—8g2(Jog log N)*t,

since we have the result (77).

7.3. The sum >,; requires much careful treatment than >};;. And, since
hereafter we have to treat sums over complicated ranges of the variables,
we adopt abbreviated notations for lengthy conditions of summation: follow-
ing Hooley we introduce the symbols

(L;)= {N"1log BN <1} < N'*1ogBN}
J .
(7=12)

1/2 1/2

N N
(82) (Ly={ —log BN < ;< — log? N}

(L= {U, Lh)=1}.
Then we have

(83) Zn= 2y f(n)g*(n) H(N—n)

n<
o(N—-n)=<B log log N

zngvf(n)gg(n) = 1

LllzzN—n
[

w(tllz)'§ B l(jg log N
(L, (L)
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= X f(n)g*(n) h 1
n<N [1l9d2=N—n
w(ly/2)=8 log log N
(L), (L), (L*)

= 2 + X =23+, say.

déNl/S N1/5<d<Nl/2
It is easy to see that

(84) &N ¥ > 1N,

1/3_- 1/2 n=N(mod d2)
NY3<a<n neN

Now in the sum X;, the conditions (L*) and w(l,/,) < Bloglog N imply
that at least one of w(l,) and w(l,) does not exceed
—%— Bloglog N,
and hence we have

(85) 2 X > > fn)gin)

~1/8 w(l1)=(1/2)B Jog log N n=N(mod /;d2)
a=y V=028 n<N

X flwgiw > > J(n)g*(n).
ulN B (@2, My=u nE(N/u)(mod d—zll—)
u=N810gB N asNY/8 n<Nu

(L)
(l])=(1/2)8 log log N

Thus, noticing that
atl, o N (i)‘”’“,
u = u —\u

we apply the result to the inner-most sum of (85), and we get
1

d21,=0(mod u) a,

asN'/?
(Ly)

wl1)=(1/2)p log log N

= N(log N)*(loglog N)X{ 3 + > }

usNY3  usN1/o
= N(log N)*(log log N)*{Xs;+ 2055} ,  say.

We have easily

(86) 21 < N(log N)*(log log N)* X5 f(w)g “(u)

(87) Se€ 3 MW N
ulN d=1 d t=0(mod wu/(d2,u)) )
u>N1/8 =N
. 1 & (@
<N uZPN u d§1 d®
u>N/B
Here we have
S (@ u) (d*w _ « 1
(38) Z < 3G = B AL S ey
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= 1AL )

= 11 (G+5) <dw,

T p¥u
which gives
(89) Sa< Ne n L
win U
u>N1/8

<< N-—l/8+3£ .

Now for X,, we have analogously as

s S &, u )

©90) Tuc 3 LW 5 @w 5 1
wlly a=n'/3 o()=(1/2)8 log log N

u§N1/8 = ((d2,u)/u) (NI/Z/d) logABN<L< (2, w) /) (Nl/zld) logBN

Here we quote the following result: if 1/2=<£&<1, then we have, uni-

formly for any < N4,
(91) 2 1« (log N)¢ ' log log N
w(m)=¢log log N m
215y 10w~ B N<m <(8V/2/t) 10B ¥
where y.=&6—§&log é.

This can be proved just like the corresponding result of Hooley [1J, in
which Q2(m) appears instead of w(m) but this does not make any essential
differences.

Since in the right side of (90) we have obviously

ud

S S, 1/4

ay ="
we can apply (91), and we find

2 o 2
2K (log N)Tﬁ/r‘(log log N) 3 f<u)g (u) b (da;Zu)
uIN u d=1
12
« (log NYTn~(log log N) 3, -4,
since we have and f(w)g*(u) < d*(u).
Thus we get

(92) S < (log NYs2-'(log log N+,

Now from (86), and we have
210 € N(log N)**"p2(log log N )Xz
with an absolute constant K,. Collecting and this result we see

that the same inequality holds for 3.
7.4. Thus, from [80), and the above conclusion, we get
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2ur, € N(log log N)*s(log N)* {(log N)'~#loz24-(log N)"s/2~"}

with an absolute constant K.
Now the equation
Teg:—1=1—Blog?2

or
log—§e— -4
BB
has the root 8,=1.494--.
Hence we get
(93) Sir, € N(log N)*~7(log log N)¥s,

where
7 =[B,1log 2—1=10.0358 --- .

§8. Estimation of X, (II).

8.1. We now pass on to the estimation of X, which is defined by
Our principal tool is the result [66).
We have

DI, = , ,2 P(l{)P(lé)f (n),

lim=lgmg=N—n
n<y,
(L (L)

where (L}) is defined by of the previous paragraph.
Then we have

(9) Sup= 5 p(dp(lp)
ToTh
= 3 + 2 = 223+ 224 ’ say.

denV®  NYB<a<nl/2 00BN

8.2. First we treat >,,. We have

(95) I > pz(d)p(ll)p(lz) > JUN, dlly)n)
(L1), (Lp), (L*) n=N/(N,dljly) (mod diyla/(N,dl1l))
NB=g< N2 10gB ¥ n<N/(N,dlql2)
= > p*(d)p(l)p(ly) > f(n)
(Ly), (L2), (L*) n=N/(N,dljlz)(mod dlyla/(N,dll2))
N/B=g=N1/2 10gB ¥ nN/(N,dl1l3)

since, by virtue of the definition of n®, we have
(N, diLl)yP=1.
Here we notice that from the condition on d, [, and [/, we have

dl,l, < N"®1og?2N .
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Thus, applying to the inner-sum of (95), we get

_ o*(d)o(l,)o(l) — Ly~
(96) 2u=N (Ll).(%.(L*) dl,l, p;,z(Ndzlzz/(N,dtllz))( P )
N =g=n/210gB ¥ psN

1
-E —
+0(N<1og NYE S i )

+O(N* > D

dlila=N"810g2B v

= N3,;+0(N(log N)*¥),  say.
Now, setting

Py= 1——
v=I(1—5)
we have
_ 1 p*(d)p(ly)p(ly) 1___1- ’
Lo =g P (Ll),(LZz}).(m dlyl, PINd[1’2< P) '
N8 <a=n12 10gB ¥ p=N

. Ndil, . .
since W, diL) is the least common multiple of N and so

1 \3 17\3
p]NdLll:!:/](:N,dlllz)<1_7> :plzg112<1_7) )

Further we have, restricting the value of d,

_ 1 p*(d)o(l,)o(ls) RNy
OD D= g v (L1>,<fv"z),<L*> dlyl, mNdutz<1 P)
Nl/ggdgNl/zlog‘BN pgi
1
+0(Py Zo Ji )
NY210g7BNcasN210gB N
_ 1 _o*d)p(ly) o) _ 1y
— 8 Py > dl, whiizn b pII]V;iIL_xlz<l p)
N3<g<n1/210g= By PN
+0(log®* N).

To estimate the inner sum of (97), we consider the function

_p(n)
wp=1 1’ plNdlg'n< P>

P=N

which converges absolutely for ¢.>1, and by the standard way of decom-
posing the series into Euler product, we find easily that this is equal to

) A T ()

psN p<N
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Applying the formula of Perron to this function we get uniformly for all
parameters

_p(n) AN
(mig)=1 N plll\f—gl_zn(l P ) «x 1:!_’[12<1+
TER PSN

V-

Thus we have

o) 1 NYE N A
(L1§L*) L plNd1211<1 ><<( log™*N gl]l:z =5 «/p )
PN

Inserting this into the right side of (97), we get

1/2 - - 1
225 K Py(N'*log=BN)~ 1/ 2 d3/4 (122 II (1+ 5)

d=N210g™B Ly »irg
& (log N)*(log log N)2,
which, with [96), gives
(98) >, < N(log N)*(log log N)~2.
8.3. We now turn to the sum X,;,. Before starting the estimation we
introduce further abbreviations:
(R)={Nlog N <r,< M 1ogsN}  (j=1,2).

Then, using the fact that
1 if (,1)=1

2 pt)= _
i 0 if (,L)>1,
we have
(99) 2= = . ©(D)p*(®)p*(d)p(r)p(r)f(n)

(R, <R2>,d<N“ 8

= 2 + X =2+, say.

RS AN vk

It is easy to see that

(100) Dor K Nt
Now in the sum X,; we have
1y rit?dm < N**log®N,
and so we have
(102) | 2006 = > I 2 p(r)f(m)].
11t2am< N4 10g® N rirpt2dm=N-n

(Ry) n<N
doNVB 1o NB (Ry)
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We put w=r,t*dm and denote the inner sum of the above inequality by
T(w). Then we have
Tw)y= 2 pr)fn),
row=N—n

y1<n<yg
where

W N log™2N.

=N— -E—N”Z logBN, y,=N— a7

Thus we have

T(w)= > fm— DI ()
n=N-—w(mod 4w) n=N+w(mod 4w)
y1<nyz y1<n<yg

We now apart three cases:
(i) If w is even, then we have ,
(N—w, 4w) = (N+w, 4w) = (N, w).
Thus we have

T(w)= > fm)— > fn,
n=(N-w)/(N,w)(mod 4w/(N,w)) n=(N+w)/(N,w)(mod 4w/(N,w))
Y1/ (N, w)<nys/(N,w) Y1/ (N, w)<nya/ (N, w)

since by virtue of the definition of f(n) we have
JUN, wyn) = f(n).
Applying the result to the right side we get

2 (N, 1
T(w):( (A?: w) (N w) ) w> mz(Nw/w w)) <1—“P_>

psN

-3

2 (N, 1y7°
—< (A%) LU) (N LU) ) w) pt2(Nw/(N, w))(lﬂ—p—)

psN

+0(% (log N)"E+N*)

N -
=0(=(log N)*),
since we have [101)
(ii) If w= N (mod 4), then we have
(N—w, 4w) =4(N, w), (N4+w, 4w) = 2(N, w).

Thus we have

T(w)= > fn)— > ),
n=(N-w)/4(N,w)(mod w/(N,w)) n=(N-w)/2(N,w)(mod 2w/(N,w))
y1/4(N, w)<nys/4(N, w) y1/2(N, w)y<nya/2(N,w)

since we have f(2(N, w)n) = f(n).
Applying to the right side, we get
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| T(w)

N, 1N\
( 4(N w) 4(N w) ) L) p*Z(Nulr—/'E_N.w))<1——p—>

PIN

N, -3
~(4 2(N w) 2(N ) ) ( w) preriky, w,,(l‘—)

PSN
+o (log N)- E+N)

And we have
T(w) = 0(—31 (log N)E).
(iii) In the same way we get

N
T(w)=0(-- (log N)F),
when w= —N (mod 4).
Collecting these results we see that in any case

T(w)=0(-Y (log N)*).

Inserting this into the right side of [(102) we get
1

edmay A
& N(log N,
From {(99), (100) and [(103) we have
2os < N(log N)* %,
which, with and [(98), gives

(103) | 2g6| < N(log N)~#

(104) S, € N(log N)*(log log N)™2.
8.4. Now from [79), (93) and (104) we get
(105) S € N(log N)*-7*(log log N)/»Ks

§9. Asymptotic formula.

Finally collecting (2), (31), (44) and (105) we now complete the proof of
our main result:

THEOREM. Let N be a sufficiently large odd integer, then we have the
asymptotic formula

D r(N=n)d(m)=-¢ (1+ 15-0(N))BW)N log* N

+O(N(log N)*-?(log log N)*X),
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where L 1s an absolute constant and 6 =0.0179---.
&(N) has the expression

p(ﬁ) p(P) 1 1—p(p)/p
S(N) =TI (1~ + (1 )),,m 1= p(B/b+(p(D)/ DYA—CL/B))

I {1+ ";13.11) () (1—5) (1—-22)"

paIlN
p(ﬁﬁ) °° 4(1>‘”ﬁ)
+(1 p) B=1 6—0 }
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