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1. Introduction. The origin of the present investigation goes back
to two lectures presented by Jean Favard [9, 10], the first of which the
birthday celebrant as well as the authors were fortunate enough to be
able to attend at the Oberwolfach Conference on "Approximation Theory"
in 1963. A first formulation of the problem may be stated as follows:

Let X be an arbitrary (real or complex) Banach space and [X] be
the Banach algebra of all bounded linear operators of X into itself. Let
{T(p)}p>oc: [X] be a strong approximation process (on X for p —> oo), i.e.,

(1.1) lim||2W-/|| = 0 (feX).

Let {G(p)}p>oc: [X] be a further strong approximation process. The
problem is to find direct estimates between the quantities 11 T(p)f — /11
and \\G(p)f — f\\9 thus to establish, for instance, the existence of a con-
stant A > 0 such that

(1.2) II T(p)f - f\\ ̂  A || G(p)f -f\\ (fe X; p > 0) .

In this event, the process {T(p)} is said to be better than {G(ρ)} If
{T(ρ)} is better than {G(ρ)} and the latter is in turn better than {T(ρ)}>
then the processes are said to be equivalent, in notation

II2W-/IIHIGW-/II (/el).

First contributions of the participants of the two Favard lectures
to this problem have been made by Shapiro [17], Boman-Shapiro [4], and
the authors [6] (compare also the comments given in [5; p. 507]). Whereas
in [4, 17] the concrete case of approximation processes representable as
Fourier convolution integrals of Fejer's type is considered in Euclidean
w-space (or ̂ -dimensional torus), in [6] the problem is discussed in the
setting of abstract Hubert spaces.

In this paper the problem is studied in the setting originally envisaged

t This author was supported by a DFG fellowship.
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by Favard [9, 10]. Thus the approximation processes in question will be
given as summation processes of Fourier expansions corresponding to
general decompositions (cf. [12; p. 86]) of Banach spaces. The proof of
the general comparison theorem to be presented will depend upon a basic
uniform multiplier condition (see (2.8)). Conditions of this type were
studied in some basic work by G. Sunouchi [20] in connection with the
related saturation problem for summation processes of (trigonometric)
Fourier series, particularly employing the uniform quasi-convexity of
scalar sequences.

To this end, Sec. 2 gives the formal definitions as well as the com-
parison theorem. To deal with condition (2.8), Sec. 3 studies sufficient
conditions upon multiplier classes in connection with the uniform bounded-
ness of the partial sums or of the Cesaro means of the expansion of /.
The final section is devoted to applications.

The authors wish to thank Ivan Singer, Bucarest, for an interesting
discussion during the occasion of the Oberwolfach Conference on "Linear
Operators and Approximation", August 1971.

2. A comparison theorem. Denote by /, g, the elements of the
Banach space X with norm || ||, and by X* its dual; further, let Z, P, N
be the sets of all, of all non-negative, of all positive integers, respective-
ly. Let {Pk}ΐ=o be a total sequence of mutually orthogonal continuous
projections on X, i.e., i) Pke[X] for each keP, ii) Pkf = 0 for all keP
implies / = 0 (total), iii) P5Pk = 3jkPk, δjk being Kronecker's symbol
(orthogonal). Then with each feX one may associate its (formal) Fourier
series expansion

(2.1) f~%Pkf (/e-ar).

With s the set of all sequences a = {ak}~=0 of scalars, α e s is called a
multiplier for X (corresponding to {Pk}), if for each feX there exists an
element fa e X such that akPkf = Pkf

a for all keP, thus

(2.2) fa~±akPkf.

Note that fa is uniquely determined by / since {Pk} is total. The set of
all multipliers is denoted by M = M(X; {Pk}). With the natural vector
operations, coordinatewise multiplication and norm

(2.3) || all* = sup{||/a | |;/eX, | | / | | ^ 1} ,

M is a commutative Banach algebra containing the identity {1} e s. An
operator Te[X] is called a multiplier operator if there exists a sequence
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τes such that PkTf = τkPJ for all / e l , keP, i.e., one has the formal
expansion

(2.4) Tf~±τkPJ (/el).

Thus, by definition, with each multiplier operator T there is associated
a multiplier sequence τeM and vice versa, and since || T\\ίn = \\τ\\M by
definition (cf. (2.3)), M can be identified with the subspace of multiplier
operators in [X].

REMARK. The expansion (2.1) represents a slight generalization of
the concept of Fourier series in a Banach space X associated with a
total, biorthogonal system {fk,f*}- Here {fk,fk} consists of two sequences
{fk}aX, ( / , * ) c l * such that i) {/?} is total, i.e., /,*(/) - 0 for all ke P
implies / = 0 and ii) ff{fk) = djk for all j,keP. Then (2.1) and (2.4) read

(2.5) / - ΣΛ*(/)Λ , Tf ~ Σ *k

respectively; Pk(X) is the one-dimensional linear space spanned by fk.
For these definitions and results compare Marti [12; p. 86 ff], see also
Singer [18; pp. 1-49], Milman [13].

Denoting the null manifold of a linear operator T by N(T) =
{ / e l ; Tf = 0} and the identity mapping of X into X by I, we may
formulate

THEOREM 2.1. Let {T(p)}9 {G(ρ)}a [X] be two families of multiplier
operators with associated multiplier sequences {τk(p)}f {Ύk(p)}9 respectively.
Let

(2.6) N(G(p) - I) S N(T(p) -I) (p > 0) .

Furthermore, if G(ρ) = {keP;yk(ρ) = 1}, let δ(ρ) = {δk(p)}ΐ=oes, p > 0,
δe defined by

δ*(/0) = j Ίk(p) - 1

( 1 , keG(p),

and assume δ(p) to be a multiplier for each p>0. Then, for fixed p>0,

(2.7) I|2W-/II^IW)||*||GW-/|| (feX).

If, furthermore, there exists a constant A > 0 such that

(2.8) \\δ(p)\\M£A

uniformly for all p > 0, then the process {T(p)} is better than {G(p)}.
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PROOF. Let / e l b e arbitrary and k$G(p); then

(2.9) Pk(T(p)f -f) = δk(p){7k(p) - 1}PJ = δk(p)Pk(G(p)f - f) .

If k e G(p), then PJe N(G(ρ) -1)5 N(T(p) - I) , and (2.9) holds trivially.
Thus with multiplier operator U8{p) associated with δ(p) e M one has

T(p)f-f=

for each / e l , p > 0 since {Pk} is total. This completes the proof.
Obviously, (2.6) is natural for an estimate of type (1.2) and easy

to verify. On the other hand, the multiplier condition, in particular
the uniform one (2.8), is strong and intricate; its verification in the
applications is the actual problem. Therefore the next section is devoted to
establishing convenient criteria concerning (uniformly bounded) multipliers.

3. Some multiplier classes. By the representation (2.2) it is almost
obvious that a necessary condition for aes to be a multiplier is the
boundedness of the coefficients ak, i.e., that

Ma l°° = {ae s; || a H*, = sup | ak | < oo} .
k

In the case of a total biorthogonal system {fk,fk} with {fk} being an
unconditional basis for X the converse statement Z°° c M is also valid.
In this instance, ae l°° is a necessary and sufficient condition for aes to
be a multiplier ([18; p. 484], [12; p. 110]).

But the case of unconditional bases corresponds to a very particular
situation in the applications. Therefore one makes use of weaker con-
ditions upon {Pk} in connection with a characterization of its multiplier
class. To this end, consider the nth partial sum operator Sn defined by

(3.1) SJ=±Pkf (/el)

and assume that Sn is uniformly bounded in n, i.e.,

(3.2) \\SJ|| ^B||/1| ( / e l ) ,

the constant B being independent of neP and / e l Let us note that
in this case {Pk(X)} is called a Schauder decomposition of X if (addi-
tionally) the linear span of U?=oΛ(-3Γ) is dense in X (see [12; p. 89]).
Then it is known [12; p. 109] that with Δak — ak — ak+1, ke P,

(3.3) bv = {aes;\\a\\hv = ±\Aak\ +\im\a%\ < -}

is continuously embedded in the multiplier class corresponding to the
Schauder decomposition. But the density of the linear span of {Pk(X)}
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is not essential as the following theorem shows; its proof being standard
is only given for the sake of completeness.

THEOREM 3.1. Let {Pk}~=0 c [X] be a total sequence of mutually
orthogonal projections and let Sn = Σ*=o Pk satisfy (3.2). Then every
aebv is a multiplier and

(3.4) \\a\\M^B\\a\\bυ.

PROOF. For each fe X set

f° = Σ ΔcbSuf + cuf ,
S;=0

where o?k = ak — α., keP, α«, = limn_,» an. Then f exists in X since
by (3.2)

Thus it remains to show that fa ~ Σ akPkf But this follows since for
Pk e [X] one has PnSkf — Pnf iί k ^ n and zero otherwise, and therefore

PJa = Σ ^αiP / + ̂ ooP./ = anPJ .

REMARK. In the case of a total biorthogonal system {fk,fk} in X,
{fk} being fundamental in X (i.e., the linear combinations of fk are dense
in X), it is clear by the Banach-Steinhaus theorem that (3.2) is equivalent
to the assumption that {fk} is a Schauder basis, i.e., for every feX

Hm||ΣΛ*(/)Λ-/ll = 0.
n-+oo k=o

Then Theorem 3.1 as well as its converse is contained in [18; p. 40].
Concerning this statement for Schauder decompositions see e.g. [12; p. 109].

However, also the uniform boundedness (3.2) of the partial sums is
quite restrictive for the applications. In order to replace this assump-
tion by a weaker one, let us introduce the nth Cesaro mean operator
(of order 1)

(3.5) σj = Σ (l - - Λ Γ W (/e X)

k=o\ n + 1 /

and assume that σn is uniformly bounded in neP, i.e.,

(3.6) \\σJ\\^C\\f\\ (/el),

the constant C being independent of neP and / e l . Now results of
the theory of trigonometric series induce one to examine the set of
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bounded, quasi-convex sequences

(3.7) bqc = {ael~; \\a\\bqe = ± (k + 1) | Δ*ak | + lim \an\ < «,} ,

where A2ak = ak — 2ak+1 + ak+2, keP.

THEOREM 3.2. Let {Pk} c [X] be a total sequence of mutually or-
thogonal projections and let the Cesaro means (3.5) satisfy (3.6). Then
every aebqc is a multiplier and

(3.8) \\a\\M£C\\a\\bqo.

PROOF. For each / e J set

f' = Σ (k + l){A*a\)σkf + aj ,

where a\ — ak — ««,, ke P. Then / α exists in X since by (3.6)

II fa II ^ C

Thus it remains to show that fa ~ X <xkPkf. But this follows since for
P n e [X] one has Pnσkf = [1 - (n/(k + 1))]PW/ if k^n and zero other-
wise, and hence

P
n
f

a
 = Σ (k

k

REMARK. In case of a total biorthogonal system {fk9fk} in X,
being fundamental in X, (3.6) is equivalent to the statement that {/*} is
a Cesaro basis, i.e., for every feX

lim Σ (1 - - 7 7 )ΛW* - / = ° *

In this case Theorem 3.2 states that bqc is contained in the multiplier
class associated with {fk,fk}) the converse direction, namely bqc being
contained in the latter multiplier class implies that {fk} is a Cesaro
basis, is shown by Kadec [11].

Concerning connections between the various multiplier classes one
has bqc cbvdl00 in the sense of continuous embedding. For, if a e bv,
then ak — Σm=fc Aam + a^, and thus || a {{„ ^ || a \\bυ. If α e bqc, then

î ôo Aan = 0, and hence Aan = Σ?=n A2ak. This implies

Σ I Δan\ ^ Σ Σ I ^2^, I = Σ (k + 1)
n—0 n—0 k=n k=0

thus \\a\\bv ^ ll^lltgc For more general results in this direction see [7].
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Let us recall that our main interest in this section lies in furnishing
us with sufficient criteria for a uniform bound (in p > 0) of the multipliers
involved in the comparison Theorem 2.1. In general, the problem is very
difficult on account of the complex structure of the multipliers. There-
fore we shall restrict ourselves to the particular, but nevertheless widely-
applicable case that the family {τ(p)}p>0 is of Fejer's type, i.e., τk(p) =
t(k/p) for some function t(x) defined on [0, oo). Introducing BV[0, oo) as
the set of functions of bounded variation on [0, oo) one obtains

LEMMA 3.3. Let {τ(p)}p>ocs be a family of sequences for which
there exists a function t(x) e BV[0, oo) such that τk(p) = t(k/p) for all
keP, p > 0. Then τ(p) e bv for each p > 0 and

(3.9) Σ I Δτk{p)\^\ \dt(x)\ (p>0).
k = Q JO

Indeed, for any ne P and p > 0

Σ I Δτh(p) I ̂  Σ Γ Ί dt(x/p) I ̂  Γ| dt(x) | .
k = 0 k = 0 Jk JO

Since obviously | τk(p) | ^ sup,, | t(x) \ uniformly for p > 0, one has by
Theorem 3.1

COROLLARY 3.4. Let {τ(p)}p>Qds be as in Lemma 3.3 and {Pk} as in
Theorem 3.1 satisfying (3.2). Then {τ(p)}p>0 is a family of uniformly
bounded multipliers.

For the analogous result in case of bounded, quasi-convex sequences
consider the space BQC of bounded, quasi-convex functions t(x) defined
on [0, oo). BQC[0, oo) consists of bounded continuous functions t which
are locally (i.e. on every compact subinterval) absolutely continuous on
(0, oo) and whose derivatives V are locally of bounded variation* on (0, oo)

S CO

x \dtr{x) I < oo.
0

LEMMA 3.5. Let {τ(p)}p>oc:s be a family of sequences for which
there exists a function t(x) e BQC[0, oo) such that τk(p) = t(k/p) for all
ke P, p > 0. Then τ(p) e bqc for each p > 0 and

(3.10) Σ Qc + 1) I J2τk(p) I ̂  \~x I dt'(x) I (p > 0) .
Λ = 0 JO

* In many cases of interest t' is furthermore continuous on (0, °°), except perhaps for
a finite set of discontinuities of the first kind, and absolutely continuous in every bounded
subinterval of (0, «>) which does not contain any of these points. Then f™x | dt'(x) | < oo is
satisfied if f~x \ t"(x) \ dx < oo.



134 P. L. BUTZER, R. J. NESSEL AND W. TREBELS

PROOF. In view of the hypothesis and the definition of BQC one
has for any k e P

dt'(x) \du = dt'(x)\ du
0 LJU+OCIP) J JklP )m&x{O,x-ak+l)lp)}

S (k+l)lp Γ(k+2)lp

[x - (k/p)]dt'(x) + [((k + 2)lp) - x]dt'(x).
klP J(k+l)lP

Hence, for arbitrary ne P and p > 0
n n r(k+l)!p

Σ (k + 1) I Sτt(p) I ̂  Σ *l dt'(x) |
Λ = 0 fc=0 Jjfc//o

(Λ + l)[((n + 2)1 p) - x] I dt'(x) I ̂  U I dί'(a?)
(Λ+D/P JO

COROLLARY 3.6. Let {τ(p)}p>oc:s be as in Lemma 3.5 and {Pk} as in
Theorem 3.2 satisfying (3.6). Then {τ(p)}p>ocis is a family of uniformly
bounded multipliers.

4. Applications.

4.1 Typical and Abel-Cartwright means. Let X be a Banach space
and {Pk} be a sequence of projections as specified in Sec. 2. We would
like to compare the following means of the series (2.1): The typical
means of order K > 0

fl - x", 0 < x < 1
(4.1) Rκ{n)f ~ Σ rκ(k/(n + l))Pkf, rκ{x) = " ~

A==0 ( 0 , X ^ 1

with the Abel-Cartwright means of order tc > 0

(4.2) T7Λ(w)/ - Σ wκ(k/(n + l))Pkf , wκ(x) = exv{-xκ) , x ^ 0 .

Obviously, there holds equality in (4.1) since the sum is finite. In order
to show that Rκ(ri), Wκ{n) are multiplier operators of type (2.4) with
discrete parameter p = n + 1, n—* oo, assume that the Cesaro means σn

are uniformly bounded (see (3.6)). Then, since rκ, wκ e BQC (cf. [5; Sec.
6.4]), an application of Corollary 3.6 in particular gives that Rκ{n),
Wκ(ri) e [X] are multiplier operators of type (2.4). To obtain an estimate
of type (1.2) one may apply Theorem 2.1. Concerning condition (2.6), if
feN(Wκ(ri) - I), then

0 = Pk(Wκ(n)f -f) = (exp{ - (k/(n + 1)) } - l)Pkf (ke P) ,

and hence Pkf = 0 for every ke N. Since {Pk} is total this implies
/ = Pof, and since the same reasoning applies to Rκ(n), it follows that
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N(Wκ(n) - I) = N(Rκ(n) - I) = P0(X) (/OO neP).

In order to verify the uniform multiplier condition (2.8) observe that in
case of the typical and Abel-Cartwright means the corresponding sequences
{δ(p)} are of Fejer's type so that one has to examine dκ(x), [dκ(x)\~ι where

dκ(x)
_ wκ{x) - 1 _

rc(x) - 1
xκ

0 ^ x

-erχK , x > 1 .

By an elementary calculation one has dκ(x), [dκ(x)]~~ι e BQC for each K > 0
so t h a t by Corollary 3.6 the uniform multiplier condition (2.8) is verified.
Analogously one has {rK2(x) - ΐ)(rKl(x) - l ^ e BQC if κ2> κx> O Thus

THEOREM 4.1. Let X be a Banach space, {Pk}~=Qa[X] be a total
sequence of mutually orthogonal projections and let the Cesάro means σn

of (3.5) satisfy (3.6). Then, for each K > 0, the typical and the Abel-
Cartwrίght means are equivalent, i.e.,

\\R*(n)f-f\\~\\WK{n)f-f\\ (/el).

U %2 > £i > 0 then RK2(n) is better than RKl(n), i.e., there exists a constant
D such that

\\RK2f-f\\^D\\RKlf-f\\

for all feX,neP.

4.2 Trigonometric system. Let X2π = Lζπ9 1 ^ p ^ °°, or C2π be the
Banach space of 2ττ-periodic functions with standard norms || | | X 2 r

oo), ess. sup \f(x) |, max \f(x)

respectively. Defining {Pk} by

(4.3) PJ{x) = Γ(0) , PJ(x) = Γ(k)eik* + /Λ(-fc)e-"* (keN) ,

fA(k) being the usual Fourier coefficients

ίkxdx (keZ),

it is obvious that {Pk} is a sequence of orthogonal projections which are
total on account of the uniqueness property for Fourier coefficients. The
famous theorem of M. Riesz states that Sn = Σ£=o Pk is uniformly bounded
in n provided 1 < p < ^ , but not for p = 1 and p = °o. Furthermore,
the theorem of Fejer implies the uniform boundedness of the Cesaro
means σn in every X2z which in particular shows that (3.6) does not
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imply (3.2).
Rewriting Rκ{n) and Wκ{n) in the usual fashion

(4.4) R
κ
{n)f{x) = ± (l -

k=-n

(4.5) WXn)f{x) = Σ exp{-(| k \/(n + l)Y)

k =—oo

one obtains from Theorem 4.1

COROLLARY 4.2. Let X2π and {Pk} be given as above. Then

i) ||Λ.(n)/-/|Lr l ir - II Wκ(n)f-f\\X2π (/el. O 0) ,
ii) || RK2(n)f - f\\X2π £D\\ RKl(n)f - f ||Xfac (fe X2π; κ2 > κx > 0) .

Let us note that Corollary 4.2 does not assert the convergence of Rκ(ri)f
(or of Wκ(n)f) towards / a s w—• ©o. This convergence is only guaranteed
if U?=o-Pjbί-Xto) is dense in X2π, i.e. for Lζπ, 1 ^ p < ©o, and C2π. Hence
{Pk{Llπ)} is in particular a Schauder decomposition of Lζπ9 l<p<oo.
Let us also mention that the above equivalence relations imply some
particular results of Zuk [21] who obtained these with the aid of estimates
in terms of moduli of continuity.

REMARK. Formulae (4.3) and (2.4) indicate that our approach only
admits symmetric operators in Lζπf 1 < p < <*>. But it is immediately
clear that this is not necessary. Indeed, a sufficient multiplier condition
corresponding to Theorem 3.1 for a two-a-way sequence {Pk}ΐ=-oo of pro-
jections reads for te}Γ=-oo

\ak\^M (keZ), £ \Δak\ £C.
k——oo

This condition was weakened by Marcinkiewicz (cf. [1]) to

\ak\^M (keZ), Σ \Aak\^C* (NeP);
\k\=2*

for a discrete analog see Sunouchi [19].

Now let us briefly indicate the connection on X2π between multiplier
operators and operators of Fourier convolution type.

For K = 1 the operator Rκ(n) coincides with the Cesaro mean operator
σn and admits the closed representation

2π(n + 1) J-τ

which is Fejer's singular integral. Wκ(n) reduces for K = 1 to the
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classical Abel means and also admits the closed representation

= ^-[ f(x ~ u)- ±=-£ -du (r = e-i/ )
2π J-* 1 — 2r cos u + r2

which is the singular integral of Abel-Poisson. Thus Corollary 4.2 states
the equivalence of the (approximation) processes σn and Pr on X2π.
Generally, operators of type (2.4) in X2π may be reformulated as Fourier
convolution type integrals,

with appropriate "2ττ-periodic" kernel μ.

4.3 Legendre polynomials. Let' X= Lp(-1, 1), l^p< oo, or C [ - l , 1]
with norm || ||

/(a?) |p do?} , 1 ^ p < oo , max | f(x) \ ,

respectively. Consider the Legendre polynomials defined by

Ck(x) = (-l)k[2kkl]~\d/dx)k[(l - x*)k] (keP).

Since

\l_Ck{x)C»(x)dx = { k + \ Y s k m ,

the projections {Pk},

pj(x) = [(k + ^J(u)Ck(u)du^Ck(x) (k e P)

are mutually orthogonal.
Pollard [16] has shown that the corresponding partial sum operators

{Sn} are uniformly bounded and approximate feLp(—l, 1) provided 4/3 <
p < 4. On the other hand, Askey-Hirschman [2] have proved that the
Cesaro mean operators {σn} are uniformly bounded and approximate / e l
for every X. Thus, {Pk} is total and \Jΐ=0Pk(X) is dense in X; in
particular, {Ck} is a Schauder basis in Lp( — 1, 1), 4/3 < p < 4, and a
Cesaro basis in every X. Hence, on account of Theorem 4.1

COROLLARY 4.3. Let X, {Pk} be as above and Rκ(ri), Wκ(n) be given
by (4.1), (4.2), respectively. Then, for each feX,

i) || Rκ(n)f - f\\ ~ || Wκ(n)f ~ f\\ (* > 0 ) ,
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Statements analogous to this Corollary may be derived for ultra-
spherical polynomials of order λ ^ 0

(4.6) d(x) = Mk,λ(l - x2)~x+1<2(d/dx)k[(l - x2)M~li2] ,

Mkfχ being a suitable constant. They coincide for the particular instance
λ = 1/2 with the Legendre polynomials, for λ = 0 with the Tchebychef
polynomials of the first kind, and for λ = 1 with the Tchebychef poly-
nomials of the second kind. Furthermore, one has with respect to the
weight function (1 — x2)λ~112

- x2y~ll2dx = M?Jk

Thus, the projections {Pk},

(4.7) Pkf{x) = [(Mk*

are mutually orthogonal in

(4.8) X*» = {/; || / ||, = ( jJ f(x) \p(l -J
Since {Ci} is a Schauder basis in Xx'p if p e ((2λ + l)/(λ + 1), (2λ + l)/λ)
(cf. [16]) and since {Cί} is a Cesaro basis in Xx>p if pe ((2λ + l)/(λ + 2),
(2λ + l)/(λ - 1)) for λ ^ 1 and for all p, 1 ^ p< <χ>, if 0 ^ λ < 1 (cf. [2]),
all the other properties required for {Pk} are satisfied.

Let us mention that for ultraspherical polynomials there exists a
strengthening of Theorem 3.1 analogously to the Marcinkiewicz result,
due to Muckenhoupt-Stein [15]: aes is multiplier in Xλ p, (2λ + l)/(λ+l)<
p < (2λ + l)/λ if

\ak\^M (keP), Σ | α * - α*+il ^ M* (NeP).
N

It would be interesting to know if these conditions are also sufficient in
the Laguerre and Hermite series case, and how they may be related to
the multiplier problem of general expansions of type (2.1) in case of
strong convergence of the partial sums.

4.4 Laguerre series. Let X = Lp(0, <*>), 1 <: p < oo, or C[0, <*>) with

G oo \ lip

I f(x) \pdx) and consider the Laguerre polynomials of order
a > —1 defined by

Uk

a)(x) = [klY'e'x-^dldxyie-'x^") (keP) ..

Setting
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φp(x) = \r(a + l)ίk + °)\ xal2e-χ'2Lίa)(x)

it is known that φίa) is an orthonormal system on (0, oo). Thus the
projections

Pia)f{χ) =

are mutually orthogonal. Furthermore, Askey-Wainger [3] for a > 0 and
Muckenhoupt [14] for a > — 1 have shown that the partial sums are
uniformly bounded and converge to / for 4/3 < p < 4. Furthermore,
Poiani [15a] has recently shown the uniform boundedness of the Cesaro
mean operators for 1 ̂  p ^ oo if a > 0, and (1 + α/2)"1 < p < — 2/a if
— 1 < a ^ 0. Hence

COROLLARY 4.4. Let {Pt]} be as above, and Rκ{n), Wκ(n) be given by
(4.1), (4.2) respectively. Then

i) || Rκ(n)f - f || - || Wκ{n)f - f\\ {it > 0) ,
ii) || RK2{n)f -f\\^D\\ RKl{n)f - f || (*f > κx > 0)

for all X-spaces in case a > 0, otherwise restricted as indicated above.

A statement analogous to Corollary 4.4 may be formulated for the
Hermite series case.
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