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0. Introduction. We consider the following:

PROBLEM. IS the Kodaίra dimension of algebraic manifolds invari-
ant under deformation!

For curves and surfaces, the answer is affirmative. In the former
case the result is clear. In the latter case it was proved by Iitaka [I2]
using the classification of surfaces, whereas for non-algebraic complex
manifolds of dimension three, Nakamura [N] produced a counterexample
to this problem.

On the other hand, Lieberman-Sernesi [LS] introduced a notion of
the relative Kodaira dimension κ(X/Y) for a family f:X-*Y of algebraic
manifolds, and proved that the Kodaira dimension tc of fibers over a
countable intersection of Zariski open sets of Y is equal to κ(X/Y)
and tc of other fibers are greater than κ(X/Y). Using this notion, we
formulate our problem in the following way.

CONJECTURE DFΛ>fc. Let f: X-+Y be a family of n-dimensional al-
gebraic manifolds with tc(X/Y) = k. Then for any fiber Xy = f~\y)
(y e Y), we have /c(Xy) = fc.

Note that DFΛfW is true by Lieberman-Sernesi's theorem. If all the
Conjectures DFn,_co, DFw>0, •• ,DFΛ f l l_1 are true, then the deformation in-
variance of the Kodaira dimension in the algebraic case will be settled.

In this paper, we study Conjecture DF%)fc for l<Ξ,k^n — l. First we
describe the geometric structure of every fiber of such a family as follows:

THEOREM I. Let f:X-+Y be a family of n-dimensional algebraic
manifolds with 1 ^ κ(X/Y) ^ n — 1. Then for any yeY, the fiber Xy

has the following property: There exist a nonsίngular model X* of Xy,
a variety T and a fiber space ψ: Xy —> T such that

(1) dimΓ = κ(X/Y)
(2) There is an open set T of T such that for any t e T", the
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fiber ψ~\t) is irreducible nonsingular and is the quasi-specialization of
parabolic varieties in the sense of Definition 4.1, i.e., ψ^it) is one of
the irreducible components of a fiber of a certain degenerating family
of varieties of Kodaira dimension zero {of so-called parabolic type).

By this theorem, Conjecture DFW)A. for 1 ^ k ^ n — 1 is reduced to
a problem on (n — &)-dimensional algebraic manifolds of Kodaira dimen-
sion zero:

THEOREM II. Let (n, k) be a pair of positive integers with 1 ^ k ^
n — 1. Assume (1) Conjecture DF^-^o and (2) the lower-semicontinuity
of K for degenerating families of (n — k)-dimensional parabolic mani-
folds, i.e., the re of each components of a degenerate fiber of a degener-
ating family of parabolic manifolds is not larger than zero (see Con-
jecture PDĜ -fc in § 5). Then Conjecture DFnk is true.

COROLLARY. DF,,,^ is true.

In § 1, we summarize some known results about the Kodaira dimen-
sion and give the definition of the relative Kodaira dimension. § 2 deals
with general properties of the relative Kodaira dimension. As a pre-
paration for § 4, § 3 is devoted to the study of a graded C-subalgebra
of the canonical ring of an algebraic variety. In § 4, we study families
over a nonsingular curve and prove Theorem I in that case. Theorems
I and II are compeletely proved in § 5.

The author would like to express his hearty thanks to Professors
Tadao Oda and Masa-Nori Ishida for their valuable advice and encour-
agements. The author also expresses his hearty thanks to Professor
Kenji Ueno for writing an appendix to this paper.

2. Definitions and notations. We work in the category of schemes
defined over the field of complex numbers C. An algebraic variety is
an irreducible reduced C-scheme of finite type. A point of an algebraic
variety is a closed point. Open sets are Zariski open sets. Unless
otherwise stated, an algebraic manifold is a nonsingular compelete al-
gebraic variety. For a surjective morphism /: V —> W from a variety
V to another W, a fiber over a point in a certain countable intersection
of nonempty open sets of W is called a general fiber. Note that a
countable intersection of nonempty open sets of W is dense in W.
f: V -» W is called a fiber space if / is a surjective morphism from an
algebraic variety V to another W such that the general fiber of / are
connected. By a family f:X->Y of algebraic manifolds of dimension
n, we mean that / is a proper smooth surjective morphism of relative
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dimension n between algebraic varieties X and Y such that every fiber
of / is connected.

Let V be an algebraic manifold and ωv be its canonical sheaf. We
put

, R(V)i = HW

where Z^Q is the set of non-negative integers. We call R(V) the canoni-
cal ring of V. We set

R(V)w = C[R(V)t]

which is the graded C-subalgebra of R(V) generated by R{V)t. We
also set

where Z>0 is the set of positive integers. This is a semigroup.

DEFINITION 1.1. The Kodaira dimension of V is

f max dim Proj JR( F) [ i ] if N( V) Φ 0
N)y J l if N(V)= 0 .

The reader is referred to Ueno [U] for a general discussion of the
Kodaira dimension. The proofs of the following theorems can be found
in Iitaka [IJ and [U].

THEOREM 1.2 (The Iitaka estimate). There exist positive integers
mOf d and positive real numbers a, β such that the following inequality
holds for any integer m ^ m0:

amκiV) ^ dimcίf°(F, α>F®
dm) ^ βmκm .

THEOREM 1.3 (The Iitaka fibration). Suppose N(V) Φ 0 . Then there
exists an integer m0 such that for any m ^ m0 satisfying meN(V),
the m-th canonical rational map

φm: V ->W=FτojR(V)w

has the following properties: Let φ: F # —> W be an elimination of the
points of indeterminacy of the rational map φm. Then we have

(a) dim W= κ{V).
(b) The general fibers of φ are connected.
(c) There is a countable intersection Wr of nonempty open sets of

W such that for any w 6 W\ the fiber Vw = φ~\w) is irreducible, non-
singular and fc(Vw) = 0.

We call φ: F # -> W the Iitaka fibration of V and W an Iitaka sub-
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set of W.

THEOREM 1.4. Let ψ: V —> W be a fiber space. Then there exists a
nonempty open set U of W such that we have an inequality

where Vx = ψ~\x)9 for every point x e U.

We remark that W may be singular in this theorem.
Next we introduce the notion of the relative Kodaira dimension,

which is a generalization of the Kodaira dimension to the relative case.
This was originally introduced by Lieberman-Sernesi [LS]. Note that
this definition differs from the more recent one of Viehweg [V].

Let /: X —> Y be a family of algebraic manifolds, and ωXIY be its
relative canonical sheaf. We set

= {ieZ>o;f*ωψ/γΦθ}

which is a semigroup.
If ieN(X/Y), a rational map gt: X-+P(f*ωψIY) over Y is defined

by the homomorphism f*f*ωψIY —• ωψ,Y9 where P(f*ωψIY) is the projec-
tive fiber space over Y associated with the coherent sheaf f*a)ψlY (see
[EGA, Chapter 2]). Zt is the image of X by gif i.e., the closure of
gi(X\Σg.) in P(f*ωψ/Y), where Σg. is the indeterminacy of gt. We denote
by πi the restriction to Zt of the projection P{f*ωψlY) —> Y. Hence we
get the following diagram:

(1.1)

DEFINITION 1.5. The relative Kodaira dimension ιc(X/Y) of /: X-^Y
is

ί max dim Zt - dim Y if N(X/Y) Φ 0
K(XΊY) = UeNiXlY)

I - - if N(X/Y) = 0 .
Now we slightly generalize the above definition.

DEFINITION 1.6. Let f:X-*Y be a generically smooth surjective
morphism of algebraic varieties, i.e., / is smooth over a certain open set
Y' of Y and assume the fibers over Y' are connected. Then the re-
lative Kodaira dimension ιc(X/Y) of f:X-+Y is defined by

κ{X\Y) = κ(f-\Y')IY') .
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This is obviously independent of the choice of Y'.

REMARK 1.7. Let f:X->Y be as above and assume further that /
is a Gorenstein morphism. Let ωx/γ be its dualizing sheaf. Then the
above definition of κ(X/Y) coincides with the relative a>x/F-dimension of
[LS].

2. The properties of the relative Kodaira dimension. First, we
observe the asymptotic behavior of the diagram (1.1) with respect to
m. The following lemma and its proof is essentially analogous to that
in [U, p. 54].

LEMMA 2.1. There is a positive integer m0 such that, for any m
satisfying m ^ mQ and me N(X/Y), there exists a bίrational map
hm>mo: Zm —> ZmQ which makes up a commutative diagram

on the locus where all the rational maps are defined.

PROOF. AS the problem is local on Y, we can assume Y — Spec A
for a C-algebra A. We put

P= Θ Pi, P< = Γ(Y, f*ωφlτ) .

This is a graded A-algebra. We set P [ ί ] = A[PJ which is the graded
A-subalgebra of P generated by Pt. Then we have

Z, = Proj P [ i ]

and the rational function field C(Zi) of Zt is

C(Zt) = (S-^P^X

which is the degree 0 part of the graded quotient ring of P [ ί ] with re-
spect to the multiplicatively closed set SPιn = Uiso(-Pi<3\{O}).

Let d > 0 be the greatest common divisor of the integers be-
longing to N(X/Y). As N(X/Y) is a semigroup, there is a positive in-
teger l0 such that l^l0 implies ldeN(X/Y). We set k = lQd. Now we
take a nonzero element φePk For any positive integers n and ί, the
homomorphism
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(2.1) Pnk->Pm+t)k

sending ψ to φ*φ induces a homomorphism Plnk] -> pv*+»k\ This induces
a rational map hu+t)kfnk: Z{n+t)k -> Znk which makes up a commutative
diagram

9(n+0k

Y

by definition. Further, the inclusion map

is induced by (2.1) with ί = 1. So there is a chain of function fields

C(Y)aC(Zk) c - - c C(Zrt) c C ( Z u + m ) c •. c C ( I ) .

The field extention C(X) over C(Y) is finitely generated. Thus there
exists a positive integer nQ such that

) = C(Z{no+1)k) = C(Z{no+2)k) = - - .

Now we set m0 = (w0 + l)fc. Then we can easily check that for any
m^m0 satisfying meN(X/Y), C(ZJ = C(ZmQ) holds. Hence /&Mo is a
birational map. q.e.d.

We immediately get the following:

COROLLARY 2.2. There is a positive integer m0 such that, for any
m^m0 satisfying meN(X/Y), we have

Next for later use, we review the following consequence of Gro-
thendieck's base change theorem.

THEOREM 2.3. Let f:X-*Y be a proper morphism of (reduced con-
nected) algebraic varieties, F be a coherent sheaf on X which is <^γ-flat,
and q be any nonnegative integer. Then,

(1) The function
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dq:Y — Z

2/ H-> dimcH
q(Xy, Fy)

is upper-semicontinuous on Y, where Fy = F ®#γCy and Cy is the resi-
due field of the local ring tfΎ^. Especially, the subset U of Y on which
dq takes the smallest value is open,

( 2 ) The following conditions are equivalent:
(a) dq is a constant function.
(b) Rqf*F is locally free on Y and the natural map

Rqf*F®^γCy -> H\Xyj Fy)

is an isomorphism for any y e Y.

For the proof of this theorem, see for instance Mumford [M, p. 50].

We study the relation between the relative Kodaira dimension and
the Kodaira dimension of its fibers. The following theorem is a special
case of Lieberman-Sernesi's theorem [LS, p. 83], although there seems
to be a gap in their proof [LS, p. 84]. Hence we give here the proof
of the required special case.

THEOREM 2.4. Let f:X—>Y be a family of algebraic manifolds.
Then for any y eYf we have

κ(Xy) ^ κ(X/Y) .

Moreover, set

hS(X/Y) = {yeY; κ(Xυ) = κ(XIY)} .

Then hS(X/Y) is a countable intersection of nonempty open sets of Y.

Before the proof of the above theorem, we give a lemma.

LEMMA 2.5. We consider the following commutative diagram of
algebraic varieties X, Y and Z\

X~β»>Z

f

Y

where f and π are surjective morphisms and g is a generically surjec-
tive rational map. Let Σ be the indeterminacy of g. Then there exists
a nonempty open set Y' of Y such that (1) π is flat over Y' and (2)
for any yeY',Σ does not contain Xy — f~\y) and the closure of g(Xy\
XyP\Σ) coincides with Zy = π~\y).
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PROOF. We put U = X\Σ and consider the dominant morphism
g: U-+Z. There is an open set Z' of Z such that Z'ag(U). Let
Alf A2, - , Ak be the reduced models of the irreducible components of
Z\Z'. We consider π\A.: At -> π(A%)c Y for each i (1 ^ i ^ k), and put

Γ, = {y 6 Γ; dimίπl^)-1^) < dim Z - dim Y}

which is clearly a nonempty open set of Y. Now we take an open set
Y" of Y such that π is flat over Γ", and put

This is also a nonempty open set of Y. Since the dimension of any ir-
reducible component of Zy is equal to dim Z — dim Y for any y e Y",
the closure of Z'y = (TΓ^O"1^) coincides with Zy for any τ/e Y'. q.e.d.

PROOF OF THEOREM 2.4. Step 1. Let Γ* be the set of points yeY
such that dim H\Xy, α>f*) is minimal for each meZ>Q. Then by the
base change theorem, F * is a countable intersection of nonempty open
sets of Y. Furthermore,

/ * « ®,γ Cy = H\Xy, ωfp

holds for any yeY* and any meZ>Q. Then we first claim

fc(Xy) = κ(X/Y)

for any ye Y*.
When κ(X/Y) = — ©o, the assertion is clear. Thus we may assume

κ(X/Y) ^ 0. By Lemma 2.5, there exists a point τ/e F * such that for
any meN(X/Y), the following conditions hold.

(1) The closure of gm(XyQ\XyQΠΣgJ coincides with π-\y0).
( 2 ) dim π~\y0) = dim Zm — dim F

where the notations are as in (1.1). Thus by letting m sufficiently large,
we obtain

κ(Xyo) - dim Proj R{XVo)™ - π~\y0) = dim Zm - dim Y = /c(X/F) .

Next we take any point yeY*. The Iitaka estimates with respect
to Xy and X2/o say that there are positive real numbers α, a', /3, β' and
a positive integer d such that for any sufficiently large integer m, we
have

amκ{χy] ^ dim ^ ( X , , ωf d

y

m) ^

yα'mff(%) ^ dim ^0(X,0, ωf̂ o

m) ^

On the other hand, by the definition of Y*,
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dim H°(X,, ωf~) = dim H\Xn, ωf-)

holds for any me Z>0. Thus we have

κ(X9) = κ(Xyo) .

Hence combining this with the previous equality, we obtain

/c(Xy) = tc(X/Y) for any p Γ .

Step 2. We secondly claim tc(Xy) ^ tc(X/Y) for any yeY\Y*. By
the definition of 7*,

dim H°(Xy, ωf ) ̂  dim H\Xyo, ωf™)

is satisfied for any ye Y\Y*, yoe Y* and any meZ>0. Thus by the
same argument using the Iitaka estimates with respect to Xy and XVo,
we obtain

κ(Xy) ^ tc(Xyo) = κ(X/Y) .

Consequently, we have the first assertion of the theorem.
Step 3. Now we prove the latter statement of the theorem by

induction on the dimension of the base space Y. If dim Y = 0, the as-
sertion is obvious. Next suppose the statement is true if the dimen-
sion of the base space is smaller than n, and consider the case of
dim Y = n > 0. By Step 1, there exists a countable intersection Y*
of nonempty open sets of Y such that

tc{Xy) = κ(X/Y)

is satisfied for p 7 * . Y\Y* can be written set-theoretically as the
union of countably many irreducible reduced lower dimensional closed
subvarieties Wt (i e I) for a countable set I. Then the base change

fi:X*γWi-*Wi

is a family of algebraic manifolds with dim Wt < n. Thus by the induc-
tion assumption, the set

LŜ CCTQ = {we Wt: tc(Xw) = κ(X XyWJW,)}

is a countable intersection of nonempty open sets of Wt for each ί. Let
Γ be the subset of / consisting of iel with ιc(X XγWt/Wi) = κ{XjY\
Then we obtain

LS(X/Y) - F UίULS,/^)} = Γ\{( U Wt)\J[\J {
iel' l iel\l> 3 el'

This is a countable intersection of nonempty open sets of Y. q.e.d.

For later use, we slightly generalize the definition of L8(X/Y).
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DEFINITION 2.6. Let / : I - > 7 be a generically smooth surjective
morphism of algebraic varieties of relative dimension n such that the
general fibers of / are connected. Define the Lieberman-Sernesi set
LS(X/Y), or denoted LS/(F), of Y with respect to / to be the set of
points y e Y such that the fiber Xy is irreducible, nonsingular, ^-dimen-
sional and κ(Xy) = κ(X/Y).

Now we come back to the diagram (1.1). We set m sufficiently
large, set Z — Zm, g = gm, π = πm and consider an elimination of the
points of indeterminacy of g,

(2.3)

where X* is nonsingular and h is the induced surjective morphism (see
[H]). In this situation,

is satisfied. Let

(2.2)

be the restriction of (2.2) over yeYf where X* = {f-τ)-\y\ Zy =
n~x{y)9 hy = h\z and so on. gv is defined if the indeterminacy Σg of g
does not contain Xy.

Then we have simultaneous Iitaka fibrations for general fibers as
follows:

PROPOSITION 2.7. Let f: X->Y be a family of algebraic manifolds
of dimension n with 1 ^ tc(X/Y) <^ n — 1. And consider (2.2). Then

(a) The fibers of h over normal points of Z are connected.
(b) There exists a subset Yb in Y which contains a countable in-

tersection of nonempty open sets of Y such that we have tc(Xy) = ιc(X/Y)
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for any y eY\ Furthermore,

h,:X*->Z,

is the Iίtaka fibration of Xy for any y eYb.

PROOF. Let Yb be the set of points y eY which satisfies the fol-
lowing conditions.

(1) For any i e Z>0,

y

(2 ) For any i e N{XjY) satisfying i ^ m0 with m0 as in Lemma 2.1,
the birational map hij7no: Zt --> ZWo induces a birational map between the
fibers πϊ\y) and π;J(i/).

(3) /or is a smooth morphism over a neighborhood of ?/.
Yb clearly is a countable intersection of nonempty open sets of Y.

And for ye Y\ κ{Xy) = κ(X/Y) is clear by (1) and Step 1 of the proof
of Theorem 2.4. Further for any y eY\ hy: X*-+Zy is birationally
equivalent to the m-th canonical rational map of Xy by (1) and (3).
Hence by (2), hy is the Iitaka fibration of Xy. Thus the statement (b)
is true.

Next let X*^Z'^>Z be the Stein factorization of h. Then by (b)
and Theorem 1.3 (b), μ is generically one to one. Thus by Zariski's
main theorem, μ is an isomorphism over normal points of Z. This
proves (a). q.e.d.

We remark that ft is a generically smooth morphism by Sard's
theorem applied to the nonsingular variety X*. Thus rc(X*/Z) is well-
defined.

COROLLARY 2.8. κ{X\Z%) = 0.

PROOF. Since π~\Yh) and LS(X#/^) a r e countable intersections of
nonempty open sets of Z, there exists a p P such that Zy intersect
with L8(X*/Z). Let Zy be an Iitaka subset of Zy (see Theorem 1.3).
As Zy Π LS(X/Z*) is clearly a countable intersection of nonempty open
sets of Zy9 this is not empty. So if we take a point zeZyΓ\LS(X*/Z),
then

κ(X*/Z) = fc(h-\z)) = 0 . q.e.d.

3. A graded subring of the canonical ring. For later use, we
study graded rings. We fix an algebraic manifold V. Let R be the
canonical ring of V and let
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P = θ Pi , (where Po = C)

be a graded C-subalgebra of R. We also denote P [ ί ] = C[Pi] in the same
way as in § 1. We set

This is a semigroup.

DEFINITION 3.1. The number tc(P) is defined by

f max dim Proj P [ ί ] if N(P) Φ 0
tC(P) = J ( )

l if JSΓ(P) - 0 .
REMARK 3.2. It P = R itself, /c(P) is equal to the Kodaira dimen-

sion of V.

Now we study the properties of ιc(P).

LEMMA 3.3. // N(P) Φ 0 , then

ιc(P) = tr.degc P - 1 .

LEMMA 3.4. Tfeere iβ α positive integer m0 such that, for any
m ^ m0 satisfying meN(P), we have

dim Proj P [ m ] = /c(P) .

The above two lemmas are easily seen in the same method as in
the case of the Kodaira dimension. Our aim of this section is the fol-
lowing:

PROPOSITION 3.5. Assume that there exist a non-negative integer t,
positive real numbers a, β and a positive integer d such that for any
sufficiently large m,

am1 ^ dimc Pdm <: βmt

holds. Then we have t = /c(P).

PROOF. We first prove t ^ ιc{P). We put k = Λ ( P ) . Let x0, xl9 , xk

be a transcendental basis of P over C We may assume that every
%i (0 ^ i ^ k) belongs to Pno for some positive integer n0. We put

P (w0) AQ p

ieZ^Q

where the homogeneous part Pfo) of degree i is PinQ. Then the poly-
nomial ring C[xo,xlf •••,%] is a graded C-subalgebra of P(n0). Thus
we have

dimc PnQm^mk/k\ .
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Hence t ^ k is clear.
It remains to prove t ^ Λ ( P ) . We put r = κ(R) — tc(P) = tr .deg c R —

t r . d e g c P and let ylf y2, '—,yr be a transcendental basis of R over P.
We may assume that every yt (1 <̂  i ^ r) belongs to i?w, for some w'.
We put

-£1-/1, — ζ j ; JXi%' , Γ — Γ — K& -Lin'
iZ Z

Then it is clear that P'[ylf y2, ,
First we consider the graded ring P'h/J. By the grading of

we have dim P'[2/iL = dim PL + dim Pi_x + + dim P/ + 1. Thus by
assumption, we have a'mt+1 ^ dim P'h/i]w for any sufficiently large m
and some α' > 0. Repeating the above arguement r-times, we obtain

a"mt+r ^ dim P'[yu yt,- , yr]m ^ dim R'm

for m>0 and some a" > 0.
On the other hand, the Iitaka estimate of the Kodaira dimension

says

dim Rd,Λ ^ β'mκm

for m>0, some βr > 0 and <Z' > 0. Thus we have t + r <* Λ:(22) and we
are done. q.e.d.

4. Families over a nonsingular curve. In §§4 and 5, nonsingular
curves may not be complete.

In this section, we study families over a nonsingular curve. First,
we give a definition.

DEFINITION 4.1. For a variety V, we say that V is the quasi-
specialization of parabolic varieties if there exist a nonsingular variety
M9 a nonsingular curve C and a proper surjective morphism φ:M-+C
such that

(1) κ{MjC) = 0.
(2) V is equal to the associated reduced scheme of one of the ir-

reducible components of ^(O) for some 0 6 C.

REMARK 4.2. A parabolic variety V (see [U, § 11]) trivially is a
quasi-specialization of parabolic varieties since the second projection
p: VxC-^C satisfies the required property.

Our aim of this section is to prove the following:

THEOREM 4.3. Let f:X-+S be a family of n-dίmensional algebraic
manifolds over a nonsingular curve S such that 1 <; κ(X/S) ^ n — 1.



206 T. ASHIKAGA

Then for any seS, the fiber X8 has the following property: There exist

a nonsingular model Xf of X8, a variety T and a fiber space ψ: Xf —> T

such that

(1) dim T = κ(X/S).
(2) There is an open set T of T such that, for any t e T, the

fiber ψ'\t) is irreducible nonsingular and is the quasi-specialization
of parabolic varieties.

In the situation of Theorem 4.3, we consider the following diagram

putting N sufficiently large.

U

where X* —• W-^> Z is the Stein factorization of h, U is the pull back of
the defining locus of g by τ and others are the same as in (2.2) with
Y = S. We may assume each component of any fiber of for is non-
singular by Hironaka's theorem.

From now on, we fix a point seS. We consider the fiber space

(4.2) t8: X* -> W8 ,

where X* is the strict transform of Xs with respect to τ, i.e., the closure
of U8 = UnX?, t8 is the restriction of t to X* and W8 is the image of
XI by t8. As XI is one of the irreducible components of X?, X* is non-
singular.

Now as a preparation for Lemma 4.5, we review the following,
which was proved by Lieberman-Sernesi [LS, p. 79].

PROPOSITION 4.4. Let X be a variety, S be a nonsingular curve,
f: X-+ S be a proper morphism and F be an ^s-flat coherent sheaf on
X. Then,

(1) f*F is a locally free sheaf of finite rank.
( 2 ) For any s e S, the natural map

is injective.
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In the situation before Proposition 4.4, we have

LEMMA 4.5. dim Ws = κ(X/S).

PROOF. For any point ueS, we set

= Θ (/>!jF(x)CM).

This is a graded C-subalgebra of the canonical ring R(XU) by Proposi-
tion 4.4 (2).

Now we set Z8 = h(Xf). Since by Proposition 4.4 it is easy to
show that the indeterminacy Σg does not contain X89 Zs coincides with
the closure of g(X8\X8ΠΣg). Then we have Zs = Proj P(Xs)

m. As N
is sufficiently large, we have

dim Z. =

where fc(P(Xs)) is as defined in § 3.
On the other hand, for a general point ueS, we have R(XU) =

P(XU) and κ(Xu) = κ(X/S). As dim P(XJ, = dim P(X.)< holds for any
i e Z^o by Proposition 4.4 (1), the Iitaka estimate with respect to Xu

says

am'iz<s) ^ dim P(X8)dm ^ /3m*(X/S)

for some a > 0, /3 > 0, d e Z>0 and any sufficiently large m. Hence by
Proposition 3.5, we have

Thus we have dim Z8 = ιc(X/S). As dimTFs = dimZs is clear, we are
done. q.e.d.

We consider (4.2). As X* is nonsingular, there is an open set W's
of W8 such that (1) t8 is a smooth morphism over WΊ, (2) W'aat(U)
and (3) the closure of Uw = (t\u)~\w) coincides with (Xf)w for any w e W'8.
The assertion (3) is possible by Lemma 2.5. We take and fix any point
weft'..

LEMMA 4.6. There exists an irreducible curve C on W passing
through w such that

(a) LSf( W) Π C is a countable intersection of nonempty open sets
of C.

(b) There is an irreducible component X of t~ι{C) such that
(1) the induced morphism t = t\y. X —> C is surjective.
(2) (X*s)w = (ta)~\w) is one of the irreducible components of the

fiber Xw = t~\w).
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PROOF. We take points pehSt(W)Π t(U) satisfying pΦw, xe
t~\w)Π U and yet~\p)C\ U. By a lemma in Mumford [M, p. 56], we can
take an irreducible curve D on X passing through x and y. We set
C = t(D). Since C is a curve passing through p, the desired property
(a) is clearly satisfied.

Next we consider the proper morphism t\t-iiC): t~\C) —>C. As the
general fibers of t\t-iίC) are irreducible by (a), there exists only one ir-
reducible component X of t~\C) which dominates C. We set U = Xf\ U
and consider the dominant morphism

t\r.U->C.

t\ΰ is an equidimensional morphism of relative dimension n — tc(X/S)
since U is irreducible, C is a curve and by (a). Then the closure of
the fiber Uw = (t\u)~\w) coincides with (Xf)w9 because Uw is contained
in Uw = (t\u)-\w), the closure of Uw coincides with (Xf)w, dim Uw =
dim (Xi)w = n — tc(X/S) and (Xt)w is irreducible. As the closure of U
coincides with X, the closure of Uw is contained in the fiber Xw. Thus
the property (b) is clearly satisfied. q.e.d.

Now we prove Theorem 4.3. For any seS, we show that the fiber
space ts: XI -» Ws has the desired property. The statement (1) was
proved in Lemma 4.5. For any weW's, we consider t:X->C. Let
C —>C be the normalization, 1 - ^ I b e a desingularization and t: X-+C
be the induced fiber space. By Corollary 2.8, Lemma 4.6 (a) and our
construction, we have fc(X/C) = 0. Thus Lemma 4.6 (b) says that t7\w)
is the quasi-specialization of parabolic varieties for any w e Wf

s. q.e.d.

5. Proofs of main theorems. We prove Theorem I. We take any
point yeY. By a lemma in [M, p. 56], we can take an irreducible curve
C on Y passing through y such that C Π hS(X/Y) is a countable inter-
section of nonempty open sets of C. Let τ:C ~> C be the normalization
and f: X= X xγ6-^C be the induced family. Since τ{LS(X/C)}Π
IS(X/Y) Φ 0 , we have

κ(X/C) = κ(X/Y) .

As Xy is isomorphic to f~ι(y) for some y eC, our assertion is clear by
Theorem 4.3. q.e.d.

Next we formulate the lower-semicontinuity of the Kodaira dimen-
sion of a degenerating family of parabolic varieties.

CONJECTURE PDG%. Let f:M^S be a proper surjective morphism
with connected fibers of relative dimension n from an algebraic mani-
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fold M to a nonsingular curve S. Assume that there is a set P =
{Vu Pi, ''', Vr) °f points of S such that (1) f is a smooth morphism over
S\P. (2) For any seS\P, we have tc(Ms) = 0. Let

Mn = U m<yJlfJί
3

be the decomposition into irreducible components of the fiber MPi —
f~\Pi) for Pi 6 P. Then we have

fc(MH]) ^ 0

for any pteP and j .

REMARK. When n = 1, Conjecture PDGi is true because any com-
ponent of a degenerate fiber of a degenerating family of elliptic curves
is elliptic or rational (see Kodaira [K]).

When n = 2, every known example of degenerating families of sur-
faces of parabolic type satisfies the statement of Conjecture PDG2 (see
for example Persson [P]).

We prove Theorem II. For any yeY, let ψ: X* —> T be the fibra-
tion defined in Theorem I. For a point t e T, let φ: M-+C be the fiber
space which induces on ψ~\t) the quasi-specialization of parabolic vari-
eties. Then Conjectures ΌFn-kfQ and PDGw_fc clearly imply fc{ψ~\t)) ^ 0.
Thus by Theorem 1.4, we have

tc(Xy) = ιc(X*) ̂  fc(ψ~\t)) + dim T ^ ιc(X/Y) .

On the other hand, tc(Xy) ^ ιc(X/Y) is also true by Theorem 2.4. Hence
we obtain tc(Xy) = κ(X/Y). q.e.d.

Since Conjectures DF1)0 and PDGi are true, we have:

COROLLARY. Conjecture DFΛ>W_1 is true.
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In this appendix we shall show that PDG2 is true. Since DF2)0 is
true by virtue of the classification of algebraic surfaces, Theorem II
implies the validity of DFΛjΛ_2.

The conjecture PDG2 is true by the following.

PROPOSITION. Let f:M-+D be a proper surjective morphism of a
three dimensional complex manifold M to a disk D = {z e C\ \ z | < ε} with
connected fibers. Assume that f is smooth at each point on f~\D*), J9* =
D — {0} and f is protective. Then for each irreducible component E of
the fiber f~x(ϋ), we have

where Mx = f~\x) is a general fiber of f.

Note that K is invariant under smooth deformations for surfaces.
The above proposition was proved by Persson [P] except a few cases.
By virtue of Kulikov [Ku], Persson-Pinkham [P2], we can prove the pro-
position in these cases. For reader's convenience, we give a detailed
proof.

PROOF OF PROPOSITION. If ιc(Mβ) = 2, the proposition is trivially
true. Therefore, first assume κ(Mx) = 1, that is, M9 is an elliptic sur-
face of general type. Then, all fibers My, y eD* are elliptic surfaces of
general type and there is a positive integer m such that the m-canoni-
cal mapping ΦmK: My->Cy = ΦmK(My) associated with the m-canonical
system \mKMy\ of My is a morphism and gives the structure of an el-
liptic surface for each My,yeD*. (See [K] and [I2].) Let
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be a diagram similar to that in § 1. The meromorphic mapping g is
holomorphic on ikf* = f~\D*). Let h:M-*M be obtained by a succes-
sion of monoidal transformations along non-singular centers such that
g = g°h: M —> Z is a morphism. If the proposition is true for the fami-
ly / = foh: M->D, then it is also true for the original family /: M-+D.
Hence, we can assume that g is a morphism. For the same reason, we
can assume that Z is a two dimensional complex manifold. By our
construction, every regular fiber of g is a non-singular elliptic curve.
Let us consider an irreducible component E of the fiber f~\Q). By
taking a finite succession of monoidal transformations of M and Z along
non-singular centers, we can assume that E is non-singular and g(E) is
a non-singular curve on Z. Since general fibers of g are connected,
every fiber of g\E: E —> g{E) is connected. Let peg(E) be a general
smooth analytic curve in Z passing through p such that g~\C) is non-
singular. Then each general fiber of gc: g~\C) —> C is a non-singular
elliptic curve. Since flrU'^p) is contained in gc\p) and any irreducible
component of gc\p) is an elliptic curve or a rational curve, a general
fiber of g\E: E—> g(C) is an elliptic curve or a rational curve. Hence,
by Theorem 1.4, we have

κ{E) ^ 1 .

This is the desired result.
Note that in the proof we need not assume that / is protective so

that the proposition is valid for any fibration f:M-^D with κ(Mx) — 1.
Next we consider the case in which ιc(Mx) = 0. First we will show

that we can assume that all fibers over Z)* are minimal.
Let ft) be a non-zero element in H\M, oo%fD). (Since f*ω$γD is torsion

free, hence free over D, we can always find such an element.) If a
regular fiber Mx contains an exceptional curve of the first kind, by [W,
Proposition 2.4, p. 291], all regular fibers over Z>* contain exceptional
curves of the first kind. Moreover, all exceptional curves of the first
kind on each regular fiber do not intersect each other. Therefore, if
necessary, taking a finite ramified covering D of D ramified at the
origin and a non-singular model M of MxDD, we may assume that
there exists an irreducible divisor E appearing in the divisor (α>) such
that the intersection Ef]Mx is an exceptional curve of the first kind on
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each fiber Mxy xeD*. (Note that by the argument given below if the
proposition is valid for /: M —> D, it is also valid for our original family
f:M-+D.) Let ί7 be a relatively ample divisor of f:M-^D. We let
m be the intersection number (FPιMx)'(EnMx) on Mx. Let us consider
an invertible sheaf OM(n(F + mE)) for a sufficiently large positive inte-
ger n and consider a diagram

mE)))

M .

Then h is a morphism on If* = f~\D*), hy: My —> Myj y e D* is a cont-
raction morphism (that is hy(E Π My) is a point) and M' is smooth over
D*. We let Mι be a nonsingular model of Mr obtained by a finite suc-
cession of monoidal transformations along non-singular centers contained
in the fibers over the origin. Since h is bimeromorphic, the proposition
is true for the family f: M-+D if and only if it is true for fλ: M1-^ D.
Applying this process finitely many times, we can assume that all re-
gular fibers of /: M —• D do not contain exceptional curves of the first
kind.

Next we will show that it is enough to consider the case in which
pg(Mx) = 1 for a regular fiber. Assume pg(Mx) = 0. Then there exists
a positive integer m Ξ> 2 which is a divisor of 12 such that Pm(Mx) =
1, Pι(Mx) = 0, I = 1, 2, , m — 1. Then, using a divisor (ω) for a non-
zero element ω e H\M, CO^TD), we can construct an m-sheeted covering
g:M-^M which may ramify along divisors contained in the fiber
over the origin. (See, for example, [U, p. 176-177].) Note that
gy: My-+ My is an m-sheeted covering with pg(My) — 1 for each τ/eD*.
Let M be a non-singular model of M obtained by a finite succession of
monoidal transformations along non-singular centers contained in the
fiber over the origin. Then for an irreducible component E of /-1(0),
there is an irreducible component E of the fiber over the origin of
f:M->D such that E-+E is a generically finite morphism. Since
tc(E) ^ κ(E), it is enough to prove the proposition under the assump-
tion that each regular fiber is a minimal surface with K — 0, pg = 1,
hence an abelian surface or a KZ surface.

Now by [N] (for a family of abelian surfaces), [K] and [P2] (for a
family of KS surfaces), there exists a finite ramified covering D -»D
ramified along the origin and a fibration f:M~^D which is bimeromor-
phically equivalent to MxDD-^D such that our proposition is true for
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the family /: M -»D. Then, for the same reason as above, it is also
true for our family /: M" —> D.

Finally we consider the case in which κ(Mx) = — co for a general
fiber Mx. Since / is projective, Mx is a rational surface or a ruled
surface. Therefore the surface Mx contains a rational curve lx with
self-inter sect ion number l\ = 1 or 0 in Mx. Moreover if l\ = 1, then Mx

is a rational surface. Let us consider the relative Hubert scheme
R'ubM/D. By the stability theorem ([K2]), the component F of Hilb1/AD

containing the point corresponding to lx is of positive dimension.
Since the natural morphism p: F —> D is proper, there is a holomorphic
map π: E = {teC\\t\ < ε'} —> F such that πop: E-*Z) is a finite ramified
covering. We may assume that πop is ramified only over the origin.
Let / : ¥ - > £ be a non-singular model of MxDE-^ E and L be the pull
back of the universal family £f over F to £*. Then the image L of
L to M is a divisor on M such that for a general fiber M"y of /, L Π
M"y = £y is a non-singular rational curve with l\ — 1 or 0 in J(ίr Let
us consider a diagram

For the same reason as above, we can assume that g is a morphism. If
ί| = 1, then fχO&(L) is a locally free sheaf of rank 3, since My is ra-
tional. Moreover, in this case, it is easy to show that S = P(f*O&(L))
and g is bimeromorphic, since Φty\ My —> P2 is birational. Hence any
component G of the fiber of / over the origin is a rational or ruled
surface. Hence κ(G)= — °°. This implies our proposition. Assume
l\ = 0. Then, Φty\ My->Cy = ΦLy(My) gives the structure of a ruled sur-
face, if we blow down all exceptional curves contained in fibers of Φι .
Hence, in this case, S is a surface and general fibers of g are P17s.
Hence by an arguement similar to that in the case of ιc(Mx) = 1, we
conclude that each component of the fibers of / over the origin is ra-
tional or ruled. Thus we obtain the desired result.
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