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ON THE LAPLACIAN ON A SPACE OF
WHITE NOISE FUNCTIONALS

By

Isamu D\^OKU*

\S 1. Introduction.

We are greatly interested in the Laplacian on a space of white noise func-
tionals. To have in mind aspects of application to mathematical physics, we
can say that it is common in general to use the weak derivative $D$ on a given
basic Hilbert space, so as to define $d_{p}$ which just corresponds to the de Rham
exterior differential operator. In doing so, one of the remarkable characteristics
of our work consists in adoption of the Hida differential $\partial_{t}$ instead of $D$ . This
distinction from other related works does provide a framework of analysis
equipped with the function for perception of the time $t$ , with the result that it
is converted into a more flexible and charming theory which enables us to
treat time evolution directly. It can be said, therefore, that our work is suc-
cessful in deepening works about the general theory done by Arai-Mitoma [2],

not only on a qualitative basis but also from the applicatory point of view in
direct description of operators in terms of time evolution.

The differential $\partial_{t}$ has its adjoint operator $\partial_{t}^{*}$ in Hida sense and it is called
the Kubo operator. Indeed, $\partial_{t}^{*}$ is realized by extending the functional space

even into the widest one $(E)^{*}$ , where a Gelfand triple $(E)\subset(L^{2})$ (; $(E)^{*}$ is a
fundamental setting in white noise analysis, in accordance with our more general

choice of the basic Hilbert space $H$ . On the contrary, we define the adjoint
operator $d_{p^{*}}$ of $d_{p}$ associated with $\partial_{t}$ without extending the space up to that
much. Consequently the Laplacian $\Delta_{p}$ constructed in such an associated manner
with $d_{p}$ (so that, with $\partial_{t}$ ) is realized as an operator having analytically nice
properties, such as $C^{\infty}$-invariance, etc. On the other hand, when we take the
Kubo operator as its adjoint, then the so-called Hida Laplacian $\Delta_{H}$ is naturally

derived. It is, however, well-known that $\Delta_{H}$ is an operator which maps $(S)$

into $(S)^{*}$ , or in our general setting from $(E)$ into $(E)^{*}$ , which means that it
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transforms a smooth class not into itself, but into the widest class of generalized
white noise functionals (or the so-called Hida distributions). On this account
the following problem is highly interesting in the standpoint of operator theory
or infinite-dimensional analysis.

Let us choose the Hida differential $\partial_{t}$ as the starting point of the theory.

Then if we assume that the Laplacian $\Delta$ constructed according to the de Rham
theory should possesse a nice property such that it maps a smooth class into
itself $(i.e. \Delta:C^{\infty}\rightarrow C^{\infty})$ , what on earth would its adjoint $d_{p^{*}}$ naturally corre-
sponding to $\partial_{t}$ (hence $d_{p}=d_{p}(\partial_{l})$ ) be like? This is one of our motivations in
this paper (cf. the beginning of \S 5). The followings are in fact outstanding
features of our work and what have been acquired in connection with the
aforementioned problem: (1) in regard to the adjoint operator $d_{p^{*}}\equiv d_{p^{*}}(\partial_{t})$ of
$d_{p}\equiv d_{p}(\partial_{t})$ , we have as a matter of fact succeeded in constructing it in such a
satisfactory manner as to fit into our requirement; (2) as a consequence the
constructed Laplacian $\Delta_{p}$ , which is associated with $\partial_{t}$ , enjoys extremely nicer
properties on analytical basis, $i.e.,$ $\Delta_{p}$ is a $C^{\infty}$-invariant operator on a space of
white noise functionals (cf. Theorem 7.7); (3) moreover, peculiar ideas of
generalized functions totally released from smearing with respect to time $t$

produces the corresponding higher version of theory in operators on functionals,
which allows us, despite its implicity, to draw the description of time evolu-
tion; (4) our $\Delta_{p}$ primarily settled with the Hida derivative $\partial_{t}$ is a Laplace-

Beltrami type operator getting possession of such a nice property, and it is
completely distinct from other Laplacians in white noise analysis, such as the
L\’evy Laplacian $\Delta_{L}$ , the Gross Laplacian $\Delta_{c}$ , and the Volterra Laplacian $\Delta_{V}$ ; (5)

the Laplacian is in a sense successfully constructed in concrete and satisfactory
manner, simply corresponding to our more general choice of the basic Hilbert
space $H$, and the explicit form $\Delta_{p}\omega$ of the Laplacian on $\omega\in \mathcal{P}$ (the space of
polynomials) is also obtained (cf. Proposition 6.3); (6) as one of applications in
terms of our Laplacians, this paper includes several versions of the so-called de
Rham-Hodge-Kodaira decomposition theorem associated with Hida derivative in
white noise calculus or Hida calculus (cf. Theorem 5.3, Theorem 7.1, and
Theorem 7.8). To comment upon the above (4) in addition, it is therefore
expected in a quite natural way that $\Delta_{p}$ should play a remarkable and proper
role in white noise analysis, which is entirely different from those of the other
Laplacians. It remains to be stimulating object in relation with other works
[21, 28 &30] on Laplacians, and it is highly interesting as well.

This paper is organized as follows:
\S 1. Introduction.
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\S 2. Notation and preliminaries.

\S 3. Hida differentiation.
\S 4. De Rham complex.

\S 5. Laplacians $\Delta_{p}(\Theta, \partial_{t})$ of de Rham complex $\{d_{p}(\Theta, \partial_{t})\}$ .
\S 6. Explicit forms of the Laplacians $\Delta_{p}(\Theta, \partial_{l})$ .
\S 6. De Rham-Hodge-Kodaira decompositions associated with Hida derivative.
\S 8. Concluding remarks.

In \S 2 we shall introduce notations commonly used in this whole paper, and
preliminary results are also stated in \S 2, some of which are generalizations
[9-11] of the well-known results on basic and fundamental theorems in white
noise analysis, having been obtained by many pioneers and forerunners [17, 24,
25 &27]. \S 3 is devoted to general but brief explanations on the basic ideas,
important concepts, and interpretations of Hida differentiation. This will be
the key to understand the succeeding sections. There are contained some asser-
tions, simply corresponding to our general setting (cf. [12-15]). \S 4-\S 7 are the
main parts of our paper. In \S 4 we shall construct de Rham complexes. For
a complex Hilbert space $K$, let $\Lambda^{p}K$ be the space of exterior product of order
$p$ . Consider a nonnegative selfadjoint operator $A$ on a given normal Hilbert
space $H$, and we denote by the symbol $\Theta$ the linear closed operator: $H_{C}\rightarrow K$,

determined regarding $A$ . Then the operator $d_{p}$ from $\mathcal{P}(\Lambda^{p}K)$ into $\mathcal{P}(\Lambda^{p+1}K)$ ,

depending on $\Theta$ , is able to be realized by making use of the Hida differential
operator. In \S 5 we shall state a systematic construction of Laplacians $\Delta_{p}$ of
$\{d_{p}\}$ . The corresponding Laplace operator can be constructed theoretically and
get into entity when we take advantage of the adjoint operator and have resort
to functional analytical method (see Proposition 5.2). By virtue of closedness
of the sequences of complexes we can obtain the de Rham-Hodge-Kodaira
theorem (Theorem 5.3) in $L^{2}$-sense [16]. In \S 6 the explicit form of the Lapla-

cian $\Delta_{p}$ will be obtained by a direct computation (see Proposition 6.3), where
the leading idea is similar to [2], however, as stated before, the employed

calculus and basic mathematical background are actually different, since we are
totally based upon the white noise calculus or Hida calculus. In \S 7 we shall
make mention of several versions of de Rham-Hodge-Kodaira type theorem
associated with Hida derivative [8]. It is easy to see that such a type of
decomposition holds for the space of smooth test functionals, induced by the
Sobolev type space $H^{2,k}$ of functionals relative to the Laplacian (Theorem 7.1),

namely,

$H^{2,\infty}(\bigwedge_{2}^{p}(K))={\rm Im}[\Delta_{p}(\Theta)\uparrow H^{2,\infty}(\bigwedge_{2}^{p}(K))]\oplus Ker\Delta_{p}(\Theta)$ .
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On this account we may employ the Arai-Mitoma method (1991) to derive the
similar decomposition theorem even for the category $(S)(\wedge^{p}K)$ , just correspond-

ing to the space of white noise test functionals (see Theorem 7.8). Basically,
principal ideas for proofs are due to the spectral theory. However, some of
statements include subtler precise estimates, for which we are definitely re-
quired to execute elaborate computation with some other results in orthodox
probability theory and Malliavin calculus.

Finally it is quite interesting to note that this sort of result leads to the
study of Dirac operators on the Boson-Fermion Fock space (cf. [1]), and also
that our analysis could be another admissible key to the supersymmetric quantum

field theory $(e.g., [34])$ . We believe that this formalism proposed in this paper
should be possibly regarded as a clue to open a new pass towards analysis of
Dirac operators in quantum field theory through the framework of Hida calculus.

\S 2. Notation and preliminaries.

Let $T$ be a separable topological space equipped with a $\sigma- finite$ Borel mea-
sure $d\nu(t)$ on the topological Borel field $B(T)$ . Further suppose that $\nu$ be equi-
valent to the Lebesgue type measure $dt$ . $H:=L^{2}(T, d\nu;R)$ is the real separa-
ble Hilbert space of square integrable functions on $T$ . Its norm and inner
product will be denoted by . $|_{0}$ and $(\cdot, )_{0}$ . Let $A$ be a densely defined non-
negative selfadjoint operator on $H$. We call $A$ with domain Dom $(A)$ standard
if there exists a complete orthonormal basis $\{e_{n}\}_{n=0}^{\infty}\subset Dom(A)$ such that

(A.1) $Ae_{n}=\lambda_{n}e_{n}$ for $\lambda_{n}\in R$ ,

(A.2) $ 1<\lambda_{0}\leqq\lambda_{1}\leqq\cdots-\infty$ ,

(A.3) $\sum_{n=0}^{\infty}\lambda_{n}^{-2}<\infty$ holds (cf. [9, 10]).

0bviously, $A^{-1}$ is extended to an operator of Hilbert-Schmidt class. Put

$\rho:=\lambda_{0}^{-1}=\Vert A^{-1}\Vert_{op}$ ,

and

$\delta:=(\sum_{n=0}^{\infty}\lambda_{n}^{-2})^{1/2}=\Vert A^{-1}\Vert_{HS}$

where $\Vert\cdot\Vert_{op}$ is the operator norm and $\Vert\cdot\Vert_{HS}$ is the Hilbert-Schmidt norm. We
also note the following apparent inequalities:

$0<\rho<1$ , $\rho<\delta$ .
For a complex separable Hilbert space $K$, we further assume that
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(A.4) There exists a densely defined, closed linear operator
$\Theta$ from $H_{C}$ into $K$ such that $ A=\Theta*\Theta$ ,

where we define the complexification $H_{C}=H+iH$ as usual way, and $\Theta*means$

the adjoint of $\Theta$ .
Given such a standard operator $A$ on $H$, we can construct a Gelfand triple

in the standard manner (see [22, p. 259], [27]). For $p\geqq 0$ let $E_{p}$ be the com-
pletion of Dom $(A^{p})$ with respect to the Hilbertian norm $|\xi|_{p}:=|A^{p}\xi|_{0},$ $\xi\in$

Dom $(A^{p})$ , where Dom $(A^{p})=H$ for $p<0$ . Then $E_{p}$ becomes a Hilbert space

with the norm . $|_{p}$ . We thus obtain a chain of Hilbert spaces:

.. . $\subset E_{p}\subset\cdots\subset E_{q}\subset\cdots\subset H\subset\cdots$

.. . $\subset E_{-q}\subset\cdots\subset E_{-p}\subset\cdots$

for $0\leqq q\leqq p$ . Equipped with the Hilbertian norms $\{|\cdot|_{p}\}_{p\geqq 0}$ ,

$E:=\bigcap_{p\geq 0}E_{p}$

becomes a nuclear Fr\’echet space. $E$ is topologized by the projective limit of
Hilbert spaces $\{E_{p}\}_{p\in Z}$ with inner products $(\xi, \eta)_{p}(\xi, \eta\in E)$ , and is called the
space of test functions on $T$ . The topological dual space $E^{*}$ of $E$ is obtained as

$E^{*}:=\bigcup_{p\geq 0}E_{-p}$ ,

$i.e.$ , the dual space $E^{*}$ of $E$ is the inductive limit of $E_{-p}$ as $ p\rightarrow\infty$ . $E^{*}$ is
equipped with the inductive limit convex topology ($e.g$ . [10, Eq. (3.1), \S III]).
The triplet $E\subset H\subset E^{*}$ is called a rigged Hilbert space [3] or a Gelfand triple.

Then note that the dual space $E_{c^{*}}=(E_{C})^{*}$ is equivalent to $(E^{*})_{C}=E^{*}+iE^{*}$ . It
is known that the strong dual topology of $E^{*}$ coincides with the inductive limit
topology in our setting (see [35]). Let $\mu$ be the Gaussian probability measure
on the measurable space $(E^{*}, \mathscr{Q})$ whose characteristic functional is uniquely
determined, by virtue of the Bochner-Minlos theorem, by

(2.1) $\int_{E*}\exp(i\langle x, \xi\rangle)\mu(dx)=\exp(-\frac{1}{2}|\xi|_{0^{2}})$ , $\xi\in E$ ,

where $B$ is the $\sigma$ -algebra containing cylinder sets. For simplicity we denote
only by $\langle\cdot, \cdot\rangle$ the canonical bilinear forms between any dual pairs unless it
causes any confusion in the context. For instance, when $\langle\cdot, \cdot\rangle$ is a bilinear
form on $E^{*}\times E$ , then it is naturally extended to a C-bilinear from on $E_{c^{*}}\times E_{C}$ .
We will denote the space $L^{2}(E^{*}, \mathscr{Q}\mu;C)$ briefly by $(L^{2})$ according to the
notation in [17]. Let $\Vert\cdot\Vert_{0}$ denote its norm. Note htat $(L^{2})$ is a complex Hilbert
space. We them assume the following three conditions (cf. [9-11]) which are
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suggested by Kubo-Takenaka [24].

(A.5) For every $\xi\in E$ there exists a unique continuous function
$\xi$ on $T$ which coincides with $\xi$ up to $\nu$-null functions.

(A.6) For each $t\in T$ the evaluation map $\delta_{t}$ : $\xi\rightarrow\xi(t),$ $\xi\in E$ ,

is continuous, $i.e.,$ $\delta_{t}\in E^{*}$ .

(A.7) The map $t\rightarrow\delta_{t}$ is continuous from $T$ into $E^{*}$ .

By virtue of (A.5) we agree then that $E$ consists of continuous functions. The
symbol $E_{c^{\otimes n}}$ denotes the n-fold tensor product of the complexification of $E$ .
For $f\in E^{\Theta n}$ and $p\in R$ , define $|f|_{\rho.\otimes n}:=|(A^{p})^{\otimes n}f|_{0}$ . Let $(E_{p})_{C^{\wedge}}^{\otimes n}$ be the n-fold
symmetric tensor product of $(E_{p})_{C}$ . $E_{C^{\emptyset n}}^{\wedge}$ denotes the projective limit of $(E_{p})_{c^{\wedge}}^{\otimes n}$

and $(E_{c^{*}})^{\wedge}\otimes n$ the inductive limit of $(E_{-p})_{C^{\wedge}}^{\otimes n}$ as $p$ tends to infinity. In the fol-
lowing we shall consider all the time the inductive limit space together with
the inductive limit convex topology.

REMARK 2.1. Note that the measure $\nu$ is supposed to be rotation invariant
in the setting of white noise calculus. $T$ is often thought of as time parameter

space. In the above we have in mind the harmonic oscillator Hamiltonian [19,

p. 148] as a concrete model of $A$ (cf. Example 2.1 given later in \S 2), which is
typical in Hida calculus (see [7, 27]).

By the Wiener-It\^o decomposition theorem we have

(2.2) $(L^{2})=\sum_{n=0}^{\infty}\oplus K_{n}$ ,

where $K_{n}$ is the space of n-fold Wiener integrals $I_{n}(f_{n}),$ $f_{n}\in H_{C^{\otimes n}}^{\wedge}$ (cf. [24,

1981] or [9, Remark 1.2, \S I]). $H_{C^{\otimes n}}^{\wedge}$ is the n-fold symmetric completed Hilbert
space tensor product of the complexification of $H$, hence $H_{C^{\otimes n}}^{\wedge}$ is again a Hilbert
space. It is a fact that $(L^{2})$ is canonically isomorphic to the Fock space over
$H_{C}$ , that is,

(2.3) $(L^{2})\cong\sum_{n=0}^{\infty}\oplus H_{C^{\emptyset n}}^{\wedge}$

For each $\varphi\in(L^{2})$ there exists a unique sequence $\{f_{n}\}_{n=0}^{\infty},$ $f_{n}\in H_{C^{\otimes n}}^{\wedge}$ such that

(2.4) $\Vert\varphi\Vert_{0^{2}}=\sum_{n=0}^{\infty}n!|f_{n}|_{0^{2}\otimes n}$ ,

and

(2.5) $\varphi(x)=\sum_{n=0}^{\infty}\langle:x^{\otimes n}:, f_{n}\rangle$ , $\mu- a.e$ . $x\in E^{*}$
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where the right hand side is an orthogonal direct sum of functions in $(L^{2})(e$ . $g$ .
[9, Theorem 2.3]; see also [20]). The symbol $:x^{\otimes n}$ : is the Wick ordering of
the distribution $ x^{\otimes n}\in(E^{\otimes n})^{*}\wedge$ , which is defined inductively as follows:

; $x^{\otimes 0}$ $;=1$ , ; $x^{\otimes 1}$ $;=x$ ,

; $x^{\otimes n}$ $;=x\otimes;x^{\otimes(n-1)}$ ;$-(n-1)_{T\otimes;x^{\otimes(n-2)};}^{\wedge}\wedge$ , $(n\geqq 2)$

where $\tau\in(E\otimes E)^{*}\wedge$ is the distribution defined by

(2.6) $\langle\tau, \xi\otimes\eta\rangle=\langle\xi, \eta\rangle$ , $\xi,$ $\eta\in E$ .

Note that $\tau$ is also expressed as

(2.7) $\tau=\int_{T}\delta_{t}^{\otimes 2}d\nu(t)=\sum_{j=0}^{\infty}e_{j}\otimes e_{j}$ .

When we define S-transform as

(2.8) $S\varphi(\xi)=\int_{E*}\varphi(x)F(\xi;x)\mu(dx)$ ,

then we have $(SI_{n}(f_{n}))(\xi)=\langle f_{n}, \xi^{\wedge}\otimes n\rangle$ , where

$ F(\xi;x)=:\exp\langle x, \xi\rangle$ $:=\exp(\langle x, \xi\rangle-\frac{1}{2}|\xi|_{0^{2}})$

(see [24]; also [9, \S I]). Based upon the result in (2.4) and (2.5) we may intro-
duce a second quantized operator $\Gamma(A)$ on $(L^{2})$ . Let Dom $(\Gamma(A))$ be the sub-
space of $\varphi\in(L^{2})$ given as in Eq. (2.5) such that

(i) $f_{n}=0$ except finitely many $n$ ;
(ii) $f_{n}\in Dom(A)\otimes_{alg}\cdots\otimes_{a}\iota_{g}$ Dom $(A)$ (n-times).

Then for $\varphi\in Dom(\Gamma(A))$ we put

(2.9) $(\Gamma(A)\varphi)(x)=\sum_{n=0}^{\infty}I_{n}(A^{\otimes n}f_{n})(x)$ .

Let $(E_{p})$ be the completion of Dom $(\Gamma(A)^{p})$ with respect to the Hilbertian norm

$\Vert\varphi)|_{p^{2}}$ $:=\Vert\Gamma(A)^{p}\varphi\Vert_{0^{2}}=\sum_{n=0}^{\infty}n!|f_{n}|_{p^{2}\otimes n}$

$=\sum_{n=0}^{\infty}n!|(A^{p})^{\otimes n}f_{n}|_{0^{2}\otimes n}$ ,

where $f_{n}\in(E_{p})_{C^{\wedge}}^{\otimes n}$ . Equipped with the norm $\{\Vert\cdot\Vert\}_{p\geqq 0}$ ,

$(E):=\bigcap_{p\geqq 0}(E_{p})$

becomes a nuclear Fr\’echet space. Let $(E)^{*}$ be the dual space of $(E)$ . For any
$\varphi\in(E),$

$\varphi$ has a continuous version $\tilde{\varphi}$ , and it is bounded on each bounded set
of $E^{*}$ , moreover the evaluation map $\delta_{x}$ : $\varphi\rightarrow\tilde{\varphi}(x)$ is a continuous linear func-
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tional on $(E)$ , $i.e.$ , $\delta_{x}\in(E)^{*}$ for any $x\in E^{*}$ (cf. [25]; see also [10, 11]). By

the above fact we always regard $(E)$ , as a space of continuous functions on $E^{*}$ .
An element in $(E)$ (resp. $(E)^{*}$ ) is called a test (resp. generalized) white noise
functional. We denote by $\langle\langle\cdot, \}\rangle$ the canonical C-bilinear form on $(E)^{*}\times(E)$ .

Lastly we introduce an example, which is enough to show that our general
setting stated above is not unsubstantial.

EXAMPLE 2.1. When $T=R,$ $d\nu(t)=dt$ , and when we choose $A=1+t^{2}-(d/dt)^{2}$ ,

then $\Theta$ is given by $d/0t-t(t\in R)$ with $H_{c}=K=L^{2}(R)$ , and we have $(E)^{*}=(S)^{*}$ ,

$(E)=(S)$ with Gelfand triple

$(S)\subset(L^{2})\subset(S)^{*}$ .

This is a typical model of white noise spaces in Hida calculus, originally intro-
duced by T. Hida $[17, 18]$ and developed by others [19, 22, 24 &29] (see also
$[7, 26]$ for its applications).

\S 3. Hida differentiation.

We now introduce a differential operator $\partial_{\iota}$ which plays a fundamental and
important role in white noise calculus. We call $\partial_{t}$ the Hida differential and
$\partial_{t\varphi(x)}$ a Hida derivative. 0riginally the operator $\partial_{t}$ is written as

$\partial/\partial x(t)=\partial/\partial\dot{B}(t)$

under the framework of choice $H=L^{2}(R;dt)$ , where $\dot{B}(t)$ indicates the formal
time derivative of one-dimensional Brownian motion $B(t),$ $t\in R$ (cf. [17, 18]).

Because the causal calculus or Hida calculus is the analysis on white noise
functionals and its basic idea is to take a white noise $\dot{B}(t)$ to be the system of
variables of white noise functionals, it is quite natural to consider $\partial_{t}=\partial/\partial\dot{B}(t)$

as its coordinate differentiation. It is needless to say that T. Hida’s original
idea was a farsighted choice of coordinate system fitting for the causal calculus,
if one sees its rapid exciting development and progress in white noise analysis
(WNA) for the last few decades (cf. [19, 20 &22]).

For $\varphi\in(E)$ and $\delta_{t}\in E^{*}$ we put

(3.1) $\tilde{\partial}_{t}\varphi(x):=(D_{\delta_{t}}\varphi)(x)$

$=\sum_{n=1}^{\infty}n\langle;x^{\theta(n-1)};, \delta_{t}*f_{n}\rangle$ ,

where $f_{n}\in E_{C^{\otimes n}}^{\wedge}$ . Note that $\tilde{\partial}_{t}=D_{\delta_{t}}$ is a continuous linear operator on $(E)[12]$ .
It is known that
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$(\tilde{\partial}_{t}\varphi)(x)=\lim_{\theta\rightarrow 0}\theta^{-1}\{\varphi(x+\theta\cdot\delta_{l})-\varphi(x)\}$ ,

for $\varphi\in(E)$ . For $\Phi\in(E)^{*}$ , its generalized U-functional $U(\xi)=U_{\Phi}(\xi)$ is defined
to be

$U[\Phi](\xi):=\langle\langle\Phi, : e^{\backslash \cdot}’:\rangle)$ , $\xi\in E$ .

where : $\exp$ $\langle$ ., $\xi\rangle$ : $:=\exp$ $\langle$ ., $\xi\rangle\times\exp(-(1/2)|\xi|_{0^{2}})\in(E)$ (see [29] for its charac-
terization). We can rephrase the above definition as follows: $(S\Phi)(\xi)=U[\Phi](\xi)$ .
In white noise calculus the collection $\{\dot{B}(t);t\in R\}$ is taken as a coordinate sys-
tem. Thus we need to define the coordinate differentiation with respect to
this system. This can be done directly through the U-functional. Let $\Phi$ be in
$(E)^{*}$ . Suppose that the U-functional $F$ of $\Phi$ has the Fr\’echet functional deriva-
tive $F^{\prime}(\xi;u)\equiv\delta F(\xi)/\delta\xi(u)$ . If the function $F^{\prime}$ ( $\cdot$ ; t) is a U-functional, then the
Hida derivative $\partial_{t}\Phi$ of $\Phi$ is the element in $(E)^{*}$ with U-functional $F^{\prime}(\cdot ; t),$ $i.e.$ ,
$U[\partial_{t}\Phi](\xi)=F^{\prime}(\xi;t)$ . Note that in general $\partial_{t}\Phi$ is a distribution as a function of
$t$ . In other words, according to Kubo-Takenaka [24] we have

(3.2) $\partial_{t}\Phi(x)=S^{-1}\frac{\delta}{\delta\xi(t)}S\Phi(x)$ ,

(cf. [12-15]). Let $\mathcal{P}$ be the set of polynomials in $E^{*}$ , and its element $P\in \mathcal{P}$ is
expressed as

$ P(x)=\sum_{n=0}^{k}\langle;x^{\otimes n};, f_{n}\rangle$ , $f_{n}\in E_{C^{\otimes n}}^{\wedge}$

We know that, for $t\in T,$ $\partial_{t}$ and the G\^ateaux derivative in direction $\delta_{l}$ coincide
on $\mathcal{P}$ (see [14, Lemma 2.2]).

If $\varphi\in(E)$ has chaos expansion $\{f_{n} ; n\in N_{0}\}$ , then denoting by $\tilde{\varphi}$ and $f_{n}$ ,
$n\in N_{0}$ their corresponding continuous versions (cf. [9, Remark 3.4], [10, Th.
3.1], and [11, Th. 2.1]), we have

$\tilde{\partial}_{t}\tilde{\varphi}(x)=\sum_{n=1}^{\infty}n\langle:x^{\otimes(n-1)};, f_{n}(r, )\rangle$ , $t\in T$ ,

where $ f_{n}(t, \cdot)=\delta_{t}*f_{n}=\langle\delta_{t}, f_{n}\rangle$ (see [14, Remark 3.2]). We always identify
$\varphi\in(E)$ with its continuous version on $E^{*}$ , so that, in the following we shall
suppress the distinction between them on a notational basis. The number
operator $N$ is defined by

(3.3) $N(\sum_{n=0}^{\infty}$ $\langle$ : $x^{\otimes n}$ ; , $ f_{n}\rangle)=\sum_{n=1}^{\infty}n\langle;x^{\emptyset n};, f_{n}\rangle$ .

By [14, Theorem 3.5], generally, for any $y\in E^{*},$ $D_{y}$ extends from $\mathcal{P}$ to a con-
tinuous linear map from $(E)$ into itself. In particular, $(E)$ is infinitely G\^ateaux

differentiable in every direction of $E^{*}$ , moreover, for any $\varphi\in(E)$ the function
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$ y\rightarrow D_{y}\varphi$ is strongly continuous from $E^{*}$ into $(E)$ . Therefore, in particular, the
function $ t\rightarrow\partial_{t}\varphi$ is continuous from $T$ to $(E)$ (see also [12, 13]). The followings
are verified by employing reflexiveness of $(E)$ (Lemma 4.1 in [14]) with the
celebrated Schwartz kernel theorem: namely, for $\varphi\in(E),$ $\nabla\varphi\in E\otimes(E)$ holds,
and for every $y\in E^{*}$ ,

(3.4) $ D_{y}\varphi=\langle y, \nabla\varphi\rangle$ , $\mu-a.e.$ ,

suggesting that $\nabla\varphi$ is the Fr\’echet derivative of $\varphi\in(E)$ . In particular, if $h\in H$,

then

(3.5) $D_{h}\varphi=\int_{T}h(t)\partial_{t}\varphi d\nu(t)$ , $\mu-a.e.$ ,

where the integral should be interpreted as a Bochner integral. Furthermore,
every $\varphi\in(E)$ is infinitely Fr\’echet differentiable and the k-th F\’echet derivative
of $\varphi$ is given by $\nabla^{k}\varphi\in E^{\wedge}\otimes k\otimes(E)$ (cf. Theorem 4.3 and Theorem 4.4 in [14]).

Moreover, the gradient $\nabla$ extends from $\mathcal{P}$ to a continuous linear operator from
Dom $(\sqrt{}\overline{N})$ into $L^{2}(T\rightarrow(L^{2});d\nu)$ (see [15]), where $(\nabla\varphi)(t, x)=\partial_{t}\varphi(x)$ .

\S 4. De Rham complex.

First of all we start on a notation. $\mathcal{P}$ is the whole space of C-valued poly-

nomials on $E^{*}$ as described in \S 3. Note that $\mathcal{P}$ is dense in $(L^{2})$ . For $p\in N_{+}$ ,

the $p$ -fold exterior product space $\Lambda^{p}K$ is defined by $\Lambda^{p}K:=\{\omega\in\otimes^{p}K:\sigma(\omega)=$

sgn $(\sigma)\cdot\omega,$ $\forall\sigma\in \mathcal{G}_{p}$ }, where $\mathcal{G}_{p}$ is the symmetric group of order $p$ . We intro-
duce the following metric in $\wedge^{p}K:i.e.$ , for any $\omega,$ $\gamma\in\wedge^{p}K$ such that $\omega=f_{1}\wedge$

... $\wedge f_{p},$ $\gamma=g_{I}\wedge\cdots\wedge g_{p},$ $f_{k}\in K,$ $g_{k}\in K$ (for any $k=1,2,$ $\cdots,$ $p$ ), the inner pro-

duct between $\omega$ and $\gamma$ is given by

$\langle\omega, \gamma\rangle^{\wedge pK}$

$:=\sum_{\sigma\in 9_{p}}$
sgn $(\sigma)\cdot\prod_{k=1}^{p}\langle f_{k}, g_{\sigma(k)}\rangle_{K}$ .

$\Lambda^{p}K^{c}$ denotes the completion of $\Lambda^{p}K$ by the above metric $\langle\cdot, \cdot\rangle^{\wedge pK}$ , with
$\Lambda^{0}K^{c}=C$ . Its element is called a $p$ -fold skew symmetric tensor, and $A_{p}$ is an
alternating operator from $\otimes^{p}K$ into $\Lambda^{p}K$. When $B:=\Theta\Theta*$ , then $D^{\infty}(B):=$

$\bigcap_{m\in N}$ Dom $(B^{m})$ . We denote by $\mathcal{P}(\Lambda^{p}K^{c})$ the whole space of $\Lambda^{p}K^{c}$-valued poly-

nomials on $E^{*}$ , whose element is expressed by

(4.1) $\omega(x)=\sum_{n=1}^{k}\tilde{P}_{n}(x)\cdot\xi_{n}$ , $x\in E^{*}$ ,

where $\tilde{P}_{n}\in \mathcal{P}$ , $\xi_{n}\in A_{p}(\otimes^{p}D^{\infty}(B))\subset\Lambda^{p}K^{c}$ . Notice that $\mathcal{P}(\Lambda^{p}K^{c})$ is dense in
$\Lambda_{2}^{P}(K)$ , and $\Lambda_{2}^{p}(K)$ is defined to be $(L^{2})\otimes\Lambda^{p}K^{c}$ which is identified with



Laplacian on a space of white noise functionals 103

$L^{2}(E^{*}\rightarrow\Lambda^{p}K^{c} ; d\mu)$ in a usual manner [32].

Now we will introduce a linear operator $d_{p}$ from $\mathcal{P}(\Lambda^{p}K^{c})$ into $\mathcal{P}(\Lambda^{p+1}K^{C})$

for each $p\in N_{+}$ . Actually, for any $\omega\in \mathcal{P}(\Lambda^{p}K^{c})$ especially of the form (4.1),

the operator $d_{p}(\equiv d_{p}(\Theta)=d_{p}(\Theta, \partial_{t}))$ is defined as

(4.2) $d_{p}\omega(x)\equiv(p+1)\sum_{n=1}^{k}A_{p+1}(\Theta\cdot\partial{}_{t}\tilde{P}_{n}(x)\otimes\xi_{n})$ ,

where $\partial_{t}$ is the Hida differential (see \S 3). We have $P_{n}$ in our standard repre-

sentation of element in $(L^{2})$ :

$\check{P}_{n}(x)=\sum_{l=1}^{N(n)}\langle:x^{\otimes t}:,$ $\gamma_{i\rangle}$ ,

where $f_{l}$ is the element in $E_{C^{\otimes l}}^{\wedge}$ given by

$f_{l}=\sum_{\alpha\in N}b_{\alpha}\eta_{\alpha_{1}.l^{\wedge\wedge}}\otimes\cdots\otimes\eta_{\alpha_{l}.l}lb_{\alpha}\in C,$ $\eta_{\alpha l}j’\in E_{C}$ ,

Note that all representations of $P_{n}$ are everywhere defined, continuous functions
on $E^{*}$ . Therefore, the U-functional of $ d_{p}(\Theta)\omega$ is given by

(4.3) $U[d_{p}(\Theta)\omega](\zeta)$

$=\sum_{n=1}^{k}\{\sum_{l=1}^{N(n)}\sum_{\alpha\in N}lb_{\alpha}\sum_{m=1}^{l}(\eta_{\alpha_{1},l}, \zeta)\cdots(\eta_{\alpha_{m}.l^{}}, \zeta)\cdots(\eta_{\alpha l}l,\zeta)\}$

. $\Theta(\eta_{\alpha_{\mu}.l}(t))\wedge w_{1}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}$ , $\zeta\in E$ ,

where the symbol $\vee means$ omission of the term. For each $p\in N_{+},$ $d_{p}(\Theta)$ is
densely defined linear operator in $\Lambda_{2}^{p}(K)$ , and, it is easy to see that

(4.4) $d_{p+1}(\Theta, \partial_{t})\circ d_{p}(\Theta, \partial_{t})=0$ on $\mathcal{P}(\Lambda^{p}K^{c})$ .

Its adjoint operator $d_{p^{*}}(\Theta)\equiv d_{p^{*}}(\Theta, \partial_{l})$ from $\Lambda_{2}^{p+1}(K)$ into $\Lambda_{2}^{p}(K)is$ defined by

$\langle d_{p}(\Theta)\omega, \gamma\rangle_{\Lambda_{2}^{p+1}(K)}=\langle\omega, d_{p^{*}}(\Theta)\gamma\rangle_{\Lambda_{2}^{p}(K)}$

for $\omega\in\Lambda_{2}^{p}(K),$ $\gamma\in\Lambda_{2}^{p+1}(K)$ .

REMARK 4.1. Note that the U-functional representation of $ d_{p^{*}}(\Theta)\omega$ is
given by

(4.5) $U[d_{p^{*}}(\Theta)\omega](\zeta)=\sum_{n=1}^{k}[\sum_{l=1}^{p+1}(-1)^{l-1}\{\sum_{j=1}^{N(n)}\sum_{\alpha\in N}b_{\alpha}\prod_{i=1}^{j}(\eta_{\alpha_{i}.j}j\zeta)_{H_{C}}$

$\times(\Theta^{*}\overline{w_{1}^{(n)}}, \zeta)_{H_{C}}-(\sum_{j\Rightarrow 1}^{N(n)}\sum_{\alpha\in N}b_{\alpha}\sum_{m=1}^{j}\eta_{\alpha_{m}.j}(t)j$

. $(\eta_{\alpha_{1},j}, \zeta)\cdots(\eta_{\alpha_{m}.j^{}}, \zeta)\cdots(\eta_{\alpha j}j\cdot, \zeta),$ $\Theta^{*}w_{1}^{(n)})_{H_{C}}\}$

$Xw_{1}^{(n)}\wedge\cdots\wedge\check{w}_{1}^{(n)}\wedge\cdots\wedge w_{p+1}^{(n)}]$ ,
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for $\zeta\in E$ (cf. Lemma 6.2). $\square $

It follows immediately from (4.4) that

(4.6) $d_{p^{*}}(\Theta, \partial_{t})\circ d_{p+1^{*}}(\Theta, \partial_{t})=0$ on Dom $(d_{p+1^{*}}(\Theta))$ .

It can be deduced from denseness and the adjoint argument that $d_{p}(\Theta)$ becomes
closable for each $p\in N_{+}$ . We write its extension $d_{p}$ of $d_{p}$ , and we put $\Lambda_{2^{*}}:=$

$\sum_{p=0}^{\infty}\Lambda_{2}^{p}(K)$ . Then the sequence $(\Lambda_{2}^{*}(K), \{d_{p}(\Theta, \partial_{t})\})$ forms a de Rham complex.

REMARK 4.2. For $\zeta\in E,$ $\omega\in \mathcal{P}(\Lambda^{p}K^{G})$ , we have

$(S\omega)(\zeta)=\sum_{n\Rightarrow 1}^{k}(\sum_{l=1}^{N(n)}\sum_{\alpha\in N}lb_{\alpha}\prod_{i=1}^{\iota}(\eta_{\alpha_{i}.t}, \zeta)_{H_{C}})w_{1}^{(\prime\iota)}\wedge\cdots\wedge w_{p}^{(n)}$ .

Recall Eq. (3.2) in \S 3, then (4.3) is obvious.

REMARK 4.3. In general, the operator $d_{p}(\Theta, \partial_{t})$ constructed in such a way
is not necessarily closable. The closability of $d_{p}(\Theta, \partial_{t})$ depends on the struc-
ture of the measure $\mu$ on $E^{*}$ . This is a very touchy problem indeed. How-
ever, fortunately in our case $d_{p}(\Theta, \partial_{t})$ is well-defined for the Gaussian white
noise measure $\mu$ defined in (2.1).

\S 5. Laplacians $\Delta_{p}(\Theta, \partial_{t})$ of de Rham complex $\{d_{p}(\Theta, \partial_{l})\}$ .
As we have stated in \S 1, it is clear why we stick to the Hida differentia-

tion, for we are aiming at opening a new pass toward analysis in mathematical
physics through the framework of Hida calculus. On the other hand, when we
say that an operator is called to be smooth if it transforms the space of smooth
elements into itself, there is the fact that the Hida Laplacian (cf. \S 1) is not
smooth any longer in the above sense. That is why we would like to know
what the desired Laplacian should be like, which is one of our motivations.
One may find an answer to the matter in this section (see also Theorem 7.7
in \S 7).

Thanks to the fact that ${\rm Im}(d_{p-1}(\Theta))$ and ${\rm Im}(d_{p^{*}}(\Theta))$ are closed for $p\in N_{+}$

in our case, by making use of the sesquilinear form and elaborate functional
analysis methods we can define a unique nonnegative selfadjoint operator acting
in $\Lambda_{2}^{p}(K)$ . This is nothing but the desired Laplacian corresponding to the de
Rham complex $\{d_{p}(\Theta, \partial_{i})\}$ . In the last we shall give a primictive version of
the de Rham-Hodge-Kodaira type decomposition for the p-forms in the $L^{2}$-sense.

We first consider the bilinear function $J_{p}$ on Dom $(J_{p}(\Theta)):=Dom(d_{p}(\Theta))\cap$
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Dom $(d_{p-1^{*}}(\Theta))$ , which is dense in $\Lambda_{z^{p}}(K)$ . For $p\in N_{+},$ $J_{p}(\Theta)\equiv J_{p}(\Theta, \partial_{l})$ is de-
fined to be

(5.1) $J_{p}(\Theta)(\omega, \gamma):=\langle\tilde{d}_{p}(\Theta)\omega, l_{p}(\Theta)\gamma\rangle_{\Lambda_{2^{p\{1}}(A)}$

$+\langle d_{p-1^{*}}(\Theta)\omega, d_{p-1^{*}}(\Theta)\gamma\rangle_{\Lambda_{2}^{p-1}(K)}$

for any $\omega,$ $\gamma\in Dom(J_{p}(\Theta))$ . This $J_{p}$ turns to be a sesquilinear form on $\Lambda_{2}^{p}(K)$

$\times\Lambda_{2}^{p}(K)$ . Note that this formalism indicates the Laplacian $\Delta_{p}$ to be roughly

given by $d_{p^{*}}d_{p}+d_{p-1}d_{p-1^{*}}$ as usual. As a matter of fact, it is easy to see
that the form $J_{p}(\Theta)$ is a nonnegative, densely defined, closed form on
Dom $(J_{p}(\Theta))$ . On this account, we obtain the following representation of Frie-
drichs type.

PROPOSITION 5.1 [16]. Let $J_{p}(\Theta, \partial_{l})$ be a nonnegative closed sesquilinear

form with the dense domain Dom $(J_{p}(\Theta))$ . Then there exists a unique nonnega-

tive selfadjoint operator $\Delta_{p}(\Theta)\equiv\Delta_{p}(\Theta, \partial_{t})$ acting in $\Lambda_{2}^{p}(K)$ such that

(5.2) $\langle\omega, \Delta_{p}(\Theta)\gamma\rangle_{\Lambda_{2}^{P}(K)}=J_{p}(\Theta)(\omega, \gamma)$ ,

for $\omega\in Dom(J_{p}(\Theta)),$ $\gamma\in Dom(\Delta_{p}(\Theta)),$ $p\in N_{+}$ .

REMARK 5.1. In the above assertion, Dom $(\Delta_{p}(\Theta))$ is dense in Dom $(J_{p}(\Theta))$

in the sense of $J_{p}(\Theta)$-form norm, as a consequence Dom $(\Delta_{p}(\Theta))$ is also naturally

dense in $\Lambda_{2}^{p}(K)$ . For the proof, see Theorem 2.2 and \S III in [16]. $\square $

Proposition 5.1 and the second representation theorem [23, VI. 2] im-
mediately gives:

PROPOSITION 5.2. There exists a unique nonnegative selfadjoint operator
$\Delta_{p}(\Theta, \partial_{l})$ in $\Lambda_{2}^{p}(K)$ such that the equality

(5.3) $\langle\Delta_{p}^{1/2}(\Theta)\omega, \Delta_{p}^{1/2}(\Theta)\gamma\rangle_{\Lambda_{2}^{p_{(K)}}}=J_{p}(\Theta)(\omega, \gamma)$

holds for every $\omega,$ $\gamma\in Dom(\Delta_{p}^{1/2}(\Theta))=Dom(J_{p}(\Theta)),$ $p\in N_{+}$ (see also [16, Theorem
2.3]).

REMARK 5.2. Proposition 5.1 is unsatisfactory in that it is not valid for
all $u,$ $v\in Dom(J_{p})$ , which is furnished by Proposition 5.2. What is essential in
(5.3) is that $\Delta_{p}^{1/2}(\Theta)$ is selfadjoint, nonnegative, $(\Delta_{p}^{1/2}(\Theta))^{2}=\Delta_{p}(\Theta, \partial_{l})$ , and that

Dom $(\Delta_{p}(\Theta))$ is a core of $\Delta_{p}^{1/2}(\Theta)$ . $\square $

For the case $p=0$ , we need to define the operator $\Delta_{0}(\Theta)$ properly. The
answer will be given by a version of the well-known von Neumann type theo-
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rem [32, II]. Hence we can define $\Delta_{0}(\Theta)\equiv\Delta_{0}(\Theta, \partial_{t})$ by

$\Delta_{0}(\Theta):=(d_{0}*d_{0})(\Theta)$ .

Thus we attain that $\{\Delta_{p}(\Theta)\}_{p=0}^{\infty}$ is the Laplacians associated with the de Rham
complex $\{d_{p}(\Theta)\}_{p=0}^{\infty}$ . Now we are in a position to state a decomposition theorem
of de Rham-Hodge-Kodaira type for the sapace $\Lambda_{2}^{p}(K)$ in $L^{2}$-sense [16, Th. 2.5].

THEOREM 5.3 (Decomposition of de Rham-Hodge-Kodaira type for the space
$\Lambda_{2}^{p}(K))$ . For all $p\in N_{+}$ , the space $\Lambda_{2}^{p}(K)$ admits the following orthogonal de-
composition:

(5.4) $\Lambda_{2}^{p}(K)=\overline{1m(d_{p-1}(\Theta)})\oplus\overline{{\rm Im}(d_{p^{*}}(\Theta)})\oplus Ker\Delta_{p}(\Theta)$ .

N. B. Notice that the above decomposition assertion (5.4) is valid even for
$p=0$ with $d_{-1}(\Theta)=0$ for convension.

\S 6. Explicit forms of the Laplacians $\Delta_{p}(\Theta, \partial_{t})$ .
Here we shall give an explicit form of the Laplacians $\{\Delta_{p}(\Theta, \partial_{t})\}_{p}$ on

$\{\mathcal{P}(\Lambda^{p}K^{c})\}_{p}$ , which is extremely important on a basis of the fundamental pro-
perties of our Laplacians. We first consider the element $\omega\in \mathcal{P}(\Lambda^{p}K^{c})$ of the
form:

$\omega(x)=\sum_{n=1}^{k}\tilde{P}_{n}(x)\cdot\xi_{n}$ $(x\in E^{*},\tilde{P}_{n}\in \mathcal{P})$

$=\sum_{n=1}^{k}\langle;x^{\otimes n}:, f_{n}\rangle\cdot w_{1}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}$ ,

where $f_{n}\in E_{C^{\otimes n}}^{\wedge},$ $\xi_{n}\in A_{p}(\otimes^{p}D^{\infty}(B))$ . Then, recalling Eq. (4.2) we have

(6.1) $d_{p}(\Theta)\omega(x)=\sum_{n=1}^{k}\sum_{\alpha\in N^{n}}b_{\alpha}\sum_{l=1}^{n}$ $\langle: x^{\otimes(n-1)} :, -\cdot-\wedge\otimes(n- 1)(\eta*:1)\rangle$

$\times\Theta(\eta_{\alpha(t),n}(t))\wedge w_{1}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}$ ,

where we put
$\vee k$

$\Xi^{\wedge}\otimes(n- 1)(\eta_{*} ; k)_{I=\eta_{\alpha(1),n}\otimes}^{\wedge}\cdots$ $...\otimes\eta_{\alpha(n).n}\wedge$

and employed a formula for exterior products. Notice that

$\delta_{t}*f_{n}=\sum_{\alpha\in N^{n}}b_{\alpha}/n\cdot\sum_{k=1}^{n}\eta_{\alpha tk).n}--\wedge\otimes(n-1)k)$ .

Then its U-functional (cf. (4.3)) is given by
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$U[d_{p}(\Theta)\omega](\xi)=\sum_{n=1}^{k}\sum_{\alpha\in N^{n}}b_{\alpha}\sum_{i=1}^{n}(\eta_{\alpha(1).7l}, \xi)$

$\vee$

... $(\eta_{\alpha(i),n}, \xi)\cdots(\eta_{\alpha(n),n}, \xi)$

$\times\tilde{w}_{1}^{(n)}(i, t;\Theta)\wedge\tilde{w}_{2}^{(n)}\wedge\cdots\wedge\tilde{w}_{p+1}^{(n)}$ , $(\xi\in E)$ ,

where we set $\tilde{w}_{j}^{(n)}:=w_{j-1}^{(n)}$ for $j=2,3,$ $\cdots,$ $p+1$ , and $\tilde{w}_{1}^{(n)}(i, t;\Theta):=$

$\Theta(\eta_{\alpha(t).n}(t))$ .

LEMMA 6.1. For any $\gamma\in \mathcal{P}(\Lambda^{p+1}K^{c})$ with the form $\sum_{l=1}^{k}\tilde{Q}_{l}(x)\eta_{l},$ $d_{p^{*}}(\Theta)\gamma(x)$

is given by

(6.2) $ d_{p^{*}}(\Theta)\gamma(x)=\sum_{j=1}^{p+1}(-1)^{j-1}\sum_{l=1}^{k}\{\tilde{Q}_{l}(x)\cdot\langle x(t), \Theta^{*}(v_{j^{(l)}})\rangle$

$-(\overline{\Theta^{*}v_{j}^{(l)}}, \partial_{t}\tilde{Q}_{l}(x))_{H_{C}}\}\cdot v_{1}^{(l)}\wedge\cdots$ A $v_{j}^{\bigvee_{(l)}}\wedge\cdots\wedge v_{P+1}^{(l)}$ .

PROOF. By the isomorphism in $\Lambda_{2}^{p+1}(K)$ we get

(6.3) $\langle d_{p}(\Theta)\omega, \gamma\rangle_{\Lambda_{2}}p+1_{(K)}$

$=\sum_{n=1}^{k}\sum_{l=1}^{k}\sum_{\sigma\in \mathcal{G}_{p+1}}$ sgn $(\sigma)\sum_{\alpha}b_{\alpha}\sum_{j=1}\prod_{i=1}^{p+1}\langle\tilde{w}_{\iota^{(n)}}, v_{\sigma(i)^{(l)}}\rangle_{K}$

$\times\int_{E*}\langle:x\otimes;,\overline{\underline{\cdot}}(\eta*;j)\rangle\langle:x^{\otimes l}:\wedge, g_{l}\rangle\mu(dx)$

where note that only $\tilde{w}_{1}^{(n)}$ depends on the parameter $j$ . By employing a direct
result derived from the coordinate multiplication operator formula in WNA (cf.

Remark 6.3 below), we may apply Lemma 2.2 [14] for (6.3) to obtain

$\sum_{n=1}^{k}\sum_{l=1}^{k}\sum_{\sigma\in \mathcal{G}_{p+1}}sgn(\sigma)\prod_{i=2}^{p+1}\langle\tilde{w}_{\iota^{(n)}}, v_{\sigma(i)}^{(l)}\rangle_{K}$

$\times\int_{E*}\langle x(t), \Theta^{*}v_{\sigma(1)^{(l)}}\rangle\cdot\langle;x^{\otimes n};, f_{n}\rangle\cdot\langle;x^{\otimes 1}:, g_{l}\rangle\mu(dx)$

$-\sum_{n=1}^{k}\sum_{l=1}^{k}\sum_{\sigma\in \mathcal{G}_{p+1}}$ sgn $(\sigma)\prod_{i=2}^{p+1}\langle\tilde{w}_{i}^{(n)}, v_{\sigma(i)}^{(l)}\rangle_{K}$

$\times\int_{E*}\langle;x^{\otimes n};, f_{n}\rangle\cdot(\Theta^{*}v_{\sigma(1)}^{(l)}, \partial_{l}\langle:x^{\otimes\iota}:, g_{l}\rangle)_{H_{C}}\mu(dx)$

$=:I_{1}+I_{2}$ ,

because we used above the Fubini type theorem relative to $ d\mu$ and $ d\nu$ . Note
that the relation
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(6.4) $l_{1}\wedge\cdots\wedge l_{n}=\sum_{k=1}^{n}(-1)^{k-1}l_{k}\otimes(l_{1}\wedge\cdots\wedge\check{l}_{k}\wedge\cdots<l_{n})$ .

By making use of (6.4) we can rewrile

$I_{2}=-\sum_{\iota=1}^{k}\sum_{j=1}^{p+1}(-1)^{j-1}\langle\omega,$ $(\Theta^{*}v_{j}^{(l)}, \partial_{t}\tilde{Q}_{l}(x))_{II_{C}}$

$\times v_{1}^{(l)}\wedge\cdots$ A $v_{J}^{\bigvee_{(l)}}$ A ... $\wedge v_{p+1}^{(l)}\rangle_{\Lambda_{2^{p}}tK)}$ ,

where

$\partial_{t}\tilde{Q}_{l}(x)=\langle;x^{\otimes(l-1)}:,\sum_{\beta\in N^{1}}b_{\beta}\sum_{i=1}^{l}\beta(i), l(t)\cdot\cdot\otimes(t-1)(\eta_{*} ; i)\rangle\underline{\sim}\wedge$

when $g_{l}$ is given by $\sum_{\beta\in N^{1}}b_{\beta}\cdot\eta\beta(1).l^{\wedge}\otimes\cdots\otimes\eta\beta(l).l\wedge$ . Likewise as to the $l_{1}$ term,

we conclude the assertion. $q$ . $e.d$ .

REMARK 6.1. We need to explain how to interpret the term $\langle x(t), \Theta^{*}v_{\sigma(1)^{(l)}}\rangle$ .
The element $\Theta^{*}v_{\sigma(1)}^{(l)}$ in $H_{C}$ is well approximated by a sequence $\{y_{k}\}_{i=1}^{\infty}\subset E_{C}$

under our abstract setting. So we can define it by a limiting procedure.

REMARK 6.2. As a technical merit of computation in white noise calculus
(cf. Remark 1.1 and Lemma 2.4 in [9]), we have

; $\langle x, f_{1}\rangle\cdots\langle x, f_{n}\rangle:=\prod_{i=1}^{n}\frac{d}{d\lambda_{i}}$ : $e_{j}^{\langle x.\Sigma\lambda}j^{f}j^{\rangle}$ ; $|_{\lambda_{1}=\cdots=\lambda_{n}=0}$ . $\square $

In fact, the operation of $d_{p^{*}}$ on $\mathcal{P}(\Lambda^{p+1}K^{C})$ is also described evidently by
the U-functional (cf. Remark 4.1).

LEMMA 6.2. The U-functional of $d_{p^{*}}(\Theta)\gamma(x)(x\in E^{*})$ is given by

(6.5) $U[d_{p^{*}}(\Theta)\gamma](\xi)=\sum_{J=1}^{p+1}(-1)^{j-1}\sum_{\iota=1}^{k}\{\sum_{\beta}b_{\beta}\prod_{i=1}^{l}(\eta\beta(i), l, \xi)$

$\times(\Theta(v_{j}^{(l)}, \xi)+\sum_{\beta}b_{\beta}\sum_{i=1}^{l-1}(\Theta^{*}(v_{J^{tl)}}), \eta\beta(i).l)$

$\times$

$\prod_{i=1,kti}^{l-1}(\eta\beta(k).l, \xi)-\sum_{\beta\in N^{1}}b_{\rho}\sum_{i=1}$ $\sum_{k=1,k\neq i}(\eta\beta(h).ll\xi)$

$\times(\overline{\Theta^{*}v_{J^{(l)}},}\eta\beta(i).\downarrow(t))\}$

$Xv_{1}^{(l)}$ A $v_{2}^{(l)}\wedge\cdots\wedge v_{j}^{\bigvee_{(l)}}\wedge\cdots\wedge v_{p+1}^{(l)}$ , $(\xi\in E)$ .

PROOF. By Lemma 6.1 we immediately obtain
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(6.6) $U[d_{p^{*}}(\Theta)\gamma](\xi)=S(d_{p^{*}}(\Theta)\gamma)(\xi)$

$=\sum_{j=1}^{p+1}(-1)^{j- 1}\sum_{l=1}^{k}\{S(\tilde{Q}_{l}(x)\cdot\langle x(t), \Theta^{*}(v_{J^{(l)}})\rangle)(\xi)$

$-(\overline{\Theta^{*}v_{J^{(l)}}}, S(\partial_{t}\tilde{Q}_{l}(x))(\xi))_{H_{C}}\}$

$\times v_{1}^{(l)}\wedge v_{2}^{(\iota)}$ A ... $\wedge v_{j}\bigvee_{(l)}$ A $...\wedge v_{p+1}^{(l)}$ .
While, we easily get

(6.7) $S(\partial_{l}\tilde{Q}_{l}(\cdot))(\xi)=\frac{\delta}{\delta\xi(t)}S(\tilde{Q}_{\iota})(\xi)$

$=\sum_{\beta\in N}b_{\beta}\sum_{i=1}^{l}\eta\beta(i),$$ l(t)\cdot(\eta\beta(1), l1\xi)_{H_{C}C}\cdots$

... $(\eta\beta(i),l\vee, \xi)_{H_{C}}\cdots(\eta\beta(\iota).l, \xi)_{H_{C}}$ , $\xi\in E$ .

To compute $S(\tilde{Q}_{l}(\cdot)\cdot\langle x, \Theta^{*}(v_{J^{(l)}})\rangle)(\xi)$ $(\xi\in E)$ , we may utilyze similar type

equalities as in Remark 6.2 (cf. Lemma 2.5 and \S IV in [9]) to obtain

(6.8) $S(:\prod_{i=1}^{l}\langle\cdot, \eta\beta(t).l\rangle:\langle(\cdot)(t), \Theta^{*}(v_{J^{(l)}}\rangle)(\xi)$

$=\frac{1}{(l+1)!}\sum_{i\approx 1}^{\iota_{+I}}(-1)^{l-i+1}\sum_{J_{1}<J_{2}<<J_{i}}\ldots(\tilde{\eta}\beta(j_{1^{++}}), l\tilde{\eta}\beta(j_{2}),$
$l$

$+\tilde{\eta}\beta(j_{k}),$ $\iota,$

$\xi)^{\iota+I}$

$+\sum_{i=1}^{l-1}(\Theta^{*}(v_{J^{(l)}}), \eta\beta(i),$
$l$ ) $\frac{1}{(l-1)!}\sum_{i=1}^{l-1}(-1)^{\iota-k-1}\sum_{J_{1}<J_{2}<<J_{k}}\ldots$

$\times(\eta\beta(j_{1}), \iota+\cdots+\check{\eta}\beta(i_{i}),$
$\iota+\cdots+\eta\beta(j_{k}),$ $l,$

$\xi)^{\iota-1}$

where we put

$\tilde{\eta}\beta(k),$ $l$ $:=\eta\beta(k).l$ , (for $k=1,2,$ $\cdots,$
$1$),

$\tilde{\eta}\beta(l+1).\iota\ddagger=\Theta^{*}(v_{j}^{(l)})$ , for $k=l+1$ ).

In connection with Remark 6.1, commutativity between the S-transform and the
limiting procedure with $ k\rightarrow\infty$ is required in the above computation. However,

it is verified with the Lebesgue type bounded convergence theorem with respect

to the Gaussian white noise measure. To complete the proof it is sufficient to
substitute (6.7) and (6.8) for (6.6), paying attention to the fact that

$S(\langle;x^{\otimes l}:, g_{\iota}\rangle\cdot\langle x(t), \Theta^{*}(v_{J^{(l)}})\rangle)(\xi)$

$=\sum_{\beta\in N^{1}}b_{\beta}\cdot S(:\prod_{k\Leftarrow 1}^{l}\langle x, \eta\beta(k), l\rangle:\langle x(t), \Theta^{*}(v_{j}^{(l)})\rangle)(\xi)$ .

$q.e.d$ .

REMARK 6.3. When we observe carefully the computation of the term
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$\langle d_{p}(\Theta)\omega, \gamma\rangle_{\Lambda_{2^{p+1}}(Ji)}$ in the proof of Lemma 6.1, then we may regard that it is
roughly equal to

$C(p)A_{p+1}\Theta\langle\partial_{t}\tilde{P}_{n},\tilde{Q}_{l}\rangle^{\prime^{p}}$

where $C(p)$ is some constant depending on $p\in N_{+}$ . Then
$\langle\partial_{t}\tilde{P}_{n},\tilde{Q}_{l}\rangle^{\prime^{p}}=\langle\tilde{P}_{n}, [x]\tilde{Q}_{l}\rangle^{\mu}-\langle\tilde{P}_{n}, \partial_{l}\tilde{Q}_{l}\rangle^{\mu}$

$=\langle\tilde{P}_{n}, (\partial_{l}+\partial_{t^{*}})\tilde{Q}_{\iota}\rangle^{\mu}-\langle\tilde{P}_{n}, \partial_{t}\tilde{Q}_{l}\rangle^{\mu}$ ,

where we used the significant discovery on the coordinate multiplication operator

by $x(t)$ in WNA (cf. [26]). The above computation means roughly that the
adjoint $\partial_{t}*$ is employed in order to determine $d_{p^{*}}(\Theta)$ , but in $\Theta$ -dependent man-
ner. It is interesting to note that our discussion in Lemma 6.1 and Lemma 6.2
provides a subtle framework to construct a nicer Laplacian $\Delta_{p}(\Theta, \partial_{t})$ by making
use of the operator $\Theta$ . We would be able to take much advantage of it to
apply our theory later for the problems arizing in quantum physics (see \S 7 or
[8]). $\square $

Now we are in a positon to express the explicit form of our Laplacian
$\Delta_{p}(\Theta, \partial_{t})$ on $\mathcal{P}(\Lambda^{p}K^{c})$ . By the discussion in \S 5, we have only to compute
$d_{p^{*}}(\Theta)d_{p}(\Theta)\omega(x)$ and $d_{p- 1}d_{p- 1^{*}}\omega(x)$ respectively. To take (6.1) and (6.2) into
consideration, it is easily checked that

(6.9) $d_{p^{*}}(\Theta)d_{p}(\Theta)\omega(x)=\sum_{n=1}\sum_{\alpha}b_{\alpha}\sum_{l}[\sum_{j=1}^{p+1}(-1)^{j-1}$

. $\{\langle;x^{\otimes(n-1)}:, \Xi^{\wedge}\otimes(n-1)(\eta*;l)\rangle\cdot\langle x(t), \Theta^{*}(\tilde{w}_{J^{(n)}})\rangle$

$-(\overline{\Theta^{*}\tilde{w}_{J^{(n)}}}, \partial_{t}\langle;x^{\otimes(n-1)};, \Xi^{\wedge}\otimes(n- 1)(\eta_{*} ; l)\rangle)_{II_{C}}\}$

$\times\tilde{w}_{1}^{(n)}(i, t;\Theta)\wedge\tilde{w}_{2}^{(n)}\wedge\cdots\wedge\tilde{w}^{v_{J^{(n)}}}\wedge\cdots\wedge\tilde{w}_{p1}^{(n)}]$ .

Next we consider the other part: in fact,

$jf_{p-1}(\Theta)d_{p-\iota^{*}}(\Theta)\omega(x)=d_{p-1}(\Theta)(d_{p-1^{*}}(\Theta)\omega(x))$

$=\sum_{j\Rightarrow 1}^{p}(-1)^{j-1}\sum_{n=1}^{k}[d_{p-1}\{\tilde{P}_{n}(x)\langle x(t), \Theta^{*}(w_{j}^{(n)})\rangle$

$Xw_{1}^{(n)}\wedge\cdots$ A $\check{w}_{j}^{(n)}$ A ... $\wedge w_{p}^{(n)}$ }]

$-\sum_{j=1}^{p}(-1)^{j-1}\sum_{n=1}^{k}[d_{p-1}\{(\overline{\Theta^{*}w_{j}^{(n)}}, \partial_{l}\tilde{P}_{n}(x))_{H_{C}}$

$\times w_{1}^{(n)}\wedge\cdots$ A $\check{w}_{J^{(n)}}\wedge\cdots\wedge w_{p}^{(n)}$ }]

$=:J_{1}+J_{2}$ .
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As to $J_{1}$ -part computation, it is verified with ease that
$d_{p-1}[\tilde{P}_{n}(x)\langle x(t), \Theta^{*}(w_{j}^{(n)})\rangle\cdot w_{1}^{(n)}\wedge\cdots\wedge\check{w}_{j}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}]$

$=\sum_{\alpha}b_{\alpha}\sum_{l}\langle;x^{\otimes(n-1)\otimes(n-1)};, -\cdot-\wedge(\eta*;l)\rangle\cdot\langle x(t), \Theta^{*}(w_{J^{(n)}})\rangle$

$\times\Theta(\eta_{\alpha(l).n}(t))\wedge w_{1}^{(n)}\wedge\cdots\wedge\check{w}_{J^{(n)}}\wedge\cdots\wedge w_{p}^{(n)}$

$+\tilde{P}_{n}(x)\cdot\Theta[(\Theta^{*}w_{j}^{(n)})(t)]\wedge w_{1}^{(n)}\wedge\cdots$ A $\check{w}_{j}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}$ .

As to $J_{2}$-part computation, it goes almost similarly. Indeed,

$d_{p- 1}$ { $(\Theta*w_{J^{(n)}},$ $\partial_{t}\tilde{P}_{n}(x))_{H_{C}}\cdot w_{1}^{(n)}\wedge\cdots$ A $\check{w}_{j}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}$ }

$=\sum_{\alpha}b_{\alpha}\sum_{l}^{n}k\neq l\sum_{k}^{n}(\Theta^{*}w_{j}^{(n)}, \eta_{\alpha(l),n}(t))_{H_{C}}$ .

. $\langle: x^{\otimes(n-2).\otimes(n-2)}:, --\wedge[\Xi^{\wedge}\otimes(n-1)(\eta_{*} ; l)](k)\rangle$

$\times\tilde{w}_{1}^{(n)}(k, t;\Theta)\wedge w_{1}^{(n)}\wedge\cdots\wedge\check{w}_{J^{(n)}}\wedge\cdots\wedge w_{p}^{(n)}$

Finally we attain the principal result in this section.

PROPOSITION 6.3. For $p\in N_{+}$ , we have

$\Delta_{p}(\Theta, \partial_{t})\omega(x)=\sum_{n=1}^{k}\{\sum_{\alpha}b_{\alpha}\sum_{m}\langle x(t), \Theta*\Theta(\eta_{\alpha(m),n}(t)\rangle$

.
$\langle: x^{\otimes(n-1)}:, \Xi^{\wedge}\otimes(n-1)(\eta_{*} ; m)\rangle-\sum_{\alpha}b_{\alpha}\sum_{m}\sum_{ml,\neq 1}$

. $(\eta_{\alpha(m),n}(t), \Theta*\Theta(\eta_{\alpha(l),n}(t)))_{H_{C}}$

. $\langle: x^{\otimes(n-2)};, \Xi^{\wedge}\otimes(n-2)[-\cdot-\wedge\otimes(n-1)(\eta_{*} ; l)](m)\rangle$ }

$\times w_{1}^{(n)}\wedge w_{2}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}$

$+\sum_{j=1}^{p}\sum_{n=1}^{k}\tilde{P}_{n}(x)\cdot w_{1}^{(n)}\wedge w_{2}^{(n)}\wedge\cdots\wedge\Theta\Theta*w_{J^{(n)}}\wedge\cdots\wedge w_{p}^{(n)}$ .

\S 7. De Rham-Hodge-Kodaira decompositions associated
with Hida derivative.

The purpose of this section is to introduce two distinct decomposition

theorems of de Rham-Hodge-Kodaira type [8] (R-H-K type for short). Similar
results in infinite dimensional analysis or stochastic analysis may be found in
[2] &[31]. It is quite natural to employ the weak derivative in some sense
in order to define the exterior differentials on forms, instead we do adopt the
Hida differentlal to realize it. This is only our unique point, compared with
other related works. Our decompositions being supplying with interesting and
stimulating objects in mathematical physics, namely, with those especially
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oriented to analysis of Dirac operators in quantum physics, are naturally derived
as one of applications in terms of our Laplacians constructed in the previous

sections, which can be said to be the R-H-K type theorems associated with
Hida derivative in WNA.

For $p\in N_{+}$ we define

$D^{\infty}(\Delta_{p}(\Theta)):=\bigcap_{m\in N}$ Dom $(\Delta_{p}(\Theta)^{m})$ ,

Moreover, for $\omega\in D^{\infty}(\Delta_{p}(\Theta))$ , we define

$\Vert\omega\Vert_{k}$ $:=\{\sum_{l=0}^{k}\Vert(I+\Delta_{p}(\Theta))^{l}\omega\Vert_{L2(E*\rightarrow\Lambda^{p}K^{c_{j}}d\mu)\}^{\iota/2}}^{2}$

and denote by $H^{2.k}(\Lambda_{2}^{p}(K))$ the completion of $D^{\infty}(\Delta_{p}(\Theta))$ with respect to the
norm $\Vert\cdot\Vert_{k}$ . When we set

(7.1) $H^{2,\infty}(\Lambda_{2}^{p}(K)):=\bigcap_{k=0}^{\infty}H^{2.k}(\Lambda_{2}^{p}(K))$ ,

then $(H^{2,\infty}(\Lambda_{2}^{p}(K)), \Vert\cdot\Vert_{k})$ is a complete, countably normed space. We denote
the spectrum of operator $A$ by the symbol $\sigma(A)$ . The second quantization
operator $d\Gamma_{1}(A)$ for a selfadjoint operator $A$ in $H_{C}$ is defined by

$(d\Gamma_{1}(A)\omega)(x)=\sum_{k=1}^{n}\langle:x^{\otimes n};, A^{\otimes I}[k]f_{n}\rangle$ , $\omega\in \mathcal{P}$

where
$A^{\otimes I}[k]:=I\otimes\cdots\otimes A_{\hat{k}}\otimes\cdots\otimes I(k\leqq n)$

. Then $d\Gamma_{1}(A)$ is a uniquely deter-

mined, selfadjoint operator acting in $(L^{2})$ . We define the operator $d\Gamma_{2}(B)$ by

$d\Gamma_{2}^{(p)}(B):=\sum_{k=1}^{p}B^{\Phi t}[k]$ ,

which is a nonnegative selfadjoint operator acting in $\Lambda^{p}K^{c}$ . Recall that the
operator $B$ is given by $\Theta\Theta*$ (cf. \S 4). So let us write the operator acting in
$\Lambda_{2}^{p}(K)$ as
(7.2) $\mathcal{L}_{p}(\Theta):=d\Gamma_{1}(A)\otimes I_{f}+I_{b}\otimes d\Gamma_{2}^{(p)}(B)$

with identities: $I_{b}:=I_{(L2)},$ $I_{f}$ $:=I_{\Lambda^{p_{K}c}}$ . Further we define the unique nonnega-
tive selfadjoint operator $\Gamma_{1}(A)$ acting in $(L^{2})$ by

$\Gamma_{1}(A):=S^{-1}(\sum_{n=0}^{\infty}A^{\otimes n})S$ ,

where $S$ is the S-transform (see (2.8)). Then it holds that

$\Gamma_{1}(A)\omega(x)=\sum_{n=0}^{\infty}\langle;x^{\otimes n};, A^{\otimes n}f_{n}\rangle$

for $\omega\in(L^{2})$ , with $\Gamma_{1}(A)1=1$ (see (2.9)). The nonnegative selfadjoint operator
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$\Gamma_{2}(B)$ in $\Lambda^{p}K^{c}$ is defined by

$\Gamma_{2}^{(p)}(B):=\otimes^{p}B$ , $(p-\geq 0)$ .
Let

$\Gamma_{p}(\Theta):=\Gamma_{1}(A)\otimes\Gamma_{2}^{(p)}(B)$

acting in $\Lambda_{2}^{p}(K)$ . For $\omega\in Dom(\Gamma_{p}(\Theta)^{k})(k\geqq 1)$ , we define the norm
$\Vert|\omega\Vert|_{k}$ $:=\Vert(l+\Gamma_{p}(\Theta))^{k}\omega\Vert_{\Lambda_{2}^{P}(K)}$ ,

and denote by $(S)_{k}(\Lambda^{p}K)$ the completion of Dom $(\Gamma_{p}(\Theta)^{k})$ with respect to the
inner product induced by the norm $\Vert|\cdot\Vert|_{k}$ . Then $(S)_{k}(\Lambda^{p}K)$ becomes a Hilbert
space. Set

(7.3) $(S)(\Lambda^{p}K):=\bigcap_{k=1}^{\infty}(S)_{k}(\Lambda^{p}K)$ .

$((S)(\Lambda^{p}K), \Vert|\cdot\Vert|_{k})$ is a complete, countably normed space.

Now we shall state the first decomposition theorem:

THEOREM 7.1 ([8], 1992). Suppose that $\inf\sigma(\Theta*\Theta)\backslash \{0\}>0$ . Then the decom-
position of R-H-K type

(7.4) $H^{2.\infty}(\Lambda_{2}^{p}(K))={\rm Im}[\Delta_{p}(\Theta)(H^{2.\infty}(\Lambda_{2}^{p}(K))]\oplus Ker\Delta_{p}(\Theta)$

holds for all $p\in N_{+}$ .

We need the following lemma:

LEMMA 7.2. For all $p\in N_{+}$ , we have

(7.5) $\Delta_{p}(\Theta)=\mathcal{L}_{p}(\Theta)$ (in $\Lambda_{2}^{p}(K)$ )

holds in operator equality sense.

PROOF OF LEMMA 7.2. We put

$\hat{\Xi}_{m^{\otimes n}}^{\wedge}[\eta*;\Theta*\Theta]:=\eta_{\alpha(1).n}^{\wedge\wedge}\otimes\cdots\otimes\Theta*\Theta(\eta_{\alpha(m).n}(t))\otimes\cdot\cdot\otimes\eta_{\alpha(n).n}\wedge.\wedge$ .
A simple computation with Proposition 6.3 and the recursive relation of the
Wick ordering (cf. \S 2) gives

$\Delta_{p}(\Theta)\omega(x)=\sum_{m=1}^{n}(\sum_{n=1}^{k}\langle;x^{\emptyset n};, \sum_{\alpha}\cdot-\underline{\wedge}\Theta*\Theta]\rangle)$

. $w_{1}^{(n)}\wedge\cdots\wedge w_{p}^{(n)}$

$+\sum_{j=1}^{p}(\sum_{n=1}^{k}\tilde{P}_{n}(x)\cdot w_{1}^{(n)}\wedge\cdots\wedge\Theta\Theta*w_{j^{(n)}}\wedge\cdots\wedge w_{p}^{(n)})$

$=(d\Gamma_{1}(\Theta*\Theta)\otimes I_{f})\omega(x)+(I_{b}\otimes d\Gamma_{2}^{(p)}(\Theta\Theta^{*}))\omega(x)$ ,
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which implies that (7.6) holds on $\underline{c}P(\Lambda^{p}K^{c})$ . Clearly $\mathcal{L}_{p}(\Theta)$ is essentially self-
adjoint on $\mathcal{P}(\Lambda^{p}K^{c})$ , since so is $d\Gamma_{1}(A)$ (resp. $d\Gamma_{2}^{(p)}(B)$ ) on $\mathcal{P}$ (resp. $\mathcal{P}(\Lambda^{p}K^{c})$ ).

Therefore the closedness verifies the assertion. $q.e.d$ .

PROOF. By virtue of the spectral property of the second quantization
operators and the Deift theorem [4] for commutation formulae of operators, it
follows immediately from Lemma 7.2 that $\inf\sigma(\Delta_{p}(\Theta))\backslash \{0\}>0$ . 0bviously we
have

$\Lambda_{2}^{p}(K)={\rm Im}(\Delta_{p}(\Theta))\oplus Ker\Delta_{p}(\Theta)$ .
Roughly speaking, the matter is whether $\Lambda_{2}^{p}(K)$ should be replaced with
$H^{2.\infty}(\Lambda_{2}^{p}(K))$ when we put restriction on the domain of $\Delta_{p}(\Theta)$ to $H^{2.\infty}(\Lambda_{2}^{P}(K))$

in the right hand side. However, clearly this turns to be true. An application

of the spectral representation theorem leads to

$D^{\infty}(\Delta_{p}(\Theta))={\rm Im}[\Delta_{p}(\Theta)rD^{\infty}(\Delta_{p}(\Theta))]\otimes Ker\Delta_{p}(\Theta)$ .

To complete the proof we have only to note that $H^{2.\infty}(\Lambda_{2}^{p}(K))$ is isomorphic to
$D^{\infty}(\Delta_{p}(\Theta))$ as a vector space. $q.e.d$ .

REMARK 7.1. In Lemma 7.2, when $p=0$ then we have $\mathcal{L}_{0}(\Theta)=d_{0^{*}}(\Theta)\cdot d_{0}(\Theta)$ ,

which is, of course, a nonnegative and selfadjoint operator. This is due to
von Neumann theorem.

REMARK 7.2. It is generally right that the heat equation method is even
effective for the proof of decomposition theorem on the space of the type like
$H^{2.\infty}(\Lambda_{2}^{p}(K))$ . In fact, similar works on R-H-K type decompositions by Shige-
kawa [31] and Arai-Mitoma [2] are greatly due to the heat equation method. $\square $

Finally we shall introduce our second decomposition theorem for the space
$(S)(\Lambda^{p}K)$ (see Theorem 7.8). However, since the structure of $(S)(\Lambda^{p}K)$ is dif-
ferent from that of $H^{2.\infty}(\Lambda_{2}^{p}(K))$ , the heat equation method is not applicable
any more to the case. So necessity will occur that we have resort to the Arai-
Mitoma method. Their method is principally due to a comparison theorem,
which is derived by a series of finer estimates based on precise computation of
weighted norms. There the spectral theory plays again an essential role in
reduction of the problem, representation of the operators, and precise estimates.
Before mentioning the decomposition theorem we need to prepare for the basic
estimates whereby the nice property of our Laplacians reveals itself, namely,
our Laplacians do serve as desired operators which map the space of smooth
$p$ -forms into itself (see Theorem 7.7 below).
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LEMMA 7.3. Suppose that

(7.6) $\Theta*\Theta\geqq(1+\epsilon)I_{H_{C}}$

holds with a positive constant $\epsilon$ . Then for each $s>0$ , all $p\in N_{+}$ and $k\in N_{+}$ ,

there exists a positive constant $C_{0}(\epsilon, k)$ and there can be found a proper positive
integer $k_{0}$ such that the inequality

(7.7) $\Vert T_{s^{-1}(I+\Delta_{p}(\Theta))^{k}\omega\Vert_{\Lambda_{2}^{P}(K)}\leqq C_{0}(\epsilon},$ $k$ ) $\cdot\Vert(I+\Gamma_{p}(\Theta))^{k_{0}}\omega\Vert_{A_{2^{P}}(K)}$

holds for every $\omega\in Dom(\Gamma_{p}(\Theta)^{k_{0}})$ , where $T_{s^{-1}}$
$;=\Gamma_{1}(e^{s})\otimes I_{f}$ . $\square $

The proof is an easy exercise. It follows from the spectral theory and the
fundamental properties of Ornstein-Uhlenbeck semigroups.

REMARK 7.3. We write the Ornstein-Uhlenbeck semigroup $(e.g. [33])$ on
$(L^{2})$ as $T_{s}$ $:=\Gamma_{I}(e^{-s}),$ $s\geqq 0$ . There exists its inverse operator $T_{s^{-1}}$ being self-
adjoint, which is given qy $T_{s^{-1}}=\Gamma_{1}(e^{s}),$ $s\geqq 0$ . Moreover, its natural extension
to $\Lambda_{2}^{p}(K)$ is written as $T_{s^{-1}}$

$:=\Gamma_{1}(e^{s})\otimes I_{f}$ , which appeared in the above (7.7). $\square $

As a direct corollary of Lemma 7.3 we readily obtain

LEMMA 7.4. Under the assumption (7.6), for all $p\in N_{+}$ and $k\in N$ there
exists a positive constant $C_{1}(\epsilon, k)$ such that the inequality

$\Vert(I+\Delta_{p}(\Theta))^{k}\omega\Vert_{\Lambda_{2}^{p_{(K)}}}\leqq C_{1}(\epsilon, k)\cdot\Vert(I+\Gamma_{p}(\Theta))^{k}\omega\Vert_{\Lambda g^{p_{(K)}}}$

holds for every $\omega\in Dom(\Gamma_{p}(\Theta)^{k})$ . $\square $

Therefore, by repeating the reduction to the subspace $JC_{n}^{p}$ $;=K_{n}\otimes\Lambda^{p}K^{c}$

and employing the limiting proceeding for the acquired relative to $\mathcal{P}(\Lambda^{p}K^{c})$ , we
can easily see that

LEMMA 7.5. Under the assumption (7.6) we have

Dom $(\Gamma_{p}(\Theta)^{k})\subset Dom(\Delta_{p}(\Theta)^{k})$

for all $k\in N$ and $p\in N_{+}$ . $\square $

The next proposition is a comparison theorem for the spaces $H^{2.\infty}(\Lambda_{2}^{p}(K))$

and $(S)(\Lambda^{p}K)$ , whereby our second decomposition can be derived according to
the Arai-Mitoma theory. One may find some of familiar techniques and methods
useful and effective in this argument as well, and those have been used well
in the Malliavin calculus [33].
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PROPOSITION 7.6. Suppose (7.6). Then the inclusion

(7.8) $(S)(\Lambda^{p}K)\subset H^{2.\infty}(\Lambda_{2}^{p}(K))$

holds for all $p\in N_{+}$ .

As to the proof it is sufficient to show that $\Vert\gamma\Vert_{k}\leqq\tilde{C}\Vert|\gamma\Vert|_{N},$ $(\gamma\in \mathcal{P}(\Lambda^{p}K^{c}))$ ,

for any $N>k(N, k\in N)$ , each $p\in N_{+}$ , and some positive constant $\tilde{C}$ . In fact,

an application of Khinchin’s inequalities yields the assertion by virtue of hyper-

contractivity of $T_{\iota}$ . The next assertion indicates that our Laplacians have such

a nice property as stated in \S 1.

THEOREM 7.7. Under the assumption (7.6) we have

(7.9) $\Delta_{\rho}(\Theta)[(S)(\Lambda^{p}K)]\subset(S)(\Lambda^{p}K)$

for all $p\in N_{+}$ .

It is sufficient to prove

$\Delta_{p}^{n}(\Theta)\omega\in Dom(\Gamma_{p}^{n}(\Theta)^{k})$ ,

for $\omega\in(S)_{k}(\Lambda^{p}K)\cap j\zeta_{n}^{p}$ all $k\in N$, and each $p\in N_{+}$ . It is easy, hence omitted.
Ultimately, we are now in a position to state our R-H-K type decomposition

theorem for $(S)(\Lambda^{p}K)$ .

THEOREM 7.8 ([8], 1992). Assume the condition (7.6). Then the space
$(S)(\Lambda^{p}K)$ admits the decomposition

(7.10) $(S)(A^{p}K)={\rm Im}[\Delta_{p}(\Theta)t(S)(A^{p}K)]\oplus Ker\Delta_{p}(\Theta)$

for all $p\in N_{+}$ .

PROOF. According to Theorem 7.1 and Proposition 7.6 the element $\omega$ of
$(S)(\Lambda^{p}K)$ is decomposed into

$\omega=\omega_{1}+\omega_{2}=\Delta_{p}(\Theta)\eta+\omega_{2}$ ,

with $\omega_{1}\in{\rm Im}[\Delta_{p}(\Theta)\uparrow H^{2.\infty}(\Lambda_{2}^{p}(K))],$ $\omega_{2}\in Ker\Delta_{p}(\Theta)$ , and

$\eta=Q_{p}(\Theta)\omega=\int_{0}^{\infty}(K_{*}(p;\Theta)\omega-\omega_{2})ds\in H^{2.\infty}(\Lambda_{2}^{p}(K))$ ,

where $K_{s}(P;\Theta):=\int_{0}^{\infty}e^{-s\lambda}dE_{p}(\Theta;\lambda),$ $(s\geqq 0)$ and $\{E_{p}(\Theta ; \lambda);\lambda\in R\}$ is a family of

spectral measures associated with the operator $\Delta_{p}(\Theta)$ . Because of (7.9), it results
from the following lemma:



Laplacian on a space of white noise functionals 117

LEMMA 7.9. Under the condition (7.6) we have

$Q_{p}(\Theta)\omega\in(S)_{k}(\Lambda^{p}K)$ , $(\omega\in Dom(\Gamma_{p}(\Theta)^{k}))$

for all $k\geqq 1$ , each $p\in N_{+}$ . $q.e.d$ . $\square $

\S 8. Concluding remarks.

After having finished writing this paper, the author learned that H.-H. Kuo,

J. Potthoff, and J.-A. Jan had obtained very useful and important results in
“Continuity of affine transformations of white noise test functionals and appli-

cations”, Stochastic Processes and their Applications 43 (1992), 85-98. They

succeeded in obtaining a direct simple proof of the fact that the space of white
noise test functionals is infinitely differentiable in Fr\’echet sense, which is closely

related to our results in \S 3. We found it very interesting and suggestive, and
stimulating as well.

In addition, we were informed of the publication of H.-H. Kuo’s paper
entitled “Lectures on white noise analysis”, which appeared as Special Invited
Paper in Soochow J. Math. 18 (1992), 229-300. There can be found at pp. 251-
266 very interesting and remarkable descriptions about a variety of differential
operators in whlte noise analysis, which are deeply connected with the contents
of \S 3 and \S 5 in our paper (cf. [12-15]). Especially so excellent are his works
on the characteristics of various sorts of Laplacians (pp. 279-249) via an infinite
dimensional version of the Fourier transform which is compatible with Hida
calculus (see [7], [26]).
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