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Characteristic mixed problems for hermitian

systems in three unknowns

By Rentaro AGEMI
(Received February 20, 1978)

§ 1. Introduction and results

The purpose of this paper is to prove that the results of Strang
for 2 X2 systems are also valid for hermitian 3 X3 systems with characteristic
boundary including the linearized shallow water equations. This has been
conjectured by Majda and Osher [5].

We consider the mixed problems for hermitian systems of first order
in the quarter space t=0, x=0, y=(,, '+, Yn) ER"™:

du

. SrAG LB AG=f  in >0, 20, yERr,
D 0,58 = () in >0, y=R",
Bu(t,0,y) =0 in t>0, yeR".

Here we assume A and A; to be constant, hermitian 3 X3 matrices, the
boundary =0 to be characteristic; that is, det A=0. Furthermore, we
assume B to be a constant /X3 matrix whose rank / is equal to the num-
ber of positive eigenvalues of A. In the treatment of characteristic mixed
problems it is natural to assume that the problem (1.1) is reflexive, that is,
ker ACker B (see Kubota and Ohkubo and Rauch [9]).

Our problem is whether there exists a solution « of (1.1) satisfying the
following energy inequality : There is a constant C;>0 for each 7">0 such
that

w2 @ISl + A1)

for any ¢ with 0=<¢<7. Here ||+|| stands for the usual L?norm in the
half space £>0, y=R"

A sufficient condition for the existence of a solution of (1.1) satisfying
(1. 2) has been already established by Friedrichs and Lax and Phillips
[7]. This condition is called “maximally non-positive” ; that is, after a non-
singular transformation v=7Tu of unknowns such that A'=T-'AT and
A=T-1A;T are hermitian, it holds that
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(1. 3) (Av,v)=0 for any v & ker BT

and ker BT is a maximal subspace of C® satisfying the above property.

For the mixed problems with zero initial data, the necessary and sufh-
cient conditions for “L2-well posedness” have been developed in and
Ohkubo and Shirota [8] for the case of non-characteristic boundary and in
for mainly Maxwell’s equations. The problem (1.1) with zero initial data
is said to be L*well posed if there exist positive constants C and 7" which
satisfy the following condition: For every f whose first derivatives belong
to L% and that f=0 in ¢<0, the mixed problem has a unique solution z
such that du/ot, 0u/dy; and Adu/dx belong to L% and it holds

wy  [wwndesclird.

Here L% denotes the space of all square intergrable functions in 0<¢<7,
x>0, yeR".

In [1], and L?-well posed mixed problems are characterized by
compensating functions or reflection coefficients. Using the methods of these
characterizations we prove the following

THEOREM. If the mixed problem (1.1) is L*well posed, then it is
maximally non-positive.

As compared with the case of non-characteristic boundary one of signifi-
cant features of characteristic mixed problems is the behavior of reflection
coefficient C(r, ¢) in a neighbourhood of (0, ), where (r,0) being a covector
of (¢,9) and (1.1) will be transformed a simple form stated in §2. In par-
ticular, from the proof of Proposition 3.6 in §3 we present the following
example such that Lopatinski determinant R(r, s) does not vanish for =0
but there exist microlocally no symmetrizers :

1 0 3 21
A= —1 , A,=[2 0 2/,

0 0 1 20
B=(1,2,0).

The 2X2 systems considered in are not necessarily hermitian, be-
cause they are symmetrizable in virtue of strong hyperbolicity (see Strang
[11]). However, Lax gave already an example of 3 X3 system which
is strongly hyperbolic but not symetrizable. Thus our problem is left open
for non-symmetrizable systems.

The author thanks K. Kubota for useful conversations related to this
work.
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§ 2. Proof of Theorem (special cases) and necessary conditions for
L*-well posedness.

Since A and A; are hermitian and det A=0, there exists a unitary
transformation #=7Twv of unknowns such that the problem (1.1) with zero
initial data is equivalent to the following one :

0v , 00 | & ov
. a +A5—+2Ajay] g,
2.1) v(0, 2,¥) =0,

B v(t0,)=0.
Here B'=BT, A}=T"1'A; T are hermitian and

a 0
A = az

0 0,
If ay=a,=0, then (2.1) is the Cauchy problem. Thus we may assume
that ¢;2¢0. Furthermore, if ¢,<0 and ,<0, then there exist no non-trivial
L?*solutions of (2.1). This contradicts L?-well posedness of (2. 1).

There are two special cases in the proof of Theorem. First if a,>0
and a,=0, then rank B'=1 and the reflexivity of the problem (2. 1) implies
that only the first component of B’ is non-zero. Hence we see easily that
the inequality (1.3) holds. I @,>0 and @,>0, then rank B'=2 and the
third column of B’ is zero. Hence (1.3) holds. Therefore we may assume
hereafter that

(2. 2) a >0, a2<0 and B' - (1, b, 0) ’

where b is a complex number. The form of B follows from the reflexivity
and L*well posedness of (2.1) (see Lemma 2.10 in [4], I).

Second special cases are as follows. If either
(2.3) a’ =alf =0 for all j or @y’ =a}’ =0 for all j,

then we verify similar to that the inequality (1.3) holds after some
change v=Sw of unknowns. Here a}) stands for (&, /)-element of A In

fact, let .S be
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respectively, where a30. Then we see that S"1A,S=A4/, S1A S=A" and
BS=(a,b0 or (1,ab,0)
respectively. Therefore we obtain
(A" w, w) =(a,| bl*/a’+ a5) |[w,|* or (ay|b|*a*+ )| wl?

for w="w,, w,, ws) & ker B'S, respectively. Thus the assertion is valid by
taking a as a sufficiently large or small number, respectively. We remark
that the above argument is applicable to the case when ¥ variables are absent.

For general cases we shall prove in the next section that if the mixed
problem (2.1) is not maximally non-positive for A, that is,

(2. 4) a|blP+a,>0,

then it is not L*-well posed. As a preparation to prove this assertion, we
drive the necessary conditions for L2-well posedness in the rest of this section.
According to we may assume by a change of variables that

(2.5) ai’ =0 for all 5.
Such a change of variables is as follows :
t=t 2=z Y;=y,—~aPt (j=1,-,n).

We remark that a,, @, 4, a{’ and a}f’ are invariant by the above change
of variables.

We now define Lopatinski determinant and reflection coefficient for the
problem (2.1). Let % be a partial Fourier transform of v:

O(r, z,0) = se—i‘“ jglw“ﬁ v(t, x, ) dtdy ,
where Im 7<0 and ¢; are real. Then we have from (2.1) and (2.5) that

—i(a1 O) 0 <z‘)1)+<r+2a§f)aj 2.dife; )(t‘)l)

0 a 9% |3, Yade; o+ L) \o,
-~
+ (Zaég)ﬂj)ﬁ:«x: (—191) >
_
Zagg)o'j — 10>
. A -
(2 aday, 1 aid e (’01) +10; = —1¢s,
Dy

where 9="%?,, 05, ¥;) and a{y=al) for k>1. By setting
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and eliminating 9, in the equations above we then obtain the system of
ordinary differential equations with parameter (z, o) :

(_ﬁ_ M, o)) (1:)1(2', z, 0')) _ (hl(z', Z 0)) in 250,

(2 6) zax (%) (T’ x, 0) h2<7’ Z, 0)
?,(z, 0, 6) + bD,(z,0,0) =0.

A~ A~
Here h;(z, z, 0)=(—1¢;) (z, x, 0) —t *a;3(e) (—1igs) (z, x, 0) (=1, 2) and

Mz, o) = (al 0 ) -1 <iﬁ11(0ﬂ13 (0)277!  ayy(0) —ays(0) azs(o) 7—1)
0 @ |anlo)—au(o) an(o) e <+ au(o)—lam(o)*e™
If we set
(2.7) ss;=a;! and s,= —a;t,
we obtain

—52<&;(;'5- 13(0)a23(0) T—1> _52(T+a22(0')_lazs(d)l27~1> .

Let 2*(r,0) or A (r,0) be a root with positive or negative imaginary
part of the characteristic equation det (24 M(r,a))=0 respectively. Fur-
thermore, let U*(r,s) be an eigenvector of — M(z, ) associated to A*(z, o)
respectively. Therefore Lopatinski determinant R(zr,s) and the reflection
coefficient C(z, ) are defined by

(2.9) R(z,0)= B U*(z, 0)
and
(2.10) Cl(z,0) = B U (z,0)/B U*(z, 0)

(for instant see § 2 of [4], I). Through this paper we take U*(r,0) as the
following form :

51 <T+0111(0) — |y (‘7>[27—I> 51 <a12(0) — aty3(0) o (0) T—l> )

(2. 8) M(z, o) = (

7 (2, 0)— 55 (7 + 0a(0) — s (0) 22 77)
5o((0) — (0] () ")

From (2.9) and (2.11) we have

R(z,0) = 1" (z, 0) —sz<z'+a22(a) — lazs(o)l%'l)
+52b<c_rEG)—:G) y3(0) r’1> .

Here we remark that, in the second special cases mentioned above, the terms
of R (z,0) involving b vanish identically.

(2.11) U*(r,0) =

(2.12)
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We next introduce the compensating matrix function G(z, ¢; x,s) con-

sidered in [1], and for the mixed problem (2.1). Let v’ be a unique

solution of Cauchy problem :
Lv =g and v (0,z,9) =0,

where L=0/ot+ A’ 0/ox+ ) A’;0/0y. We then see from this and (2.1) that
w=v—v satisfies the equations :

Lw=0 int>0 >0, ye R,
Bw=—-B47v int>0, x=0, ye R",
w=10 int=0, x>0, ye R".

Thus the compensating matrix fnuction G (r,0; z,s) is defined by

P
(2.13) w(r, z, a)———S G(z,0;x,5) (—19) (r,s,0)ds .

0

According to the formula (4.12) in § 4 of [4], I, the compensating matrix
function is explicity expressed by

G(z,0; x,5) = Clz, 0) @ :0o=1" a9 B(r g),

Here
Br,0) = 1 0 Ut (z, 0) Ty(z, o)
0 1
(2. 14) —ay(0) T —agg(o) T
X (s; 0 \/1 0 —ays(o) 71
(O ——sz) (O 1 — ay(0) z"l)

and Ty(r,0) denotes the second row of the inverse of 2x2 matrix 7(, o)
such that '
— At (z, 0
2.15)  Tf(z, 0 M(z, o) T(xz, o) :( (€, 9) .
0 — 2~ (, o)

We shall prove that there exists the above matrix 7'(r, ¢) which is non-
singular in a neighourhood of each (zy, 6;) with Im 7,<0. Hereafter a neigh-
bourhood will be considered in Im 7<0. To do this, we seek concrete
expressions of 1*(r,0). It follows from (2. 8) that the characteristic equation
det (A4+ M(z, 6))=0 is equivalent to

22+{51 <T+au<0'>> —52<T+a22(0‘)) +(521‘123(0')12—51la13(0')'2> T } A

—S152 <T +ay (0)> <T -I—a22(0)> + 51 52| a12(0) |2
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51507 |0 (0)[* (7 + o (0)) + less ()| # (7 +- )
—2Re (15(0) c1s(0) aus(0))} = 0 .
Hence we have
22 (v, 0) = — sy (r+a(0))+ (v + (o))

+(s1l s (0) [ — 52l s ()[2) = = D5, o).

Here D(r, o) is the discriminant of the above equation and the branch 22
will be determined by

(2.17)  2“=sgnlm z\/,z’ +2Rez +i %‘fﬁ WT=1

(2. 16)

and 2% for 2>0 is defined by continuity. By definition of D(r, ¢) we have
D(z, o) = {s1(v +au(0)) — 27+ ana(0) )+ (52l aes(0)]*— s1l s ) 2) =
45,55 (+ au(0)) (2 +ta(0)) — 453l sz (o)
— 45,557 atea(0) * (2 + 213 (0)) + | s () |27+t ()
—2 Re (5(0) as(0) azs(0)) }

which implies that
D(z, 0) = {5 (z+au(0)) 452 (v +al0)) ' — 2 (51l s 0)]
+ 5ol ags(0)]2) {51 (7 + s (0) ) + 52 (7 + ama(0)) }
— 45,5,|t2(0)[*+ 8515, 7" Re (12(0) s (0) at(0)
+(s1lass (0)[— 52 () 2) ) 72

(2.18)

Put
(2.19) Sz, 0) =si(r+au(0))+s(c+ (o) — (sl (0)|*+ selaw(a) )7,
it then follows from (2.18) and (2.19) that
D(z,0) = S(z, )2—4slsz{|a12( 9)|2—2 Re (012(0) ass(0) () )"
(2. 20) + (| (0) s @) 2272)} = Sz, 02— sy,

(
X (0’12 0) — ay3(0) ag(0) 7~ > <a12(0)_a13(0) 0tp3(0) T_l> .
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Thus we obtain from (2. 11), (2.12), (2.16) and (2.19) that
—S(z, )+ Dz, o)V )

25 (12(0) — a1 (0) (o) =)

(2.21) 2U* (r,0) = (

and
(2. 22) 2R(z, 06) = —S(z, 6)+2bs, (cm — a3 () agg(0) z‘“) +D(z, o).

We now obtain the following

LemMMa 2.1. For every point (ry, 6,) with Im 7,<0 there exist a neigh-
bourhood of (t,, 0y) and a non-singular matrixz T(r,s) defined there and
satisfying the relation (2.15).

Proor. We find from (2. 8) that an eigenvector U~(z, ¢) associated to
2~ (z, ) may be taken as the following form :

7 (z, ) =557+ aa(o) — ]azs(o)lzz'”1>>

52(a12(0) — (o) etsl) =)

(2. 23) U-(z, 0) = (

or

(2. 24) U-(z, o) :( —sl(am(o)—als(o) as(0) f—1> ) |
F (5 0) 57+ au (o)~ (o) =)

If we set
(2. 25) T(z,0)= <U+ (z, o), U (x, a))

and T'(r, 0)"! is well defined, we then see from (2. 8), (2. 11), (2. 23) and (2. 24)
that T'(z, o) satisfies the relation (2.15). By a similar way as deriving (2. 21)
we get
(2. 26 2U- ( e 0) = Dle, o)

- 26) (e 0) = 25, (Ct’lz(o') —ay3(0) arp3(0) Tﬂ))

or

(2.27) 2U(r,0)= (—Zsl (e12(0) — t1s(0) a2s(0) f—l))

S(z, 6) — D(z, 0)2
respectively. Hence it follows from (2.21), (2.25), (2.26) and (2.27) that

(2. 28) det T'(z, 0) = —5,.8(z, o) (M—m a3 (0) r‘1>

or
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4 det T'(z,0) = — <S(z', ¢)— Dz, 0)1/2)"’
(2. 29) - -
+4s,5, <a12 (0) — as3(0) args(0) T~ 1) (am (0) — a3 (0) ags(0) T~ 1>

respectively. Since s, and s, are positive in virtue of (2.2) and (2.7), we see
from (2.17) and (2. 19) that Im S(z, ¢) and Im (S(z, 6) = D(z, 6)"?) are negative
for Imz<0. In a neighbourhood of a point (7o, 0;) at which ays(g,) —as(a)
ass(0;) 77" is zero or non zero, we take U™ (r,0) as the form (2. 25) or (2.24)
respectively. Therefore we see from (2.28) and (2. 29) that T'(zy, ) is non-
singular. Thus the lemma is proved.

We remark here the followings used in the next section. If we set
U* (z, o) ="(uf (z, 0), 4] (7, 0)), namely,

2ui (r, 6) = —S(z, 0)+ D(z, 0)V%,

(2. 30)

i (2, 0) = 5o al0) — s (0] () 1),
then we have by definition of T),(z, ¢) that
Ty(z, o) = (det Tz, 0)) " (—ui (z, 0), wt (s, 7)) .
Hence, by direct computation, we find from (2. 14) that
—siufui  —s Wl uf pr?
2.31)  Ble,0)=(det T)| —s,(uf)? —syufus wfpar

ssuF pivl o ssui pitTy pipat?

where

(2.32) Pi(z, 0) = ag(0) u (7, 0) + (o) 45 (7, 0)
P(T, 0) = s, a35(0) uF (7, 6) +5,055(0) 0 (7, 0) .

By similar way as the proof of Theorem 3.1 in [1], we can verify that
if the mixed problem (2.1) is L?well posed, then Hersh condition holds,
that is,

(2. 33) R(z,0)x0 for Im <0 and real ¢

(also see [3]). It follows from Hersh condition and Lemma 2.1 that the
compensating matrix function G(r,¢; z,s) is continuous in Im <0, real o.

On the other hand, we find from the estimate (1.4) that there are positive
constants a and C such that

(2. 34) fe—wnv(tm?dtgcfng(t)nzdt.

Since v/ is a solution of Cauchy problem, w=v—v must also satisfy the



Characteristic mixed problems for hermitian systems in three unknowns 233

estimate (3. 34). Therefore the following proposition can be proved by the
same way as proofs of Theorem 4.1 and 5.1 in (also see and [8]).

ProproSITION 2.2. Assume that the mixed problem is L*-well posed.
Then Hersh condition holds and for every real point (y, a,) there exist a
positive constant C and a neighbourhood Ul(ny, a,) of (py, 00) such that

(2. 35) |C(z o)

B, g)” < ClIm At (z,0) Im 27 (x, o')ll/?IIm z'|"1

for any (z, 6) € U(p,, 0,) with Imt<0. Here || Z(z, 0)|| denotes a matriz norm
of Bz, a).

ReEMARK 1. The converse of Proposition 2.2 is also valid, but does
not use this fact in this paper.

REMARK 2. U~ (r, ¢) will be taken as the form (2. 24) or (2. 25) according
to ays(ay) — ays(0y) ags(ag) 7510 or =0, respectively.

Hereafter the functions in Im 7<0 considered above will be continuously
extended to Im r<0, if it is possible. Thus we obtain from Proposition 2.2
the following

COROLLARY 2.3. Assume that the mized problem (2. 1) is L*-well posed.
Then Lopatinski determinant R(n,, 6,) does not vanish for a real point (n,, d,)

at which y(ay(0) n—ays(0) ags(0)) and || B(y, 0)l| don’t vanish and 2*(y, a) is
real simple.

Proor. Since A (p, 0y) is real simple, we see from (2.16) that 2~ (x, d)
is also real simple and it holds with some constant C>0

(2. 36) lIm 2= (pe— 17, oo)l =Cr

for any small y>0. Hence we obtain from (2.35), (2.36) and hypothesis
[|-B(ne, @0)]| %0 that it holds with some constant C>0

237 |Con—ir,a)|=C

for any small y>0. On the other hand, from (2.23) and hypothesis
7o(@12(00) 70— at13(d0) tas(dp)) 3 0, we have

B U~ (r, 0) = 1"z, 0) =53 v+ anl0) — lats(0) %)
5 b (a12(0) — as10) azs(0) =77)..

Since A*(ny, 0,) is simple, we see from (2.12) and this that if R(y, 6)=0
then the numerator B U~ (3, g,) of reflection coefficient C(p, 6,) does not
vanish. This contradicts (2. 37).
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Except special cases we shall prove Theorem dividing the following
two cases :

Case 1. a®%0 for some &k or a a{’=0 for all j and a{¥’a¥’:0 for
some k&,

Case 2. af’=0 for all j and a{¥ a0, a=a{¥) =0 for some k=xl.

According to Case 1 or 2 we use Proposition 2.2 and Corollary 2.3 con-
sidering variables ¢ as (0, -+, 0, g4, 0, --+,0) or (0, --+, 0, 6%, 0, -+, 0, 7y, 0, -+, 0)
respectively.

§ 3. Proof of Theorem (genereal cases).

Through this section we assume that the mixed problem (2.1) is not
maximally non-positive. From (2.4) and (2. 7) this assumption is equivalent
to

3.1) s;—5,|b2< 0.

Thus we may assume that 5=0.
We shall first investigate zeroes of Lopatinski determinant R(z,0). As-
sume that R(r,0)=0. We then find from (2.19), (2.22) and the second

equality of (3.20) that ay,(6) —ays(0) ays(e) z71=0 or

bS(z, 6) = 5, b (Ef;(;) _m azs(0) T_1> +5 <a12 (0) — a3(0) ans(0) T~ 1)
(3. 2)

= (510115(0) + 5213(0) B%) — (51219(0) Aaa(0) + 50115(0) cs(a) B2) 1.
Using the first equality of (3.2) we have
— Sz, 0)+ 2bs,(a15(0) — s (0) tes(0) )
= 535 (a12(0) — @12 (0) a(0) 777) — 51 (12(0) — t1(0) Aas(0) 77 b1
= (s,212(0) b*— 51 10(0)) &7

+ (51 13(0) Qg3(0) — $5,013(0) @3(0) bz) o7t

Therefore, from (2.22), (3.2) and (3. 3) we obtain the following
LemMA 3.1. If a point (r,q) satisfies the relation (3.2), then

(3. 4) 2R(z, 0) = Q(r, o) +(Q(z, o))",

where
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Qlz, 0) = (ss1s{0) b — 5,01 (0)) b7

(3.5)
+<S10113(0) 0ta3(0) — 53015 (0) axgs(0) b2> o7t

The following lemmas follows directly from Proposition 2.2, Corollary
2.3, Lemma 3.1 and the choice of branch (2.17).

LeMMA 3.2. If there exists a point (r,s) with Im <0 satisfying (3. 2)
and Im Q(r, 9)<0, then R(c,s) vanishes. Hence the mixed problem (2.1)
s not L?-well posed.

LEMMA 3.3. If there exists a real point (y,0) satisfying (3.2) such
that Q(y, 0) is non-zero real and signs of Q(y,0) and liﬁn Im D(p—iy, 0) 1
rlio

are different, then R(, ¢) vanishes. Moreover, if 7(aw(0) 7— (o) ags(0)) and
|.8(p, a|| don’t vanish for such a point (y, a), then the mized problem (2.1)
ts not L?-well posed.

We now consider the case that Theorem will be proved by using the
above lemmas. However, an example mentioned in Introduction is not con-
tained in this case (see Remark after Proposition 3. 7).

To show the existence of a point (r, ¢) satisfying the assumptions of
Lemma 3. 2 or 3. 3, we first compute the real and imaginary parts of Q(z, g).
Using the relations :

(s202(0) 82— s1605(0)) b = —Re (sg(0) &) (51— 52 /2 [6] 2
—iIm (s(0) B) (s1+521 519 5] 2

and

(s1611(0) @23 @) — sp13(0) () 82) 7171
={y Re (a45(0) azs(a 9) b) (51— 551 b]?)
—7 Im (a1s(0) aza(0) b) (s1+ 521 5[9} 5] 2
+i{r Re (1s(0) aes(0) B) (51— 52 5]
+7Im (s(0) ass(0) ) (514521619} [b] 2,

where r=9—1ir (y=0), we obtain from (3.5) that

|76]2Re Q(z, 0) = — (5, +52]5]?) Im (t(0) (o) 5)

(3.6) .
+ (51— 52/ /%) {77 Re <als(0) at3(0) b) —|7|*Re <a12(0) b)}
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and _
b1 Tm Q(z, o) = 7(ss— 5| b]*) Re (cs(0) aus(0) 5)
(5152181 {9 Im (s (0) 2zs(0) ) — |12 Im (@a(0) B) }..

On the other hand, by a similar way as the above computation we
find from the second equality of (3.2) that

S(e, o) = {(s1 5216/ Re (asa(0) &) +ilsy— 521 6/%) Im ((a) &)} 6]
— {(51 521 B1%) Re (o) as(0) &) +i (515261
x Im (am(a) Qps(0) b)} 71 b|72.

(3.7)

By multiplying the above equality by r=p—iy and using (2.19), we
obtain that

(=) {51 (1+@(0)) + 527+ ta()) — (51452 181%) Re (as(o) 6) 1] 2
— iy (sy 59— (51— 52 5] Tm (s(o) 5) 1612
= 51 |ay(9) 52 |ags (0)]2— (51 + 52 B ) Re (s (0) () ) |1
— (5~ 52b[9 Tm (o) (o) ) 5172
To simplify the equation (3.8) we introduce a new variable ¢ defined by

(3.9) n=£§—pl0)/2

where
(3.10)  (sy+5) Bl0) = 5101(0)+ 5y05 (0) —(s:+52b]?) Re (auua(o) ) |52
Hence the left hand side of (3. 8) is equal to
(s1+52) (82— B(0)Y4—17) — (51— 5:18]?) Im (a(o) ) 6]

— 28 s+ ) — (s —52|bJY Tm (ae(o) B) (6 — Bla)/2) 16172
If we set
(3.1)  G(o)=1Im (a(0) an(0) b) +Im (aulo) 5) B(0)/2,
then the equation (3. 8) is equivalent to

(3.12) 278 1bJHsy+s9) = (51— 52/8]%) (Gl0) =& Im (aus(o) ))
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and
|612(s1+s52) (82— B()/4—7*) — (5= 52 151%) Im (a(0) 5)
= 1812 (s s (0) 1P+ 52 te(9)1%) — (51 + 52181 Re (1 (0) o) 5) -

Substitute 7 satisfying (3. 12) into the term [b|2(s,+ s5) 7247 (s; — 55 5|3 Im (e () B)
in (3.13), we see that this term is equal to

(51— 52|BI%2{G (062 — (Im (calo) B) '}/41BI2 (5, +55)

Therefore we obtain the equation in & resulting from substituting y of (3. 12)
into (3.13):

(3.14) 4] b]*(s1 59?6t — F(0) £ — (51— 52| b)? G (0)? = 0

where

(3.13)

2

F(0) = [Bl4(s;+55)* (0) = (51— 5, b|* (Im (e(o) 5) )
(3.15) +4/b[*(s1+52) (51 la13(0')J2+SzJa23(0>12>
—4[b[*(sy+s5) (51452 /B[%) Re (t13(0) () B) -

For Case 1 mentioned in the last part of § 2 we shall prove the following
propositions. In this case we set az=ay and ¢=(0, -+, 04, 0, -, 0). Thus
we may assume that ¢ is one variable.

PROPOSITION 3.4. Assume that s;—s,|b|2<0. Then there exists a point
(z, 0) satisfying the assumptions of Lemma 3.2 if one of the following con-
ditions holds :

(1) G=o0,

(2) G=0 and Im (a,b)=0,

(3) Im(aypbd)=Im (ayaud)=0 and F<O.

Here G=G(1) and F=F()).

PROPOSITION 3.5.  Assume that s;—s,|5|2<0 and Im (ay,5)=Im (ay; asb)=
0. Then there exists a real point (n, 6) satisfying the assumptions of Lemma
3.3 if one of the following conditions holds :

(1) awpax=0 and ay or a0,

2) ayanx0, ay=0 and F>0,
3) apayaux0, F>0 and Ix0,

4) apagarx0, F>0, I=0 and B+ ays dos/ a2 0,
5) apanx0, a,=0, F=0 and g0,
6

(
(
(
(
(6) apapanx0, F=0, %0 and B+2aydy/an>=0.
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Here B=8(1), I=I(1) and
(3.16) I(o) = |b]%(s, | ays| 2+ 53| agl?) 0% — (s +s52|b|%) Re (a;30a50b) .

PrOFF oF ProrosiTION 3.4. First let Gx0. Then the equation (3. 14)
has two real roots having opposite signs and G(¢)—¢& () Im (a,b0)%0 for
some root £(¢). Hence we may choose ¢ such that

(3.17) £(0) {G (0) —&(0) Im (as 130)} <0.

From (3.17) we see that there exist y(s) >0 satisfying (3.12). Here we use
that s5,>0, 5,>0 and s;—s,/b/2<0. Therefore it suffice to prove that
Im Q (z(0), 6)<0 for such a point (z(s), 6) =(7(e) —i7 (9), 6), where 5(s)=£§(0)—
B(s)/2 by definition (3.9).
From (3.9) and (3.11) we have
Im (a5 a3 b0?) — 7 Im (a3, 00) = G (o) —& Im (a5, ba) .

It follows from this, (3.7) and (3.9) that
019 |b[2Im Q(r, 0) = (§— B(0)/2) (s1-+5:/ BI*) (G () —& Im (as b))
| +1{(s1=52161) Re (aisambe®) =7 (5,-+ 5|69 Im (asBo)}

Replacing the factor y in the last term of (3.18) by r(e¢) satisfying (3.12),
we then find that

G(0) —£(0) Im (ay, bo)

3.19) el Im Q(r(o) (0) =~ grppa 1y (o) HO)
where
3.20) O == 5lb) Re(ay a5y b0%) + | b]*(2 (0)*— B(0) £ (0))

X (s1+5) (51521 612) —7 (o) (s — 531 6/4) Im (ays bo) .

In virtue of (3.17) and (3.19) our proof finishes if we prove H(g)>0. To
do this, we solve the equation (3. 14), that is,

(3.21) 816|4(sy+ 52 £ (0)? = F(0) +4J (o)
where
(3. 22) J(0) = F(0)2+16 | b|*(sy+50)% (51— 52| 0|2 G (0)? .

Substitute (3. 21) into 4|b|2(s;+s,) H(s), it then follows from (3. 15) and (3. 20)
that
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4|b[*(s,+s5) H(0) = 4] b|?(s,+s5) (51— 52| b]%)? Re (a3 azs bo?)
—41b[*(s1+52) (51152 5|?)* Re (amm +4/b]*(s;+52)
X (51452 [617) (s1] asg |2+ 52 ass|?) 0®+ | B]* (514 5)° B(0)?
X (1452 |b|%) —(s;+5:]6]?) (sl—szlblz)z(lm (a1250)>2
+(51+5:[bI)4 T (0) —415]4(s1+52)? (s1+5:15]) B(0) £(0)

—47(0) |b]2(sy+s5) (S — 5[ b]%) Im (a;, b0) .

(3. 23)

Using the identity which is easily proved :
(514 52| B|?) (51] @] 2+ 5g | asg|?) — 45,55 Re (ar3az5b)
= |5, @iy — Sy Qs b|2 45,53 | @13 b — ags |
and substituting (o) satisfying (3.12) into (3.23), we obtain that
416[*(s:+s;) H(o)
= 4| b|4(s; 4 So) (|51 A1g — Sy Az b| 245 53] 136 — @p5 |?) 02
(3. 24) (51521519 { BI*(5, + 522 B(0)* + (51— 52 b]%* (T (a1 Bo) )
+4J (o) —4b[*(s1+52)*B(0) &(0) — 2 (51— 52| B])?
X G(o) Tm (ay; bo) £(0) 71} .
When the following quantity is negative :
215]4(s1+52)* B(0) &(0) + (51— 521 5]%)? Im (ar, b0) G (0) £ (0)* .

we see from (3.24) that H(¢)>0. When it is non-negative, we shall show
that

K(a) = {|b/4(s,+ )2 6(0)*-+ (51— 521612 (Im (ae B0) | +4T (@) }'
—4{2|bl4(s1+59*8(0) £(0) + (51— 52l B9 Im (1 B0) G (o) € (o)}

is non-negative, where the above equality is the definition of K(s). In fact,
it follows from (3. 21) and (3. 22) that

16|25, + 5*8(0)°& (0)2 = 2 |b]*(s+50)* B(0)* F () +4T (0) )
and
4(s,—5,| B|%*(Im (a1 B0) ) G (o) (o) 2
= —2(s;— 5| b|%*(Im (ae0) )’ (F (o) —VJ(a)).

Hence we find from these and (3. 22) that
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K(0) = {F(6) — [b]4(s1+ 5 8(0)*+ (51— 5.1 b|2)*(Im (2 B0) '}

(3. 25) .
+4[B]4(5,+ 5 (51— 2 B12)*(2G(0) — B (0) Im (@13 0) )" .

Assume that a;3d>0, 5;d—S2dsb=0 and a;36—ay=0. Then we have
s1—52| 0|2 = (51| ays |*— 55| @3 |}/ | a5 |* = 0

which contradicts the assumption of Proposition 3.4. Thus we conclude
from (3.24) and (3. 25) that H(s)>0.

When a;3a,,=0, we find directly from (2.19), (3.2) and (3.5) that the
equation (3.2) is equivalent to two equations :

(s1452) n+s; A0+ S2a00 — (51 | Ay ’2’*‘52,423!2) a*n7!
= (s;+s52/0/%) Re (alzb_") |b|~2,
(si455) 7= —(51—52/6|%) Im (aml;o) |b|~2

and it holds
Im Q (z, 6) = —(5,+5:6/% Im (ay; b0) [ b] 2.

Remark that Im(a;,6)%0 because of Gx0. Therefore, if ¢ will be taken
as Im (a,,00)>0, we see the existence of a point (r, ¢) satisfying the assump-
tions of Lemma 3. 2.

We next assume that G=0 and Im(a,b)%0. If F>0, then the equa-
tion (3.14); that is, 4|b|(s;+s,)?62—F(s)=0, has non-zero real root &(g).
Since (3.12) is equivalent to

27 161%(s1+s5) = — (51— 5, || Im (ap bo) ,

there exists 7(¢) >0 satisfying (3.12) if ¢ is taken as Im(a;,60)>0. There-
fore the same argument deriving Im Q(z(s),s)<0 when G=0 is directly
applicable to this case.

Let £€=0, then (3.12) holds automatically and from (3.13) we obtain
the equation in 7:

41b[2(s,+55) 72 +4 (5152619 Im (a1 60) 7+ |b[*(s1 +5) B(0)?

3.26 -
< ) +4(bl2(51lalalz+52|a23l2) 0'2—4(51‘1“32,5‘2) Re (azayba?) =0.

From (3.15) the discriminant of (3.26) is equal to —16F(e). If F<0 and
we choose ¢ such that Im(a,b0)>0, then (3.26) has a positive root y(g).
Hence such a point (z(s), 6) =(—B(0)/2 —iy(0), 0) satisfies (3. 2).

We now prove that Im Q(z(s),6)>0. Since §=0 and G=0, we have
from (3. 18)
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|2(a)bl2 Im Q(z(0), @) = 7(0) {(s:— 52 151*) Re (s as b}
—7(0) (515 b/ Im (@ Bo)} -

Denoting the last factor of (3.27) by L(s) and using the inequality which
follows from (3. 26)

21b[*(s;+59) 7 (0) = —(5;—52|b]?) Im (alzb_o') ’

(3.27)

we obtain the following inequality :
—2|b|*(s;+s5) L) = —(s;—52]0]?)
X { (Im (2180 " s+ 53181 +-2 BI2(s1 +52) Re (@ @ o)}

On the other hand, it follows from (3.15) and F=0 that

(3. 28)

(51— 6[2)2(Tm (a2 50) ) +4[B[%(51 45 (515 [B]%) Re (aanbo?) 2 0,
which implies that

—(s1=5:/6]%) (Im (anbo) '

2 |b|2(s,+ ) Re (ayg an b0?) = 2(s1+516/?)

Thus we see from this and (3. 28) that
—41BJ2(5,+5,) (5145 |B]%) L(0) = —(s1—5]b[9) (Im (axeBo))”
X {2 (14 52| B —(5:— 52 152)

which shows that Im Q(z(0), ¢)<O0.
Finally we assume that Im (a;;6) =Im (aj3a,6) =0 and F<0. From (3. 15)
we have
(s1+59) "1 F(0) = |b|%(s;+55) Bl0)?+4 [b[2(s; |ayg |2+ 53| azl?) o2

(3. 29) -
—4(51+52|b|2) Re (a13a23b02) .

Let £=0. Then (3.12) holds automatically and from (3.13) and (3.29) we
have the equation in 7:

4|b272+ F(0)=0.

Since F is negative, this equation has a positive root y(s). Hence there
exists a point (z(¢), 0)=(— p(0)/2—iy(0), o) satisfying (3. 2) and Im z(¢) <O0. On
the other hand, it follows from (3.18) that

(o) b Im Q(7(0), 7) = 7(0) (51— 5216/%) Re (ass aaabo?) .
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From (3.29) and F<0 we obtain that Re (aja;b0?) >0 which shows that
Im Q(z(s),6)<0. Thus the proof is complete.

ProoF oF ProposiTionN 3.5. If we set y=0 in (3.6), (3.7) and (3.13),
we then obtain that Im Q(y, ¢)=0,

(3. 30) 176(2Q(n, 0) = (s, — 521 5|?) (s ags b0* —pays bo)
and
(3.31) 41b[%(sy+55) £ = | b|%(s+55) Blo)2+41(a) .

Here I(o) is defined in (3.16) and a6 and ayaxb are real by assumptions.
From (3. 15) and (3. 16) the right hand side of (3. 31) is equal to F (0)/(sy+ s2).
Therefore the equation (3.31) has a real root £(o).

We now compute the imaginary part of D(y(o)—ir,6) where 7(s)=
§(0)—pB(0)/2. Tt follows from (2.19) and (2. 20) that

Im Dz, ) = — 27 {(s14-52) + (51l @i [*+ 5, | 2 [2) 0% 2|7}
X {s1(n+a10) 53 (7 + aan(0)) — (5t | asg |2+ 52tz |2) m0? ]2}
+8s1537 {Re (@1 @iy @) 0* 7|2~ | @y a [247 | |4}
which implies that
552 lim Im D(z, 0) 1™ = —28(5, o) {si+ s+ (s1] au|*+ 52| as]?) o*77?)
. +8s, 5, {Re (@12 Q13 Gos) 092 — | ayg a23|20477"3} .

By definition of ¢(0), n(0)=§ (s) —B(6)/2 has to satisfy the equation (3.2) in
7, that is,

(3.83)  S(2(0), a) = ~ 6]~ (o) (s1+-54/817) (@i azs B0 ~1(0) aba)

Since ay,b and a5 ay b are real, dy,ad, is also real and we have the following
identity :

(3.34) | @13 ags|20* — (1 a3 Gs) 03 (0) = {b['2a13a23b02<a13a23 ba®—1(o) 41250'> .
Substitute (3. 33) and (3. 34) into (3.32), we then obtain that

lim Im D(r;(o) —17, a) 1= 2]b[‘277(a)‘3(a13m0—77(0) a125¢7>

740

X [(51 + 55/ 0] 3 {(51 +53) 7](“)”‘(&[ Qrg|* 59| Ags/?) 02} —4sissay hﬁaz]

which implies that
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( li?;)l Im (77(0) —17, a)) yl=2| b['27)(a)"3<a13;2;2702—~77(0) ays 50>
3. 35) 4 _
X {(51+52> (51"‘52,[)’2) 77(0)2+ [slals—32a236[202+5152]a23——a13b[202} .

Therefore, if 7(¢) will be taken as

(3. 36) 7(0) <a13 a3 0*—1(0) al2o'> x0,

it then follows from (3. 30), (3.35) and (3. 36) that Q(5(s), s) is non-zero and
signs of Q(7(s),¢) and lim Im D(y(¢) — iy, o) y~* are different.
rlo

To prove the existence of such 5(s) we remark that 5(e)=0 is equivalent
to £(6)=p(0)/2. If a3a,=0 and a;; or ay is non-zero, then I>0 and the
equation (3.31) has a root different from f(¢)/2. Hence (3. 36) is valid be-
cause of apx0. If F>0, Ix0 and aa,>0, then the equation (3.31) has
two roots different from B(s)/2. Hence we may choose 7(0) satisfying (3. 36).
If either F>0, ayay=x0 and I=a,=0 or F>0, I=0, ayasas>x0 and g+
Q13 /a0, then $0 and (3. 36) valid for a root &(s)=—pB(s)/2 of (3.31),
that is, (o) = —p(0). If either F=a,,=0, 820 and a;3a,0 or F=0, a;,a3as;
30, A0 and B+2aysam/ap*0, then (3.36) is valid for a root £(¢)=0 of
(3. 31), that is, »(a)=— B(a)/2.

Finally we shall prove that ||.-B(y(0), 0)||>0 for 5(s) determined above.
It follows from (2.28), (2.30) and (2. 31) that the (2. 1)-element of .B(y(s), o)
is equal to

$155 <c‘1’12 o7(0) — Qy3 Gys 02>/77(0) S(ﬁ(a), a> ,

which does not vanish in virtue of (3.33) and (3.36). Thus the proof is
complete.

When a;=a;=0 and a;,6 is non-zero real, the quantities considered
above have no terms involving r~!. Hence (3. 2) is equivalent to

(3.37) (514 52) 77+51a110+52a220:(31+52Pb12) (a1250)lbl'2
Moreover we obtain from (3.5) and (3.32) that

(3. 38) Qn, 0) = —|b] (s, —s,| b]?) (01250)

and

(3. 39) limIm D(yp—iy, o) y 1= —2 (s;+s5,) {(sl—l—sz) n+s; aua+52a220} .

rio0

Substitute 7(o) satisfying (3. 37) into (3. 39), we get
lim Im D(;y(a) —17, o> 7~ l= —2|b|2(s,+55) (s, 55| b|%) (ar2 b0) .

rlo0
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0

D(n()—1iy, o) are different. On the other hand, we find from (2. 28), (2. 30),
(2.31) and (3. 37) that the (2. 1)-element of .B(y(0), 0) is equal to the positive
quantity s;sy|b|2(s;+s5,/6|?). By the same method as the proof of Corollary
2.3 we can conclude that R(y(s), ¢) =0 for such 7(¢) and the mixed problem
(2.1) then is not L*well posed.

For the remainder of Case 1 we shall show that under the assumption
(3.1) the condition (2. 35) for reflection coefhicient does not hold in a neigh-
bourhood of a real point (5, ¢) such that y=0 or i*(y, o) is a real double
root. To do this we remark the followings: If Im (aas;b)=0, then we
see from (3.16) that

Hence it follows from this and (3.38) that signs of Q(y(s),s) and lim I{n
7

I=(Gy—ayb) (syanb—siai) b.

When b=ady/di; OF S;aus/szds, the condition that Im (aab) =Im (a;,6) =0
it 0.

is equivalent to Im (G a3 ;) =0. Moreover, when Im (ay3ay30) =Im (a5, 0)
we see from (3.15) and (3.16) that F=8=0 implies I=0.
Our propositions are as follows:

i

PROPOSITION 3.6. Assume that s;—s,|b|?<0, Im (a3 dss) =0 and (dy—
A b) (syab—s,a5)=0. Then the condition (2.35) for reflection coefficient
does not hold in a neighbourhood of (0,1) if either agan>0 and =0 or
A2 ay3 Ay 0 and B+ ays dps/a;,=0.

PROPOSITION 3.7. Assume that s,—s,|b|2<0 and Im (ayassb)=Im (a;;b)
=0. Then the condition (2. 35) for reflection coefficient does not hold in a
neighourhood of a real point (9, 1) if apaan>x0, F=0 and B+2a;3ds/a;y;=0

ReEMARK. We find from the proofs of the propositions that R(0, 1)=0
for the second case of Proposition 3.6 and A"(y, 1) is a real double root
for » in Proposition 3. 7.

Proor oOF PrROPOSITION 3.6. If b=ay/a; or s;ap/ssas, then we have
$1— 52| O] = (51| ass|® — 53] ans|?)/ | @1s|® Or — (51| ass|® — 55| @zs|?)/ 52| Aps|?
respectively. Hence the assumption s, —s,|6|2<0 is equivalent that
(3. 40) s ags|?— s3] ags|? 1s negative or positive
respectively. Hereafter put
(3. 41) d™ = @,/ ajzass .
Then d is real because dja;dy is real. Moreover, we get that

(3. 42) | 6]~ ¥(s;3+ 52/ b]%) b = d(s;| ass|®+ 55| as|?)
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fOr b:a_23/d13 or 51a13/52a23.
We first assume that a;,a,3a,3%0 and B+ a3 ds/a;,=0. It follows from
(3.10), (3.41) and (3.42) that

S1a11+ 52 ags = d (51| G| 2+ 55 ags|®) — (5, +53) -
Hence we obtain from this and (2.19) that
(3.43)  S(r, 1) = (@' =) {dsi+s) T+sil awl®+ 51l anl?
which implies that
—S(z, 1)+ 2bsy (G — dys azst™Y)
(3. 44) L \ ,
=—(d'—7 ){d<51+52)fi(51‘a13, — S5/ Ay )} .

Hereafter the upper sign or the lower sign corresponds to b&=ay/d;; or
S1 a13/S; ass TESpectively.
On the other hand, it follows from (2. 20), (3. 41) and (3. 43) that

D(z, 1) = (d — ) {d(s;+ 5,7
+2d(31+52) (51] @3] 2+ 55| az?) T+(511413'2‘“Szlazs[2)2} .

Since Im (d'—77)<0 for Im <0, se find from (3.40) and the choice of
branch (2.17) that, in a neighbourhood 7=0,

Dz, )2 = %(d"'— ™) {s as|* — 52| an|?
(3. 45)
+d (s, 55) (1] ais| 2+ 55| azs|?) (51] arg|?— 55 as|?) "7+ 0(72)} .

Thus we obtain from (2. 22), (2. 23), (3. 44) and (3. 45) that, in a neighbourhood
of =0,

2R(z, 1) = (d-1 =) [dls+55) { — 1 £ (1] anl* + 52l as]?)
(3. 46)

X (s3] ass|*— 5ol a9} T4 O(r9)]
and

(3.47)  BU (5, 1) =(d"'—c ) {Flsilas/*~ sl an/)+O0()} .

From (3.46) we see that R(0,1)x0. Therefore we can conclude from
(2.10) (3.46) and (3.47) that there exists a constant C>0 such that

(3.4  Cyr=[Cl=in 1| =G

for any small y>0.
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We treat the behaviors of Im A*(r,1) in a neighbourhood of z=0.
When b= a;/ady, it follows from (2. 16), (3. 40) and (3. 45) that, for any small
7>0,

Im At (—iy, 1) = 0O(1)
and
Im 2~ (—1y, 1) = (si) a|2— sl az|?) y 71+ O(1) .
When b=s,ays/ssa, We obtain in the same way as the above case that
Im 27 (=1, 1) = (81] ass|® — 52l ass?) 7_1+O<1>
and
Im A2 (—ir, 1) =0(1).
Therefore there exists a constant C>0 such that

(3.49  [Im 2" (=i, 1) Im (—ip, 1)| < Cr?

for any small y>0.

We next treat the behavior of ||.%(r, 1)|| in a neighourhood of z=0.
It follows from (2. 28), (2. 30), (3.43) and (3. 45) that, in a neighbourhood of
=0,

(3. 50) det T(r, 1) = —sy Qg ag(d™*—77Y)? {51fa1s'2+52lazs‘2+ O(T)} )
(3.51) uf (t, 1) = s, dig agg(d1—779
and

ut(z,1) = —(d1 =77 (s al*+ O (7))
(3.52)
or —(d1—77Y) (s ayl*+0())

according to b=d,/d;; or b=s;ay/s;ass, respectively. Moreover, from (2. 32),
(3.51) and (3.52) we find that for b=a,/a;s

(3.53) Da(7, 1) = spans(d™1—77Y) <511413|2—52|azs'2+ O(T)>
and for b=s,a;/ssays
(3. 54) Pi(r, 1) = dp(dt—77Y) <52f423|2—51|41312+ O(T>> .

Therefore it follows from (2. 31), (2. 32) and (3.50)~(3. 54) that there exists
a constant C>0 such that

(3. 55)

B(—ir, 1)||z G



Characteristic mizxed problems for hermitian systems in three unknowns 247

for any small y>0.
If the condition (2.35) holds in a neighbourhood of (0, 1), that is,

|B(~ir, V|| |C(~ i, V| < CGr|Im 2 (=i, 1) Im 27 (— i, [

for small y>0, then it follows from (3. 48), (3.49) and (3. 55) that for some
constant C>0 it must hold that

7.—1 é CT—1/2 .

However, this inequality is not valid for a small y>0.
We next assume that aga,=0 and f=0. It follows from (2. 19), (3. 10)
and (3. 42) that

(3. 56) S (r, 1) =(s;+s9) t+(d 1 —77Y) (1] asg| 2+ 5| agsl?) .
Hence we have

—S8(t, 1)+ 25, b(apy — s agt™Y)

(3.57)
= —(s1F89) tF (@1 =777 (51| ass|?— 52| ags|?) -
On the other hand, it follows from (2.20) and (3.56) that

D(z, 1) = (31+52)272+2(51+52) (s1] ass|®+ 55| agg|®) (A2 —77Y)

+ (81] @y 2 — 55 ag| ) (d1—771).

By the same way as deriving (4.45) we obtain that, in a neighbourhood
of 7=0,
D(e, 12 = (@™ =77 {s,] a|*— so] @ |*+ (51 +52)
(3.58)
X(51’a1312+52!azslz)'(sﬂalslz“‘szl023‘2)_172+O(Ts)} .

Thus we find from (2. 22), (2. 23), (3. 57) and (3. 58) that, in a neighbourhood
of ¢=0,

2R(z, 1) = —(si+s) t(d =) {(s,+359)
X (s1] @ss 2+ 53] @zs]?) (s1] o] — 5ol a|?) 222+ O(9)}
and
BU (5, 1) = —(s+5) eF (@ =) {(s1] @l — 5ol an) + O(e2)} .
Therefore there exists a constant C>0 such that

(3.59)  Cyrs|C(-in )|
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for any small 7<0.

Since the coefficient in z~! of (3.56) or (3.58) is equal to one of (3.43)
or (3.45) respectively, we find by the same way as the above case that the
estimates (3.49) and (3. 55) are also valid for this case. Therefore it follows
from (3. 49), (3.55) and (3. 58) that

|| B(—ir, ]| |C(=ir, 1| 2 G2
and
7~ Im 2 (—dy, 1) Tm 2 (—ip, 1) < G2

for any small y>0. This contradicts the condition (2. 35) of reflection coefhi-
cient.

Proor oF ProrosiTioN 3.7. It follows from (3.10) and (3.41) that
the relation f= —2a;dy/ar, is equivalent to

(3. 60) syayt+Sadg = — 2d(s; 4 53) + | b ~2(s, 55/ B]%) an .
Substitute 3= —2d into F=0, we obtain from (3. 15) that
(3.61) 2 b|2(sy +55) + | B]*(51] | >+ 52l azs|?) — (51 + 521 B1?) (ary a 8) =0 .
Substituting again (3. 60) and (3. 61) into (2.19), we then obtain

S(r, 1) = (sy+55) (r—2d+ @77 + | B] (5, + 52/ b|) (12 b — arg ans b777) ,
which implies that
(3.62)  Sr, 1) =(d 1~ {dls+5) (e —d)+[b] s F5/b]%) (s ad)}
Hence we have from (3.62) that

—S(t, 1)+ 25, b(dyp— Az agst™Y)

3.63) = (@ =) {dlsi ) (r— )+ Bl (s — 5l 17 (s 2 B)
and

S(z, 1) — 25,07 (ap— ai3 v
(3.64)

= (d-1—29) {dlsy+52) (r—d) — |b] (51— 52| b]%) (s 2 D)} -
On the other hand, it follows from (2.20) and (3.62) that
Dz, 1) = (d ' —z 9 {5, +*(c — d) 4246 (5, +5,)

X (517 51/ b17) (s s B) (e =)+ [ BI (51— 55/ BI (@ as B} -
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Remark that a;5a,6>0 by (3.61), s;—s,/6/2<0 and Im(d-'—z9)<0 for Im
7<0. We then obtain from the choice of branch (2.17) that

D, 12 = (@ =) {|6] (s, — 5/b]% (e amb)
(3. 65)
+d(s452) (5151 bI?) (ss — 52/ 6]~ — ) + O (e — &)}

in a neighbourhood of r=d. From (2.22), (3.63) and (3.65) Lopatinski
determinant R(r, g) is expressed in a neighbourhood of r=d by

2R(z, 1) = (@1 =) [dlsi+s) { — 1+ (5152l 6]
X (s — 52/ b3 1) (f—d)+o((f-d)2)] .

Since we treat the behavior of reflection coefficient C(z,0) in a neigh-
bourhood of z=d, U (r,s) will be taken as the form (2.24) in virtue of
Remark 2 after Proposition 2.2 in §2. Hence we find from (2.2), (2.7), .
(3.64) and (3. 65) that

207 B'U (¢, 1) = —25; b Y (ayy— ay3 Gps v~ Y) +.S(z, 1) — D(z, 1)1/2
= =2(d7 =) {|6] (s~ 5|69 + Oc —d)} .

(3. 66)

Therefore we obtain from this and (3. 66) that there exists a constant C>0
such that

(3.67  CYyi<|Cld—ir, 1| = O

for any small 7 >0.
Now we shall prove that there exists a constant C>0 such that

(3.68)  ||Bld—in1)||zC
for any small 7>0. From (3.62) and (3.65) we have
S(r, 1) = D(r, )2 = (d"'— ™) {25,(ay anb) + O(r —d)} .
Hence it follows from this, (2. 29) and (2. 30) that
uf (z, 1) = 5,y agg(d-1— 77
and
det T(z, 1) = (@ — 77 {s,| @iy ap|*(s— 52/ 6|) + Oz —d)} .

Using the above relations we obtain from (2.31) that the (2. 1)-element of
B(r,1) is in a neighbourhood of r=d equal to
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— 5152 Ay Aps($1— 52| 0|3+ O(r —d) ,

which shows that (3. 68) is valid.
On the other hand, it follows from (3.65) that there exists a constant
C>0 such that

(3.69)  |Im D(d—ir, 1)?| < Cy

for any small y>0. From (2.16) and (3.69) we see easily that there exists
a constant C>0 such that

3.70  |mad—i,1)|<Cr

for any small y>0. Therefore it follows from (3.67), (3.68) and (3.70)
that

|Bd—ir, 1)|| |Cld—ir, 1| = G
and
r|Im 2 (d—iy, 1) Im 4~ (d—ip, D[ "< C

for any small y>0. This contradicts the condition (2. 35) for reflection coeffi-
cient. Thus the proof is complete.

Finally we consider Case 2 mentioned in the last part of §2. In this
case, ¢ may be regarded as two variables (gy, 6;), a¥ =al® =al’ =a{¥’=0 and
a® ax0. By replacing ai3o or ago for Case 1 by a{¥) g, or aff g, respectively,
the assertions corresponding to Propositions 3.4, 3.5 and 3.6 can be proved
in the same way as Case 1. Moreover, these proofs are carried out simpler

than proofs for Case 1, because a{¥’=a{?=0.
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