On strongly separable extensions ## Yasukazu Yamashiro Dedicated to Professor Kazuhiko HIRATA on his 60th birthday (Received April 4, 1989, Revised December 7, 1989) E. McMahon and A. C. Mewborn introduced a type of separable extensions in [4], which is called strongly separable extension. In this paper, we shall study some properties of strongly separable extensions corresponding to H-separable extensions. In § 1, we give some equivalent conditions (1.4) and in § 2, we give the commutor theorem for strongly separable extensions (2.5). The author expresses his gratitude to professor Kazuhiko Hirata for his advices during the preparation of this paper. ## 1. Strongly separable extensions Let R be a ring and M and N left R-modules. We shall denote M > N if M is a direct sum of submodules S and K such that $RS < \bigoplus_{R} (N \oplus \cdots \oplus N)$ and $\operatorname{Hom}(RK, RN) = 0$. It is easy to see that K coincides with the reject of N in M (cf. [1]), which is defined by $$\operatorname{Rej}_{M}(N) = \bigcap \{ \ker f ; f \in \operatorname{Hom}(_{R}M,_{R}N) \}.$$ Using this notation, we can state that a ring Λ is a strongly separable extension of a subring Γ if and only if $\Lambda \otimes_r \Lambda \to \Lambda$ as Λ - Λ -medules. LEMMA 1. 1. Let R be a ring and M and N left R-modules such that $M \gg N$. Then for every R-direct summand L_1 of M, $L_1 \gg N$. PROOF. We can writ $$M = L_1 \oplus L_2$$ and $M = S \oplus K$ with ${}_RS < \bigoplus_R (N \oplus \cdots \oplus N)$, $\operatorname{Hom}({}_RK, {}_RN) = 0$. Let π_1 and π_2 be projections of M to L_1 and L_2 , respectively, and p_K the projection M to K. By (8.18) in [1], we have $K = \pi_1(K) \oplus \pi_2(K)$. Then the restriction of $\pi_i p_K$ to L_i is the projection of L_i to $\pi_i(K)$ (i=1,2). Hence we can write $L_1 = S_1 \oplus \pi_1(K)$ and $L_2 = S_2 \oplus \pi_2(K)$. Then we have $M = S \oplus K = S_1 \oplus S_2 \oplus K$ and $S \cong M/K \cong S_1 \oplus S_2$. Hence $S_1 < \oplus S < \oplus (N \oplus \cdots N)$. Since $\pi_1(K) < \oplus K$, $\text{Hom}(_R\pi_1(K),_RN) = 0$. Then $L_1 \Rightarrow N$. Let $\Gamma \subset B \subset \Lambda$ be rings. In case the map $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ such that $b \otimes_{\lambda} \longmapsto b\lambda$ for $b \in B$ and $\lambda \in \Lambda$ splits as a $B \cdot \Lambda$ -map, we shall call briefly that $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits. In this case, by tensoring on the left with Λ over B, $\Lambda \otimes_{B} \Lambda < \bigoplus \Lambda \otimes_{\Gamma} \Lambda$ as $\Lambda \cdot \Lambda$ -modules. So, from the above lemma, we obtain PROPOSITION 1. 2. Let Λ be a strongly separable extension of Γ . Then for every subring B of Λ such that $\Gamma \subseteq B$ and $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits, Λ is strongly separable over B. COROLLARY 1. 3. Let Λ be a strongly separable extension of Γ . Then for every separable subextension B of Λ over Γ , Λ is strongly separable over B. For any Λ - Λ -module M, we denote by M^{Λ} the subset $\{m \in M : \lambda m = m\lambda \text{ for all } \lambda \in \Lambda\}$ of M, and for any subring A of Λ , we denote by $V_{\Lambda}(A)$ the commutor ring of A in Λ . Let $\Gamma \subseteq \Lambda$ be arbitrary rings C the center of Λ and $\Delta = V_{\Lambda}(\Gamma)$. Then we always have a Λ - Λ -map $\varphi: \Lambda \otimes_{\Gamma} \Lambda \longrightarrow \operatorname{Hom} _{c}(\Delta, \Lambda)$ defined by $\varphi(\lambda \otimes \lambda')$ $(\delta) = \lambda \delta \lambda'$ for $\lambda, \lambda' \in \Lambda$ and $\delta \in \Delta$. We shall denote its kernel by $R_{\Gamma}(\Lambda)$. Since $\operatorname{Hom}(_{\Lambda} \Lambda \otimes_{\Gamma} \Lambda_{\Lambda}, _{\Lambda} \Lambda_{\Lambda}) \cong \Delta$ by the map $f \longmapsto f(1 \otimes 1)$ for $f \in \operatorname{Hom}(_{\Lambda} \Lambda \otimes_{\Gamma} \Lambda_{\Lambda}, _{\Lambda} \Lambda_{\Lambda})$, $R_{\Gamma}(\Lambda)$ coincides with the reject of Λ in $\Lambda \otimes_{\Gamma} \Lambda$ as a Λ - Λ -module. In particular, if Λ is strongly separable over Γ then we can write $$\Lambda \otimes_{\Gamma} \Lambda \simeq \text{Hom } c(\Delta, \Lambda) \oplus R_{\Gamma}(\Lambda)$$ as Λ - Λ -modules. The next theorem is a generalization of Theorem 1.2 in [6]. THEOREM 1. 4. Let $\Gamma \subseteq \Lambda$ be rings, C the center of Λ and $\Delta = V_{\Lambda}$ (Γ). Then the following statements are equivalent. - (1) Λ is a strongly separable extension of Γ . - (2) For every Λ - Λ -module M, $M^{\Gamma} = \Delta M^{\Lambda} \otimes X$ such that the map $g: \Delta \otimes_c M^{\Lambda} \longrightarrow \Delta M^{\Lambda}$ defined by $g(\delta \otimes m) = \delta m$ for $\delta \in \Delta$ and $m \in M^{\Lambda}$ is an isomorphism and $X \in \text{Rej }_{M}(\Lambda)$. $$(3) \quad (\Lambda \otimes_{\Gamma} \Lambda)^{\Gamma} = \Delta (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda} \otimes X$$ such that the map g for $M = \Lambda \otimes_{\Gamma} \Lambda$ is an isomorphism and $X \subseteq R_{\Gamma}(\Lambda)$. PROOF. Assum (1). By (3. 10) in [4], $$M^{\Gamma} \simeq (\Delta \otimes_{\mathcal{C}} M^{\Lambda}) \otimes \operatorname{Hom}({}_{\Lambda} R_{\Gamma}(\Lambda)_{\Lambda, \Lambda} M_{\Lambda}).$$ p is a map of $\Lambda \otimes_{r} \Lambda$ to Λ . Since $k \in R_{r}(\Lambda)$, the reject of Λ in $\Lambda \otimes_{r} \Lambda$, $g(f(k)) = g \circ f \circ p(k) = 0$. Then g(X) = 0 and $X \subset \operatorname{Rej}_{M}(\Lambda)$. Hence (2) holds. If we put $M = \Lambda \otimes_{r} \Lambda$ then (2) implies (3). Assume (3). We can write $$1 \otimes 1 = \sum_{ij} \delta_i x_{ij} \otimes y_{ij} + k$$ for some $\delta_i \in \mathcal{A}$, $\sum_{i} x_{ji} \otimes y_{ij} \in (\Lambda \otimes_{\Gamma} \Lambda)^A$ and $k \in X$. By definition of $R_{\Gamma}(\Lambda)$, $$\delta = \varphi(1 \otimes 1)(\delta) = \sum_{ij} \delta_i x_{ij} \delta y_{ij} \qquad \text{for all } \delta \in \Delta.$$ Hence Λ is strongly separable over Γ by (3.5)(2) in [4]. This completes the proof. As a generalization of (3.4) in [2], we have PROPOSITION 1. 5. Let Γ be a ring R the center of Γ and Δ a separable R-algebra such that Δ is R-f. g. projective. Then $\Lambda = \Delta \bigotimes_R \Gamma$ is a strongly separable extension of Γ' where Γ' is a natural homomorphic image of $R \bigotimes_R \Gamma$ in $\Delta \bigotimes_R \Gamma$. PROOF. By Lemma 3 in [7], $\Lambda^r = \Delta$. By (3.3) in [4], Δ is strongly separable over R. Then we have $\Delta \otimes_R \Delta = S \oplus K$ with $$_{\Delta}S_{\Delta} < \bigoplus_{\Delta} (\Delta \oplus \cdots \oplus \Delta)_{\Delta}, \text{ Hom}(_{\Delta}K_{\Delta}, _{\Delta}\Delta_{\Delta}) = 0.$$ Hence $$\Lambda \otimes_{\varGamma} \Lambda = (S \otimes_{R} \Gamma) \oplus (K \otimes_{R} \Gamma)$$ with $$_{\Lambda}(S \bigotimes_{R} \Gamma)_{\Lambda} < \bigoplus_{\Lambda} (\Lambda \bigoplus \cdots \bigoplus \Lambda)_{\Lambda}.$$ On the orther hand, $$\operatorname{Hom}({}_{\Lambda}K \otimes_{R}\Gamma_{\Lambda}, {}_{\Lambda}\Lambda_{\Lambda}) = \operatorname{Hom}({}_{\Gamma-\Delta}K \otimes \Gamma_{\Gamma-\Delta}, {}_{\Gamma-\Delta}\Lambda_{\Gamma-\Delta})$$ $$= \operatorname{Hom}({}_{\Delta}K_{\Delta}, {}_{\Delta}\operatorname{Hom}({}_{\Gamma}\Gamma_{\Gamma}, {}_{\Gamma}\Lambda_{\Gamma})_{\Delta}) = \operatorname{Hom}({}_{\Delta}K_{\Delta}, {}_{\Delta}\Delta_{\Delta}) = 0$$ Thus $\Lambda \otimes_{\Gamma} \Lambda \Rightarrow \Lambda$ as Λ - Λ -modules and Λ is strongly separable over Γ . For any Λ - Λ -module M, we call that M is centrally projective over Λ if M is a direct summand of a finite direct sum of copies of Λ as a Λ - Λ -module. COROLLARY 1. 6. Let Λ be a separable extension of Γ such that Λ is Γ -centrally projective. Then Λ is strongly separable over Γ . PROOF. Let R be the center of Γ and $\Delta = V_{\Lambda}(\Gamma)$. By (5.6) in [3], $\Lambda = \Gamma \otimes_{R} \Delta$ and Δ is R-f. g. projective. By Theorem 2 in [7], Δ is a sepa- 284 Y. Yamashiro rable R-algebra. Then by (1.5), Λ is strongly separable over Γ . Let Λ be a strongly separable extension of Γ , C the center of Λ , $\Delta = V_{\Lambda}(\Gamma)$ and $\Gamma' = V_{\Lambda}(\Delta)$. By (3.6) in [4], Λ is strongly separable over Γ' , and by (3.9) in [4], the map $\Delta \otimes_{c} \Lambda \longrightarrow \operatorname{Hom}(_{r}\Lambda,_{r}\Lambda)$ defined by $\delta \otimes \lambda \longmapsto [\lambda' \longmapsto \delta \lambda' \lambda]$ for $\delta \in \Delta$ and λ , $\lambda' \in \Lambda$ is a (split) monomorphism. Then a generalization of (2.2) in [4] can be obtained in the same way. PROPOSION 1. 8. Let Λ be a strongly separable extension of Γ such that $\Lambda = \Delta \Gamma$. Then $\Lambda \simeq \Delta \otimes_c \Gamma'$, Δ is a central C-separable algebra and Λ is an H-separable extension of Γ' , where $\Gamma' = V_{\Lambda}(\Delta)$. PROOF. The latter assertion follows from (3.4) in [2]. #### 2. Commutor theorem Throughout this section, whenever we denote a ring and its subring by Λ and Γ , respectively, we denote the center of Λ by C and $V_{\Lambda}(\Gamma) = \Delta$. Let \mathscr{B}_{l} be the set of subrings B of Λ such that $\Gamma \subseteq B$, $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits and there exists a B- Γ -projection $p_{B}: \Lambda \longrightarrow B$ such that $(1_{\Lambda} \otimes p_{B})$ $(R_{B}(\Lambda))=0$, where 1_{Λ} is the identity map of Λ and $1_{\Lambda} \otimes p_{B}$ is the map of $\Lambda \otimes_{B} \Lambda$ to Λ given by $(1_{\Lambda} \otimes p_{B})$ $(\lambda \otimes \lambda') = \lambda p_{B}(\lambda')$ for $\lambda, \lambda' \in \Lambda$, and \mathscr{D}_{l} the set of C-subalgebras D of Δ such that ${}_{D} D \subset \oplus_{D} \Delta$ and $D \otimes_{C} \Delta \longrightarrow \Delta$ splits. \mathscr{B}_{r} and \mathscr{D}_{r} are defined similarly. Furthermore, let \mathscr{B} be the set of subrings B of Λ such that B is a separable extension of Γ and there exists a B-B-projection $p_{B}: \Lambda \longrightarrow B$ such that $(1_{\Lambda} \otimes p_{B})$ $(R_{B}(\Lambda))=0$ and \mathscr{D} the set of separable C-subalgebras of Δ . Firstly, we prove PROPOSION 2. 1. Let Λ be a strongly separable extension of Γ , D a C-subalgebra of Δ such that $D \otimes_c \Delta \longrightarrow \Delta$ splits, and $B = V_\Lambda(D)$. Then there exists a B- Γ -projection $p_B : \Lambda \longrightarrow B$ such that $(1_\Lambda \otimes p_B) (R_B(\Lambda)) = 0$ and the map $\psi_B : B \otimes_{\Gamma} \Lambda \longrightarrow \operatorname{Hom}({}_D \Delta, {}_D \Lambda)$ defined by $\psi_B(b \otimes \lambda)$ $(\delta) = b \delta \lambda$ for $b \in B$, $\lambda \in \Lambda$ and $\delta \in \Delta$ is a split epimorphism as a B- Λ -map. If furthermore ${}_D D < \otimes_D \Delta$, then $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits. PROOF. Let $\sum_i d_i \otimes \delta_i \in (D \otimes_c \Delta)^D$ such that $\sum_i d_i \lambda \delta_i = 1$. If we put $p_B : \Lambda \longrightarrow B$ by $p_B(\lambda) = \sum_i d_i \lambda \delta_i$ for $\lambda \in \Lambda$, and $\pi_D : \operatorname{Hom}_C(\Delta, \Lambda) \longrightarrow \operatorname{Hom}_D(\Delta, \Lambda)$ by $\pi_D(f)(\delta) = \sum_i d_i f(\delta_i \delta)$ for $\delta \in \Delta$ and $f \in \operatorname{Hom}_C(\Gamma, \Lambda)$ then these maps are split epimorphisms as a $B - \Gamma$ -map and a $B - \Lambda$ -map, respectively. Now, consider the commutative diagram Since φ is a split eprimorphism, ψ_B is a split epimorphism. If we put η : Hom $_{\mathcal{C}}(D', \Lambda) \longrightarrow \Lambda$ by $\eta(f) = \sum f(d_i) \delta_i$ for $f \in \operatorname{Hom}_{\mathcal{C}}(D', \Lambda)$, where $D' = V_{\Lambda}(B)$, we have a commutative diagram $$0 \longrightarrow R_B(\Lambda) \longrightarrow \Lambda \otimes_B \Lambda \xrightarrow{\psi_B} \operatorname{Hom}_C(D', \Lambda)$$ $$1_A \otimes p_B \qquad \qquad \Lambda$$ where the row is exact. Then we have $$(1_{\Lambda} \otimes p_{B}) (R_{\Gamma}(\Lambda)) = \eta \circ \varphi_{B}(R_{\Gamma}(\Lambda)) = 0.$$ Consider the commutative diagram $$B \otimes_{\Gamma} \Lambda \xrightarrow{\psi_B} \operatorname{Hom}({}_{D} \Delta, {}_{D} \Lambda)$$ $$\Lambda$$ where α is the map given by $\alpha(f) = f(1)$ for $f \in \text{Hom}({}_{D}\Delta, {}_{D}\Lambda)$. If ${}_{D}D < \bigoplus_{D}\Delta$, then α is a split epimorphism and $B \otimes_{T}\Lambda \longrightarrow \Lambda$ splits. PROPOSITION 2. 2. Let Λ be a strongly separable extension of Γ . Then for every $B \in \mathcal{B}_l$, $V_{\Lambda}(B) \in \mathcal{D}_l$. PROOF. Since $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits, we have ${}_{D}D < \bigoplus_{D} \Delta$, where $D = V_{\Lambda}(B)$. By (1.2), Λ is strongly separable over B. D is $C \cdot f$. g. projective since ${}_{D}D < \bigoplus_{D} \Delta$. Then we have the following isomorphisms $$\operatorname{Hom}({}_{B}\Lambda_{\Gamma}, {}_{B}\Lambda_{\Gamma}) \simeq \operatorname{Hom}({}_{\Lambda}\Lambda \otimes_{B}\Lambda_{\Gamma}, {}_{\Lambda}\Lambda_{\Gamma})$$ $$\simeq \operatorname{Hom}({}_{\Lambda}\operatorname{Hom}_{C}(D, \Lambda)_{\Gamma}, {}_{\Lambda}\Lambda_{\Gamma}) \oplus \operatorname{Hom}({}_{\Lambda}R_{B}(\Lambda)_{\Gamma}, {}_{\Lambda}\Lambda_{\Gamma})$$ $$\simeq (D \otimes_{C}\Delta) \oplus \operatorname{Hom}({}_{\Lambda}R_{B}(\Lambda)_{\Gamma}, {}_{\Lambda}\Lambda_{\Gamma}).$$ In the above direct decomposition, the injection $\psi_D: D \otimes_c \Delta \longrightarrow \operatorname{Hom}({}_B \Lambda_{\Gamma}, {}_B \Lambda_{\Gamma})$ is given by $\psi_D(d \otimes \delta) \ (\lambda) = d\lambda \delta$ for $d \in D$, $\delta \in \Delta$ and $\lambda \in \Lambda$. Clearly ψ_D is the D- Λ -homomorphism. In this case, the action of D and Δ to $\operatorname{Hom}({}_B \Lambda_{\Gamma}, {}_B \Lambda_{\Gamma})$ is given by $(df) \ (\lambda) = df(\lambda)$ and $(f\delta) \ (\lambda) = f(\lambda) \delta$ for $d \in A$ $D, \ \delta \in \Lambda \ \text{ and } \ f \in \operatorname{Hom}({}_{B}\Lambda_{\Gamma}, {}_{B}\Lambda_{\Gamma}).$ Let $\alpha : \operatorname{Hom}({}_{B}\Lambda_{\Gamma}, {}_{B}\Lambda_{\Gamma}) \longrightarrow \operatorname{Hom}({}_{A}R_{B}(\Lambda)_{\Gamma}, {}_{A}\Lambda_{\Gamma})$ be the projection in the above decomposition, and M the map of $\Lambda \otimes_{B}\Lambda$ to Λ given by $M(\lambda \otimes \lambda') = \lambda \lambda'$ for $\lambda, \lambda' \in \Lambda$. Then $\alpha(f)(x) = M(1_{A} \otimes f)(x)$ for $f \in \operatorname{Hom}({}_{B}\Lambda_{\Gamma}, {}_{B}\Lambda_{\Gamma})$ and $x \in R_{\Gamma}(\Lambda)$. Since $\alpha(p_{B}) = 0$ by the definition of \mathscr{B}_{l} , we have $p_{B} \in \psi_{D}(D \otimes_{c} \Delta)$. Hence there exists $\Sigma d_{i} \otimes \delta_{i} \in D \otimes_{c} \Delta$ such that $p_{B} = \psi_{D}(\Sigma d_{i} \otimes \delta_{i})$. Then we have $$\sum d_i \delta_i = \psi_D(\sum d_i \otimes \delta_i) (1) = p_B(1) = 1$$ and for any $d \in D$, $$\psi_D(\sum dd_i \otimes \delta_i) = d\psi_D(\sum d_i \otimes \delta_i) = dp_B = p_B d = \psi_D(\sum d_i \otimes \delta_i) d = \psi_D(\sum d_i \otimes \delta_i d)$$ as the image of p_B is B. Since ψ_D is a monomorphism, $\sum dd_i \otimes \delta_i = \sum d_i \otimes \delta_i d$. Then $\sum d_i \otimes \delta_i \in (D \otimes_c \Delta)^D$ and this implies $D \otimes_c \Delta \longrightarrow \Delta$ splits. As a generalization of Proposition 1.2 in [6], we have the next lemma. LEMMA 2. 3. Let $\Gamma \subseteq \Lambda$ be rings and there exists a left Γ -projection $p: \Lambda \longrightarrow \Gamma$ such that $(1_{\Lambda} \otimes p) (R_{\Gamma}(\Lambda)) = 0$, the $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$. PROOF. Let $x \in V_{\Lambda}(V_{\Lambda}(\Gamma))$. By definition of $R_{\Gamma}(\Lambda)$, $x \otimes 1 - 1 \otimes x \in R_{\Gamma}(\Lambda)$. By hypothesis, we have x - p(x) = 0 and $x \in \Gamma$. LEMMA 2. 4. Let Λ be a strongly separable extension of Γ . Then for every $D \in \mathcal{D}_l$, $V_{\Lambda}(V_{\Lambda}(D)) = D$. PROOF. Since $D \otimes_c \Delta \longrightarrow \Delta$ splits and Δ is C-f. g. projective, Δ is left D-f. g. projective. Let $B = V_A(D)$ and $D' = V_A(B)$. By (2.1), $_B \operatorname{Hom}(_D \Delta, _D \Lambda)_A < \otimes_B B \otimes_r \Lambda_A$. Then we have $$D' \otimes_{D} \Delta \simeq \operatorname{Hom}({}_{B}\Lambda_{A}, {}_{B}\Lambda_{A}) \otimes_{D} \Delta \simeq \operatorname{Hom}({}_{B}\operatorname{Hom}({}_{D}\Delta, {}_{D}\Lambda)_{A}, {}_{B}\Lambda_{A})$$ $$< \bigoplus \operatorname{Hom}({}_{B}B \otimes_{P}\Lambda_{A}, {}_{B}\Lambda_{A}) \simeq \operatorname{Hom}({}_{B}B_{P}, {}_{B}\Lambda_{P}) \simeq \Delta.$$ Hence the map $D' \otimes_D \Delta \longrightarrow \Delta$ ginen by $d' \otimes \delta \longrightarrow d' \delta$ is injective. Since this map is always surjective, $D' \otimes_D \Delta \cong \Delta$. Then D' = D, since $D \otimes D \Delta \cong \Delta$. Now, we can obtain the commutor theorem for strongly separable extensions, which is a generalization of (1.3) in [9]. THEOREM 2. 5. Let Λ be a strongly separable extension of Γ , and consider the correspondence $V: A \leadsto V_{\Lambda}(A)$ for a subring A of Λ . Then we have (1) V yields a one to one correspondence between \mathcal{B}_{l} and \mathcal{D}_{l} (resp. \mathcal{B}_{r} and \mathcal{D}_{r}) such that V^{2} =identity. - (2) V yields a one to one correspondence between $\mathscr B$ and $\mathscr D$ such that $V^2\!=\!identity$. - PROOF. (1) For any $B \in \mathcal{B}_l$, $V_{\Lambda}(B) \in \mathcal{D}_l$ by (2.2) and $V_{\Lambda}(V_{\Lambda}(B)) = B$ by (2.3). For any $D \in \mathcal{D}_l$, $V_{\Lambda}(D) \in \mathcal{B}_l$ by (2.1) and $V_{\Lambda}(V_{\Lambda}(D)) = D$ by (2.4). - (2) Since $\mathscr{B} \subset \mathscr{B}_l$, for any $B \in \mathscr{B}$, $V_A(V_A(B)) = B$ and $V_A(B) = D \in \mathscr{D}_l$. Since $B \otimes_r B \longrightarrow B$ splits, ${}_D D_D < \bigoplus_D \Delta_D$. Hence D is a C-separable algebra by (1,4) in [9]. - By (1.1) in [9], $\mathscr{D} \subset \mathscr{D}_l$. Then for any $D \in \mathscr{D}$, $V_A(V_A(D)) = D$ and $V_A(D) = B \in \mathscr{B}_l$. Since $D \otimes_c D \longrightarrow D$ splits, ${}_B B_B < \bigoplus_B \Lambda_B$. Hence B is separable over Γ by (1.4) in [9]. #### References - [1] F. W. ANDERSON and K. R. FULLER: Rings and Categories of Modules, Springer G. T. M. 13, 1974. - [2] K. HIRATA: Some types of separable extensions of rings, Nagoya Math. J. **33** (1968), 107-115. - [3] K. HIRATA: Separable extensions and centralizers of rings, Nagoya Math. J. 35 (1969), 31-45. - [4] E. MCMAHON and A. MEWBORN: Separable extensions of noncommutative rings, Hokaido Math. J. 13 (1984), 74-88. - [5] T. NAKAMOTO and K. SUGANO: Note on H-separable extensions, Hokkaido Math. J. 4 (1975), 295-299. - [6] K. SUGANO: Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 266-270. - [7] K. SUGANO: Separable extensions and Frobenius extensions, Osaka J. Math. 7 (1970) 291-299. - [8] K. SUGANO: On centralizers in separable extensions II, Osaka J. Math. 8 (1971), 465-469. - [9] K. SUGANO: On some commutor theorem of rings, Hokkaido Math. J. 1 (1972), 242-249. - [10] K. SUGANO: On projective H-separable extensions, Hokkaido Math. J. 5 (1976), 44-54. Department of Mathematics Faculty of Science Chiba University Ciba 260, Japan