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Representing densities of the multi-sequences of moments

Calin-Grigore AMBROZIE
(Received December 2, 2002)

Abstract. One considers a finite set v = (va)aca (A C Z%}) of moments o € R of a
measurable representing density f = f(¢t) > 0 (¢ € R™) with respect to the monomials
t*. We prove the existence in this case of some representing densities f« > 0 of v with
a higher degree of smoothness, or having a particular form. The results are established
also in a more general setting.
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1. Introduction

A truncated problem of power moments on the n—dimensional Euclidian
space can be stated as follows. Consider a measurable subset 7' C R™ and
a finite subset A C Z7. Set uq(t) := t* for t € R" and o € A. Given
a set v = (Vq)aea Of real numbers vy, one asks to establish if there exist
nonnegative measures y on R” with supp u C T, such that all u, € L*(u)
and

/ Ug(t) du(t) = Yo, «a € A. (1)
T

In this case, we call 7, the moments of y. In particular, we are interested
in measures y = fdt absolutely continuous with respect to the Lebesgue
measure dt, with f > 0 (almost everywhere). If (1) holds, then x (resp. f) is
called a representing measure (resp. density) for the finite multi-sequence .
The problem is then to characterize those sets v having nonnegative repre-
senting measures, to study the set of the solutions and find or approximate
such measures p.

For n = 1 these problems received good answers in a large class of
cases, in terms of positive—definiteness. For example, a sequence v =

('ya)ikzo has nonnegative representing measures on R iff the quadratic form
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(’)/a_i_ﬁ)’fv, p—o is nonnegative definite [1]. Similar characterizations hold for

={0, 1, ..., k} and T := an interval (or union of intervals) in R, for A :=
{=k, ..., k} and T := the unit circle (with respect to the moment functions
e (%) := ¢ and the measure df), as well as in other 1-dimensional cases
(1], [4], [11]. They are based on the possibility to represent any nonnegative
polynomial as a sum of squares [9], which makes the condition [.p*du >0
(p € R[X]) sufficiently strong.

The moment problem on T := R” for the set A := {a € Z7;|a| < 2}
has been solved in [6] by operator-theoretic methods. Generally one can
not state similar results for larger A and n > 2, in which case the set of
nonnegative polynomials is more complicated and difficult to handle [5].

There are also other approaches, providing the existence of certain max-
imum entropy—type solutions on the torus [4], or concerning singular mea-
sures on R™ (for instance, finitely atomic) for flat data in the sense of [6].
We also mention some results from [2] that we shall follow.

Note that the functional analytic techniques applied usually to the full
moment problems A := Z% (see for instance [7]) do not seem to apply to
the truncated case.

For finite A and arbitrary n these problems have thus received only par-
tial answers. In this context we show in the present paper that the existence
of an arbitrary representing density f € L'(T') for vy is equivalent to the ex-
istence of some representing densities of class C* or having a concrete form
(Theorems 6, 7). Certain generalizations are then straightforward (Theorem
8).

I am indebted to professor F. Vasilescu for many discussions on various
aspects of the moment problems.

2. Main results

Let T be a compact subset of R", with nonempty interior int T = T\
OT. Let m denote the Lebesgue measure on T'. Assume that m(0T) = 0.
Let uq (o € A) be a finite set of functions of class C* on a neighbourhood
of T, containing the constant function 1 (= ug for a distinguished element
0 € A). In particular, we can take A C Z% and uq(t) := t* = ¢J* - - t3"
fort = (t1, ... tp) € T and & = (a1, ..., an) € A. Set a := card A. Let
Yo € R for oo € A, and set v := (Va)aca € R% In so far we are concerned
with the equalities (1), we can suppose that vg > 0 and, if necessary, that
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Uq are linearly independent. In the particular case uq(t) = t%, this follows
from the condition intT # (. Let P be the a-dimensional linear space of
functions on T generated by uq, o € A. Consider on P the sup—norm
lpll := maxeer |p(¢)| (p € P). Let P* denote the dual of P, endowed with
the norm ||| := supyp<1 l¥(p)|- Any locally integrable function ¢ on R™
defines a functional, denoted by the same symbol ¢ € P*, by p — fT ppdt.
Then [|¢|| < |l¢|l1, where [|¢]l1 := [;|¢|dm is the norm on the space L*(T)
of all (classes of) measurable functions that are Lebesgue integrable on T'
with respect to m. We will sometimes identify P and R® by the algebraic
isomorphism |, 4 Tala = (ZTa)aca. We consider only nonnegative Radon
measures p € C(T')*, where C(T") denotes the space of all continuous func-
tions on 1" endowed with the sup norm. For ¢t € T, let §; € P* denote the
evaluation functional d;p := p(t).

Lemma 1 There exist t(c) € intT (o € A) with 0y linearly indepen-
dent.

Proof. Since P C C(T), then P* = C(T)*/ P+ where P+ denotes the space
of all functionals vanishing on P. Any d € P* extends by the Hahn—Banach
theorem to a functional d € C(T)*. Now d can be weakly* approximated
by a net of convex combinations of Dirac extremal measures d;, via the
Krein—-Milman theorem. Applying this on the functions u, € P shows that
d can be weakly* approximated by linear combinations of the functionals
8 = dy + PL. Note that (d; + PL)p = 6;p for p € P. Since d was arbitrary,
the linear span P of §; (t € T) is thus weakly* dense in P*. But dim P* =
dimP = a < oo, and so we have P* = P'. Extract now from the set of
generators {G;}; of P* a basis dyq) (@ € A). Since (ug)p also is a basis
(of P), we have det[ya)ugla,s 7 0- Now ug are continuous, and hence
a slight perturbation of the points #(«) let them belong to int T without
affecting the linear independence of the corresponding d;(4) (expressed by
the condition det # 0). Thus Lemma 1 is proved. O

For any set b = (do)aca € (P*)? consisting of a functionals d, € P*,
define the operator By on P by

Byug =Y da(uglug (o € A). (2)
BEA

If do = 04 for some set 7 := (t(a))aca € (R™)® of points t(a) € T (a €
A), then we set det(7) := the determinant of By. Identify P with R* by
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> e Tala = (Za)aca. Then By acts on R® like the multiplication by the
matrix [cga)s, o Where cgq := da(ug). Namely, Byx = (3 ,c 4 CBata)pea for
Z:= (Toq)aca. In the context of (2) we have:

Lemma 2 (1) b is a basis < By is invertible,
(2) {7 € (intT)? | det(r) # 0} is dense in T.

Proof. The equivalence Byz = 0 < 3 4 Tade = 0 gives (1). For b :=
(4(a))aca as in Lemma 1, det(7) # 0. Thus det( ) is a polynomial function
# 0 on (int 7)*. Hence (2) follows. O

Let f be a measurable function on 7', and fix tg € T'\ 87. We recall
that if there exists a finite constant cs(¢g) such that

1

lim——/ £(t) — cq(to)| dt = 0
k—oo m(B(to, Tk)) B(to,'rk)| ®) f( )

for any sequence of balls B(tg, 7x) of center g and radius 7, > 0 (k > 0)

such that 7 — 0, then tg is said to be a continuity point of f (see the more

general Definition 8.2 from [10]). If f is continuous on T then cf(to) = f(to)

for each tg.

Lemma 3 Let f € LYT). Assume f > 0 and [ fdm # 0. Then there
exists a set b = (04(q))aca € (P*)* such that:

(1) t(a) € T\OT (a € A) and the operator By is invertible;

(2) allt(c) are continuity points of f with 0 < cz(t(c)) < o0.

Proof. We can choose in the class of f some (measurable) representing
function which takes only finite and nonnegative values. We extend this
function f to R™ with the value 0 outside T. Set F :={t € T'\ T; f(¢t) #
0}. Since fT fdt # 0 while 0T has zero Lebesgue measure, then E has
strictly positive measure. Set F' := {¢t € R™ | ¢ = continuity point of f}.
Since f is Lebesgue integrable on R™, then almost all ¢ € R™ are continuity
points of f such that f(t) = c¢(t) = finite, see Theorem 8.8 from [10]. Hence
the measure of EN F is positive. Then the measure of the product (ENF)%
of a copies of EN F in (R™)* is positive, too. By Lemma 2, det(7) is a
nonnull polynomial function of the variable 7 € (int 7)* (C R™). Then the
set Z := {7 € (R™)% det(r) = 0} is a finite union of smooth manifolds of
dimensions strictly less than na. Hence the Lebesgue measure of Z is zero.
The measure of G := (EF N F)*\ Z is then strictly positive. Hence G # 0.
Now take 7 := (t(a))aca € G. Thus Lemma 3 is proved. O
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Lemma 4 (1) Given f € LY(T) with f > 0, there exists a sequence of
nonnegative functions fi, € CO(T \ 8T), k > 1 such that fr — f in L}(T).
(2) If the restriction f|p of the function f above to a closed ball B C int T
is continuous, we can take (fx)r such that fyxi1 < fr on B for all k > 1.
(3) Given a measure v > 0 on T, there exists a sequence of nonnegative
functions o, € C§°(T \ 0T), k > 1 such that opm — v weakly® in C(T)*.

Proof. (1) Whenever it is not specified, the convergence will be consid-
ered below in the space L}(T'). We take a sequence of bounded measurable
functions fr > 0 such that fi — f. Moreover, since m(9T) = 0, we may
assume that supp fr C T \ 8T, by taking a sequence of compact sets Ty
exhausting 7'\ 8T and truncating f with the characteristic functions of Ty
respectively. We fix now a nonnegative function ¢ € C§°(R") with [¢dt =
1. For every r > 0 define ¢,(t) := cr¢(rt) where ¢, is the positive constant
such that [ ¢, dt = 1. For each k we can choose r = 7, sufficiently big such
that supp(fi * @) C T\ 0T and || fi * ¢r — fxll1 < 1/k. Replace then each
fx by the convolution fx * ¢, (> 0).

(2) Extend f|p to a nonnegative function g continuous on a closed ball
B’ such that B C int B. The Stone—Weierstrass theorem provides, for each
k > 1, a real polynomial function such that supg |g + k=% — gi| < (2(k +
1)2)~!. In particular, on B’ the sequence (gi) is uniformly bounded and

Ge=g+k = (g+kt —gr)>g+Ek =g+ k! — g
>g+ k7 - (2(k+ 1?7 (3)

(whence gi > 0). Set ¢ = sup, maxp |gk|. Let B denote the characteristic
function of B. Take a sequence of functions ¢, € C5°(int B') such that
Y = 1 in the neighbourhood of B, 0 < 9, < 1 and ¢ — B in LY(T).
By (1), let hy € C§°(int7T") nonnegative such that hy — (1 — 8)f. Set
Jue = Yrge + (1 — r)hx (= 0 by (3)). Since ¢ — 3, then [(1 — B)Yrgx| <
c|(1 — B)yx| — 0. Moreover, Byrgr — Bf because g — f uniformly on
B. Hence ¢ygr — Bf. Also, (1 —¢i)heg = (1 =)A= B)f =1 —4)f as
k — oo. Then fip — Bf+ f— i f as k — oo and [ is fixed. Now ¢;f — Bf
almost everywhere as [ — oo, with |¢;f] < f. By Lebesgue’s theorem of
dominated convergence, we obtain 9;f — Bf. Take then a sequence (I;);
such that [|4;, f — Bf[l1 < 1/j. For every j there is k = kj; such that ||f +
Bf — fuk — i, flli < 1/7 for all k > k;. We can successively replace each

k; (1 =1,2 ...) by maxg=1 ki + 1, so that k1 < kg < ---. Set f; = fljkj
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(7 > 1). Then the inequalities

1F = fis I < IF — fuk, + B — o, Flla + 1, £ — BFllx < ;

show that f; — f. Moreover, on B we have fi; = g for all [, k. We obtain
on B the inequality

fikrr = ger1<|grrr — (g + E+ D™D +g+ k+1)71
<@2k+2)t+g+(k+1)7!

from which we substract fip = gx as estimated from below by (3) to get
Jreer — foe < (k+ 1)_2 — (k(k+ 1))_1 < 0 for any [, I'. Hence fow < frk
on B for any [, I’ and &' > k. In particular, fj41 < f; since kj11 > kj.

(3) By the Krein—Milman theorem, v can be approximated by convex com-
binations of extremal (evaluation) functionals é; (¢ € T'), with respect to
the weak—* topology of C(T)*. Any such t is the limit of a sequence of
points ¢ € int T, so that 6y — & weakly*. For any t' there is a sequence
of nonnegative test functions ¢y — &y weakly™; take for example pg(s) :=
crp(k(s—t')), where ¢ € C§°(R™) is nonnegative with [ ¢dt =1 and ¢; > 0
is such that f o dt = 1. We omit the details. Lemma 4 is thus proved. [

In what follows, we assume the existence of an arbitrary measurable
representing density f > 0 for v on T. Then we derive the existence of some
representig densities f, with a higher degree of regularity (of class C* etc.).
The idea is to approximate f in L'(T) by a sequence fx — f with fi >
0 having the desired regularity properties. In this case we will have only
fT Ua [ dt &= Yo, @ € A. Then we try to correct fr by some suitable linear
combination ), 4 Tafy in order to obtain an exact representing density
for v. Namely we take certain fixed bounded functions f, with supports
contained in some small disjoint balls B(¢(c), r) respectively. Then for
sufficiently large £ > 1 we can determine a number of a small parameters
To = Tak, @ € Asuch that all the measures gi dt, k > 1 defined by gi := fr—
> aca Tafa satisfy the system (1). Moreover, we shall have also o, — 0 as
k — oo. Thus g are good candidates for f,. Now to insure in addition the
positivity of g, it suffices only to know that infg,pp s, f > 0 and fi(t) —
f(t) uniformly on each set supp f,. To this aim we start by considering
some continuity points ¢(a) of f with c;(¢(c)) > 0 and letting each f, be
the characteristic function of a certain small set around ¢(a). In order to
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obtain in this way a smooth representing density gi, we should have also
fa € C*°. This is the reason why two steps (Proposition 5 and Theorem 6)
are necessary. Also, we will allow measures u = fdt 4+ v having a singular
part v, provided f # 0 in LY(T).

Proposition 5 If f > 0 belongs to L'(T) \ {0}, there exists f. > 0 in
LYT) such that

/ ua(£) F(£) dt = / U fu(t)dt (€ A)
T

T

and f. is continuous on some nonempty open subset T of T with fi|r > 0.

Proof. Set v := [puaf dt and v := (Ya)aca. By Lemma 3, there exists a
basis b = (J4(a))aca of P* such that all t(c)) € int T are continuity points of
f and the numbers ¢, := c(t()) are finite and strictly positive. Moreover,
the a X a matrix By defined by (2) is invertible. Fix such a basis b, then
set | := minge4 o > 0. Since ¢(a) are continuity points, there exist r, > 0,
a € A such that

1 l
— [ U@ -cld<; @
B(t(a),7)

My

for any r < 7o, where m, denotes the Lebesgue measure of the open ball
B(t(a), r) for a € A. For each r € (0, 7o) the measure ey, = m(Eqr) of
the set

B = {t & B(#(a), r); f(t) > é} (5)

is positive. Indeed, if f(¢t) < /4 for almost all ¢t € B(¢(a), ), then by using
the estimates ¢, > | we obtain

focalZea—f2i-f2 2

almost everywhere on the ball. By integrating on the ball and multiplying
with 1/m,, we obtain a contradiction with the estimate (4). Thus eqr > 0,
a € A, and so for every r € (0, r,) we may set for := ey har, Where Ay, is
the characteristic function of F,,. For any o € A and every r in the interval
(0, 7o), the function for defines a functional on P by the equality

farp = /T farBp(t)dt (o€ P). (6)
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Let uj be the Fréchet differential of ug. Let Cg be the supremum of ||ujp]|
on T, where || - || denotes the operator norm on (R™)*. Then we have the
estimates

ug(t) — us(t())| < Cpllt — ()]l (€ T),

where || - ||2 is the euclidian norm on R™. By these estimates, we obtain the
inequalities
(for = duopus] = et [ g = us(t() @

< e;:/ lug(t) — us(t(@))|dt < Cor (0 <1 < ray o, B € A).
Eor

We can take a positive rp < min{r,, @ € A} enough small such that the
balls B(t(a), ), a € A be disjoint and the set

T, =T\ | B(t(a),r)

a€A

have nonempty interior for all r € (0, ro]. Also, if 7o > 0 if sufficiently
small, then by the inequalities (7) and Lemma 2, (1) it follows that any set
by = (for)aca, 0 <1 < 7o of functionals fu, € P* as in (6) is still a basis of
P*, and the corresponding operators By, remain invertible for 0 < r < 7.
Finally, by taking rg even smaller if necessary, we can assume also the strict
inequality

/ fdt <y, T<ro, (8)
UozGAB(t(a)v 7')

because f € L(T) and 7o > 0.

Now fix r := rg as before. Thus we have also fixed the basis b, = (for)a
of P* etc. Let 77 = int T,.. By Lemma 2, there exists an € = €(b,) > 0 such
that if ¥’ = (f])aca is any other basis of P* consisting of some functionals
f7, € P* such that

1f5 — farll < ceqr  (a € A), (9)

then By is invertible, too. We fix also such an e.

By Lemma 4, (1) we can take a sequence of nonnegative functions fx €
CS(T\OT), k > 1 such that f5, — fin L'(T). Then use Egoroff’s theorem
of assymptotically uniform convergence. Hence by replacing (fx)x>1 with a
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subsequence, we can assume the existence of a measurable set S C 7' with
m(S) < e such that fr — f uniformly on T\ S. Set E, := E,-\ S fora € A,
and note that Eur \ E,, = Ear NS. Thus fr — f uniformly on Uges EL,
and m(Eqr \ E,) < €. Fix S, let hl, denote the characteristic function of
E! and set f. := e }h),. Then for any p € P with |p|| < 1 we have

r

(o farrl et [ lpllde < oot

[24

According to the above choice of ¢, the operator By defined by using the
basis b’ := (f})aca is invertible, see (9). Note that By is fixed independently
of k > 1. For arbitrary k > 1, define

2= /T tafedt (@€ A k>1) 4= (1F)aca.

Let 2% := (By)~Y(v* — ) and set ¥ = (z41)aeca. Since fr — f in LY(T)
and

N / ua(®)(fult) - f() dt (cx € A),
T

then v — v as k — oco. Then z*¥ — 0. Hence x4 — 0 for any a € A.
Define the functions

gk = fr — Zmakf,; (k> 1).

a€A

By using the equality Byz® = v* — v where b = (f.)aca, as well as the
definition of By (see (2)), we obtain, via the identification

R® 5 zF = Zxakua € P,
[

the equalities

/Tuﬁgk dt=/Tu5 <fk - Zxakf,;)dt

acA
:/ Ugfk dt — Z :Cak/ u,gf(; dt
T a€A T

=75 — (Byz")g =5 (B <€ A).

Thus each g is a representing density of ~.



666 C.-G. Ambrozie

Let us prove that gi is nonnegative, if k£ > 1 is sufficiently large. Since
E! C Eu and E, C B(t(a), r), then E,, a € A are disjoint. Hence on
every set E/, we have gp = fi — Tarfn. Now fr — f as k — oo uniformly
on E', with f(t) > /4, t € E., (see (5)), while z,; — 0 for any a € A.
Note also that f. are bounded. Then for sufficiently large k the differences
fx — Tarfl, become positive on E!, respectively. Thus g > 0 on each E.
Outside Ugea EL,, we have gp = fr > 0. Thus by fixing a sufficiently large
ko > 1 we obtain nonnegative representing densities g, & > ko for v on T
Since each f!, vanishes outside E/, then all such g are continuous on 7.

We prove now that for sufficiently large k the nonnegative representing
density gi is strictly positive on some nonnempty open subset of T,.. For
o := 0 we have in particular [.grdt = v9. Now fp — f in L'(T), the
functions f!, € L*(T) and z4x — 0. Then by using the estimate (8) we

obtain
/ gi dt= / <fk - wakfa) dt
UozEAB(t(a):"') UaEAB(t(OC)’T)

acA
— fdt <.
UaeaB(t(a),r)

By comparing the estimate from above with the equality

/ gkdt+/ gkdtz/gkdtzw,
r UaeaB(t(a), ) T

we note that if & > ko is sufficiently large, g has nonzero integral on 7.
Since g is continuous on T, it must be strictly positive on some open
subset of int 7 = T”, because m(97;) = 0 (see the definition of 7;). Now
take fu := gr and Proposition 5 is proved. O

Theorem 6 Let i > 0 be a measure onT whose absolutely continuous part
is nonzero. Then there exist some nonnegative functions fi1 € C§°(int T)
and fig € C®(R™) with infr fio > 0 having the same moments with respect
to the functions u, (a € A):

/uad,uzfuaf*ldtz/uaf*gdt (a € A).
T T T

Proof. Let u = fdt+ v be the Lebesgue decomposition of . That is,
v is a singular measure and f € L*(T) \ {0}. Let v, (resp. A\o) denote
the moments of fdt (resp. of v). Set v = (Vo) (resp. A = (Aa)a). Let
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I' =+ A. By Proposition 5, we may assume that f is continuous on (the
neighbourhood of) some closed ball 77 C T such that f|r» > 0. Namely,
replace to this aim f (resp. u) by f« (resp. fxm + v). By applying Lemma
3 to f on T" now, we obtain a basis b = (Jq))aca of P* such that t(a) €
int 7" for every a € A. Obviously all ¢(«) are continuity points of f with
Ca = 1 (8(a)) = F(2(@)) € (0, +00).

To a large extent, we follow the proof of Proposition 5. Let [ = min,, ¢q,
take 7 as in (4) and define Ey, by (5). Again, ey, := m(Eqr) > 0 by the
same arguments. Take for = €5 hqr With hy, = the characteristic function
of Eor. Set by = (far)a. As in the previous case we can fix r > 0 such
that the balls B(t(«a), r) be disjoint. By taking r sufficiently small, we can
moreover assume all B(¢(a), r) included in 7”. Since f in continuous on T”,
in the present case we have in addition that E,, are open, see (5). Thus f,,
are now multiples of the characteristic functions of some open sets. Then we
can replace them respectively by some sufficiently close (in L*(T), and so in
P*) nonnegative test functions f, € C§°(T"\ 9T'), such that the operator By
defined by (2) via the basis b := (fy)aca be still invertible. To this aim, use
Lemma 2 and the continuity of the function det 7. Thus we can assume that
b= (fa)aca consists of some fixed functions f, € C§°(Eqar). By extending
them with 0 outside the support, we get f, € C°(T" \ 0T).

By Lemma 4, (2), there exists a sequence of nonnegative functions fi €
Cs°(int T) such that fr — f in L*(T) and moreover we have fr11(t) <
fr(t) for all t € T/ and k£ > 1. By Dini’s lemma, the convergence of the
sequence (fx)x is also uniform on 7”. In order to find f.1, we can proceed
by considering this sequence f € C§°(T \ 8T). To find f.2, we replace fi
by fx + 1/k, which still gives a sequence (of positive functions, now) that
is uniformly convergent to f on 7”. In both cases, fr — f uniformly on
erEAEar (C T/)-

Also, by Lemma 4, (3) there exists a sequence of nonnegative functions
o € CP(int T) such that ¢ — v weakly™ in C(T)*. Let v denote the
moments of f;, respectively, and set v* := (v%)qca. Also, let AE be the
moments of ¢, and set A := (AE),. Let T* = ~* 4+ \* (€ R® that is
identified with P). Let

z¥ .= By Y (IF -T)

and set ¥ = (Zak)acA.
For every k > 1, we define



668 C.-G. Ambrozie

gk = fe+Pr— Y Takfa:

acA

As in the previous proof, one shows that each gy, is a representing density for
~v. We check now that gi > 0 if k is sufficiently big. Again, the convergence
fe — f in LY(T) compels v¥ — ~. Moreover, the weak-* convergence
@p — v insures that \* — A. Then I'* — T, whence z*¥ — 0, and so all
Tar — 0 as k — o0o. Moreover f, are bounded, and hence we have the
uniform convergence

ZxakfaﬂO as k — oo.
a€A

Also, the convergence of fi to f (> 1/4 on each Eqr, see (5)) is uniform on
E,,. Therefore all

gklEar:fk"f'(Pk-xozkfaka_makfa>0 (10)

for sufficiently large k, while

gk | T\ (UaeaBar) = fe+ @1 20 (11)

(respectively > 0 when we choose to replace fr by fx + 1/k). Hence for
large k > 1 we can take fi.1 (resp. fi«2) to be gi + ¢ > 0 (resp. > 0). Thus
Theorem 6 is proved. O

Theorem 7 If A C Z7 and the set v = (Ya)aca has nonnegative repre-
senting densities on T with respect to the monomials us(t) = t<, then there
exists a polynomial p(t) = 3 c 4 Tat® such that

/ PPyt dt =7 (0 € A),
T

where py(t) := max{p(t), 0}, t € T. Moreover the numbers zo € R, a € A
are uniquely determined (if v # 0).

Proof. Let H be the real Hilbert space of all real functions v € L?(T).
Define the real functionals F' and F, on H by F(u) := 27! [,u?dt and

Fo(u) :=/Tuaudt—7a (ue H,a € A).

Note that F, are continuous and linear (modulo some constants), while
F = F(u) = 27 {u|u) g is continuously Fréchét differentiable since (-|-)g
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is bilinear and continuous. Consider also the set @ :={u € H |u >0 a.e.}.
Define

S={ueH|ueQ; Folu)=0, a € A}

By Theorem 6, the set -y has at least one representig density f € C§°(T'\07T)
(in particular, square—integrable); thus f € S. Therefore S is a nonempty
closed convex subset of H. Hence there exists s € H such that ||s||g =
min{||u||z;u € S}. Now in order to minimize F (= 27| - ||%) on S, we
apply a version of the method of the Lagrange multipliers for conditionned
extremum in infinite—dimensional cones. There exist some real numbers z,
(a € A) such that the Fréchét differential L, := G'(s) : H — R of the map
G defined by

G(u) = F(u) — Y zaFa(u) (u€ H)
a€A

in the point s satisfies the inequalities
Lsis<Lgv forall veq@Q, (12)

see for instance [8]. Now a simple computation using the formula of the
Gateaux differential

Lsv = G'(s)v = lim e~} (G(s + ev) — G(s))

e—0
shows that the continuous linear functional L is given by
Lgv = / svdt — Zxa/ ugvdt (v € H)
T acA T
Therefore, by (12) we have the inequalities
/(s - Zmaua)(s —v)dt <0 forall veQ.
T acA

Then set p 1= ) c 4 Tala and take v := py (€ Q) in the previous estimates.
Hence

[6-p-pa<o
T

But the integral from above can be written also as the sum
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/ (s—p)sdt+/ (s —p)2dt
{teT|p(¢)<0} {teT|p(t)>0}

which is nonnegative, since both integrals are > 0 (note that s > 0). There-
fore they must be null. It follows s(t) = p(t) for almost all ¢ such that
p(t) > 0, while s(¢) = 0 for almost all ¢ with p(¢) < 0. That is, s = py.

If v # 0, then any representing density must be nonzero. In particular
p+ # 0, and so the coefficients x4, o € A of p are uniquely determined by
Py, namely by the restriction of p to the open set {t € T;p(t) > 0} # 0.
Now p. is the solution s of our minimization problem, and so it is uniquely
determined by «y, due to the strict convexity of the norm. Thus Theorem 7
is proved. O

Remark To have an intuition on the relevance of (12), let H be repre-
sented below by the plane, @ by the upper half-plane, the set Nyeca[Fa = 0]
by the oblique line and (2F)'/? by the distance to the origin Oz. Then (12)
is equivalent to G'(s)(v —s) > 0. This means that G := F — ) zoFq,
increases locally along any direction given by some vector v — s starting
from s into Q. In particular, the restriction ' of G to S increases in the
directions starting from s along each vector v :=w € S. Hence s is a point
of local minimum for F' on S. On convexity reasons, it turns then to be a
global minimum point.

Q W S S:ﬂa[Fa:O]ﬁQ
72/
OH )

(F =3, zaFo) (s)(v—95)20, veQ

F,=0
aEA F'(s)(w—5)>0, weS

As expected, almost word—for—word versions of these arguments lead to
similar statements in other cases, like the trigonometric moments problems
on the n—dimensional torus, for instance. To cover a larger class of spaces,
we consider the hypothesys below.

Hypothesys Let M be an n-dimensional manifold of class C* (k > 1 or
k=o00). Let T C M be a compact subset with nonempty interior. Assume
the topological boundary of T negligible in M. Let u, (o € A) be a finite
set of functions of class C' on a neighbourhood of T.
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To fix the notation and for the sake of completness, we remind in this
context a few definitions. Again, let the space C(T') of all continuous func-
tions on T be endowed with the sup norm. As usually, a measure u € C(T)*
is called absolutely continuous if it is locally absolutely continuous with re-
spect to the Lebesgue measure. That is, we can cover I’ with open domains
U C M of local charts x: U — V, where V is open in R", such that each
measure u|rny o 7! be of the form ¢dz where ¢ € L*(V) is supported
on x(T NU). Here ulrry o x H(B) = u(T N x~1(B)) for any Borel subset
B Cc V. Also, de = dz1---dx, stands for the Lebesgue measure on the
domain V of the real parameters z1, ..., z,. For any continuous function
u compactly supported in U we have the “change of variables” formula
plulr) = (wox 1) (wox™1). For an arbitrary u € C(T), set as usually
p(u) = >, u(su) where (1;); is a partition of unity subordinate to an open
cover (U;); of T etc.

An absolutely continuous measure 4 is said to be (k — 1)—smooth (resp.
positive) on (an open neighbourhood of) T if it can be locally represented
as before by densities ¢ that are of class C*~1 (resp. that are positive).

Equivalently, by using a partition of unity we can fix any measure m
on M whose localizations m o x ™! by charts x: U — V are equivalent to
the corresponding Lebesgue measures dz on V' C R"™ via some densities
p = py(z) of class C*¥~1. More precisely, we have m o x~! = pdzx and there
are some positive constants ¢ = ¢(x), C = C(x) such that ¢ < p < C on
V. Then u is (k — 1)-smooth (resp. positive) on T' iff ulr = fm for some
function f that is of class C*~! on T' (resp. that is positive on T). These
properties of u prove to be well-defined, namely independent of the choice
of one of the (equivalent) Lebesgue—type measures m on T etc. Note to
this aim that they are local and (locally) preserved by maps of the form
¢ — (¢ o h)|det h| where h = x1 0 x5 is a changement of charts. If the
measure 4 has a density f > 0 on the compact set T, we write > 0 on T
Within the hypothesys from above, we have the following.

Theorem 8 Let u be an absolutely continuous nonnegative measure on T'.
Then there exists a (k — 1)-smooth absolutely continuous measure px > 0
on T such that p«(uq) = u(ug) for alla € A.

Proof. Endow M with a metric compatible with the topology, via some
embedding of M into a large euclidian space, for instance. Cover the com-
pact subset T with a finite set of open domains U; of charts x;: U — R™
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(t=1, ..., p). Fix a constant § > 0 that is strictly less than the Lebesgue
number of this cover. That is, for any subset D C T of diameter < § there
exists at least an index i such that D C U;. Cover again T', now by a finite
number of open sets D; C M (j =1, ..., q) of diameter < J, each of them
having compact closure D; (of diameter < §) and C'-regular (and hence
negligible) boundary dD;. For every j = 1, ¢ choose one index i = i; €
{1, ..., p} such that D; C U;. For every i =1, p let T; be the union of all
Dj such that 4; = 4. Thus T; C U;. We have then an open covering U; int T;
of the set T. Take in the neighbourhood of T a partition of unity (1)
subordinated to the cover (int7;);. Define the function uy; 1= (;uq) 0 X;l
on the image by x; of the domain of u, (o € A). Then every function u;
is of class C! on a neighborhood of the compact subset K; := x;(T; N T) of
R™. Also, the boundary of K; is contained in the set x;(07 U (U;0D;)), and
hence it is negligible. Set p; = po Xi_llKi, which is an absolutely contin-
uous measure on R™. For each index ¢ such that the measure p; # 0 (and
so int K; # (), we can apply Theorem 6 for u; on K; with respect to the
functions uq; (o € A). Hence for every ¢ there exists a smooth absolutey
continuous measure i.; > 0 on K such that

pi(uas) = paiUei) (o € A).

Then we have the smooth absolutely continuous measures pi; o x; > 0 on
T;NT. In the case u; = 0, we simply set w4 = 0. Define the measure
on T by

M = sz(ﬂ*z © Xi);
namley by
pe(w)= [ wli,
= zd %1 O X3 c(1)).
;/Wuw (i ox:) (u € O(T))

The continuity of u. on C(T") follows from the form of the right-hand side
above. Also, p. > 0 by using >, %; = 1. The following equalities hold

(tie) = /T iy s = /T 3 ite da



Representing densities of the multi-sequences of moments 673

= wiuad = / U, id ;
;</T¢HT H ; K; “ N’L
=; /Kz Ugys Afhai = ;/TmT Yitie d{fhwi © Xi)
:/ Ua Apix = fix(Ua ),
T

and so Theorem 8 is proved. O
References

[1] Akhiezer N.I., The classical moment problem, Hafner Publ. Co. New York, 1965.

[2] Ambrozie C.-G., A mazimum entropy approach to n-dimensional truncated moment
problems, preprint IRMA 42:14 (1997), University of Lille 1.

[3] Atzmon A., A moment problem for positive measures in the unit disc, Pacific J.
Math. 59 (1975), 317-325.

(4] Bakonyi M. and Constantinescu T., Schur’s algorithm and several applications,
Pitman Research Notes in Mathematics Series 261, Longman, 1992.

[5] Berg C., Christensen J.P.R. and Ressel P., Harmonic analysis on Semigroups,
Springer-Verlag, 1984.

[6] Curto R.E. and Fialkow L.A., Solution of the truncated complex moment problem
for flat data, Memoirs of the Amer. Math. Soc. 1996.

(7] Fuglede B., The multidimensional moment problem, Exp. Math. 1 (1983), 47-65.

[8] Girsanov 1.V., Lectures on mathematical theory of extremum problems, Lecture
Notes in Economics and Mathematical Sciences, vol. 67, Springer-Verlag, New York,
1972.

[9] Polya G. and Szegd G., Problems and theorems in Analysis, II, Springer-Verlag,
Berlin, 1971.

[10] Rudin W., Real and complez analysis, McGraw-Hill, New York, 1974.

[11] Shohat J. and Tamarkin J., The problem of moments, Math. Surveys I, Amer. Math.

Soc., Providence, RI, 1943.

Institute of Mathematics
of the Romanian Academy
PO Box 1-764, RO-70700
Bucharest Romania
E-mail: cambroz@imar.ro



