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Branching of Automorphic Fundamental Solutions

Amy T. DeCelles

Abstract. Automorphic fundamental solutions and, more generally,
solutions of automorphic differential equations play a key role in the
Diaconu–Garrett–Goldfeld prescription for spectral identities involv-
ing moments of L-functions [4; 5; 6] as well as other applications,
including an explicit formula relating the number of lattice points in
a symmetric space to the automorphic spectrum [2]. In this paper we
discuss two cases in which the automorphic fundamental solution ex-
hibits branching: pathwise meromorphic continuations may differ by
a term involving an Eisenstein series.

1. Introduction

Solutions of automorphic differential equations underlie the Diaconu–Garrett–
Goldfeld prescription for spectral identities involving second moments for arbi-
trary Rankin–Selberg integral representations of L-functions [6]. This prescription
is a vast generalization of the constructions of moment identities in their earlier
papers, from which they extracted subconvex bounds for GL2 automorphic L-
functions [7; 8; 4; 5]. Essential to their prescription is a Poincaré series, whose
data was originally constructed in imitation of Good’s kernel [9]; characterizing
the Poincaré series as the solution to an automorphic differential equation allows
generalization from GL2 to higher rank. The automorphic spectral expansion of
such a Poincaré series is heuristically immediate and can be legitimized using au-
tomorphic Sobolev theory, developed in [2]. In general, explicit geometric expres-
sions for solutions of automorphic differential equations are very difficult to ob-
tain; see [3] for some examples, including the automorphic fundamental solution
that is used in the lattice-point counting application in [2] and is suitable for con-
structing moment identities for GLn(C) × GLn(C) Rankin–Selberg L-functions.
Superficially, the spectral expansion of the automorphic fundamental solution ap-
pears to be invariant under a transformation of an auxiliary complex parameter
w, but a closer look reveals, in certain cases, branching in w, eliminating the
possibility of a straightforward functional equation.

Let G be a semisimple Lie group, K its maximal compact subgroup, and � a
discrete subgroup. Consider the solution of the following differential equation on
the arithmetic quotient X = �\G/K :

(� − λw)νuw = δzo ,
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where the Laplacian � is the image of the Casimir operator for g, λw a com-
plex parameter, ν an integer, and δzo = δ�·1·K the Dirac delta distribution at the
basepoint in �\G/K . In rank one, we parameterize λw as λw = w(w − 1), and
in higher rank, λw = w2 − |ρ|2, where ρ is the half-sum of positive roots. We
recall the following results from [2]. Global automorphic Sobolev theory ensures
the existence of a solution uw , unique in global automorphic Sobolev spaces. The
solution has a transparent automorphic spectral expansion, converging in a global
automorphic Sobolev space for Re(w) sufficiently large. Further, a global Sobolev
embedding theorem ensures that, by choosing ν sufficiently large, we may ensure
that the spectral expansion converges uniformly pointwise or in any Ck-topology
that we wish.

Interestingly, the fundamental solution may exhibit branching in the complex
variable w: meromorphic continuations along different w-paths in the complex
plane may differ by a term of moderate growth. In particular, the resulting function
may lie outside of global automorphic Sobolev spaces. We discuss two such cases
below.

Branching of fundamental solutions on symmetric spaces has been discussed
by Mazzeo and collaborators in several papers (see, e.g., [12]) and by Strohmaier
[14]. See [1] for a discussion of automorphic Green functions on �\H, where �

is a Fuchsian group and [10], for automorphic Green functions with logarithmic
singularities along modular divisors in a modular variety.

2. Branching of Hilbert–Maass Fundamental Solutions

Recall the general setup from Introduction, which invokes [2] for the existence
and uniqueness of solutions to automorphic differential equations and conver-
gence of their spectral expansions in global automorphic Sobolev spaces. For
complete descriptions of automorphic spectral expansions, see [11; 13].

Let k be a totally real number field of degree n > 1 over Q with o its ring
of integers. For simplicity, suppose that o has narrow class number one, so that
SL2(o) is unicuspidal. Let σ1, . . . , σn be the Archimedean places of k, and let
SL2(o) act on Hn componentwise, as usual: for γ ∈ SL2(o) and z = (z1, . . . , zn) ∈
Hn,

γ · z =
(

a1z1 + b1

c1z1 + d1
, . . . ,

anzn + bn

cnzn + dn

)
, where σj (γ ) =

(
aj bj

cj dj

)
.

We construct the Laplacian � on SL2(o)\Hn from the usual Laplacians on the
factors:

� = 1

n
(�1 + · · · + �n), where �j = y2

j

(
∂2

∂x2
j

+ ∂2

∂y2
j

)
.

This is a nonpositive symmetric operator. We parameterize the eigenvalues by
λw = w(w − 1). For λw to be nonpositive real, we need w ∈ 1

2 + iR∪ [0,1].
Elements of global automorphic Sobolev spaces for SL2(o)\Hn have spectral

expansions, in terms of an orthonormal basis {F } of spherical cusp forms, the
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constant automorphic form 1, and the continuous family of Eisenstein series Es,χ

with s on the critical line and χ an unramified grossencharacter:

Es,χ (z) =
∑

γ∈P∩SL2(o)\SL2(o)

n∏
j=1

(Im(σj (γ ) · zj ))
s · χj (Im(σj (γ ) · zj )),

where, as usual, P is the standard parabolic subgroup of upper triangular matrices.
Fix a basepoint zo ∈ Hn. The automorphic delta distribution δ at zo has a spectral
expansion

δ =
∑
F

F (zo) · F + 1

〈1,1〉 +
∑
χ

1

4πi

∫
1/2+iR

E1−s,χ (zo) · Es,χ ds,

converging in a negatively indexed automorphic Sobolev space. For Re(w) > 1
2 ,

there is a unique solution uw to the automorphic differential equation (� −
λw)uw = δ, and its spectral expansion, converging in an automorphic Sobolev
space, is

uw =
∑
F

F (zo) · F
λF − λw

+ 1

(λ1 − λw)〈1,1〉 +
∑
χ

1

4πi

∫
1/2+iR

E1−s,χ (zo) · Es,χ

λs,χ − λw

ds,

where λF , λ1, and λs,χ denote the �-eigenvalues of the Hilbert–Maass wave-
forms F , 1, and Es,χ occurring in the spectral expansion. We emphasize that this
is an equality of functions in an automorphic Sobolev space; it is not necessary
to require pointwise equality. Since the eigenvalues corresponding to the cuspidal
and residual spectrum are discrete, elementary estimates ensure the meromorphic
continuation, in w, of the cuspidal and residual part of the spectral expansion, as a
Sobolev-space-valued function. However, as we will show, the continuous part of
the spectral expansion exhibits branching: for each nontrivial unramified grossen-
character χ , the corresponding integral has two branch points on the critical line.

Note. In contrast, when n = 1, that is, k = Q, there is no branching since the
continuous part of the spectral expansion of the fundamental solution,

uw =
∑
F

F (zo) · F
λF − λw

+ 1

(λ1 − λw)〈1,1〉 + 1

4πi

∫
1/2+iR

E1−s(zo) · Es,

λs − λw

ds,

does not involve a sum over grossencharacters. In Section 3.1 we prove an analo-
gous fact for GL3.

Fix a grossencharacter χ . Take real parameters tχ = (t1, . . . , tn) with t1 + · · · +
tn = 0 such that

χ(α) = σ1(α)it1 · · ·σn(α)itn ,

where α ∈ (k ⊗Q R)×, and let

‖tχ‖2 = 1

n
(|t1|2 + · · · + |tn|2).
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Figure 1 Pathwise meromorphic continuation along these two paths
in the w-plane yields functions that differ by a term of moderate
growth. The dotted vertical line is the critical line Re(w) = 1

2 . The
dashed horizontal lines are Im(w) = ±‖tχ‖

We will show that the χ th integral in the spectral expansion of uw admits a path-
wise meromorphic continuation to the complex plane with exactly two branch
points 1

2 ± i‖tχ‖ when χ is nontrivial.
Let Iχ (w) denote the χ th integral in the spectral expansion of uw as follows:

Iχ (w) =
∫

1/2+iR

E1−s,χ (zo)Es,χ

λs,χ − λw

ds

(
Re(w) >

1

2

)
.

This is a Sobolev-space-valued function of the complex parameter w, defined in
a right half-plane.

Writing the eigenvalue in terms of s and tχ ,

λs,χ = 1

n
((s + it1)(s + it1 − 1) + · · · + (s + itn)(s + itn − 1)),

we can see that the integrand has poles when the following is satisfied.

1

n
((s + it1)(s + it1 − 1) + · · · + (s + itn)(s + itn − 1)) = w(w − 1),

1

n

(
(s + it1)(s + it1 − 1) + 1

4
+ · · · + (s + itn)(s + itn − 1) + 1

4

)

= w(w − 1) + 1

4
,

1

n

((
s − 1

2
+ it1

)2

+ · · · +
(

s − 1

2
+ itn

)2)
=

(
w − 1

2

)2

.

Since
∑

tj = 0 and 1
n

∑
t2
j = ‖tχ‖2, we have

(
s − 1

2

)2

− ‖tχ‖2 =
(

w − 1

2

)2

.
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Thus, the integrand has poles at

s = 1

2
±

√(
w − 1

2

)2

+ ‖tχ‖2.

Theorem 1. Let χ be a nontrivial grossencharacter, and Iχ (w) be the χ th inte-
gral in the automorphic spectral decomposition of the fundamental solution uw ,
as defined above. Let γ1 and γ2 be w-paths in C, each originating at a point w0

in the right half-plane Re(w) > 1
2 , crossing the critical line once, and terminat-

ing at a point w′
0 in the left half-plane Re(w) < 1

2 , with γ1 crossing the critical
line at a height greater in magnitude than ‖tχ‖ and γ2 crossing at a height less
in magnitude than ‖tχ‖. Then pathwise meromorphic continuations Iχ,γ1(w) and
Iχ,γ2(w) of Iχ (w) along the paths γ1 and γ2, respectively, differ by a term of
moderate growth, namely by

Iχ,γ1(w) − Iχ,γ2(w) = 4πi · E1−s(χ,w),χ (zo) · Es(χ,w),χ

1 − 2s(χ,w)
,

where s(χ,w) is defined as follows. For fixed w in Re(s) > 1
2 , s(χ,w) is the pole

of the integrand of Iχ (w) in Re(s) > 1
2 . As w crosses the critical line, s(χ,w) is

defined by analytic continuation.

Proof. We meromorphically continue Iχ (w) along two different paths. For fixed
w to the right of the critical line, let s(χ,w) denote the pole of the integrand lying
to the right of the critical line. Since the numerator of the integrand is invariant
under s → 1 − s, we regularize as follows:

Iχ (w) =
∫

1/2+iR

E1−s,χ (zo)Es,χ − E1−s(χ,w),χ (zo)Es(χ,w),χ

λs,χ − λw

ds

+ E1−s(χ,w),χ (zo)Es(χ,w),χ ·
∫

1/2+iR

ds

λs,χ − λw

(
Re(w) >

1

2

)
.

By design the integrand of the first integral on the right side is continuous. The
second integral can be evaluated by residues:∫

1/2+iR

ds

λs,χ − λw

= 2πi × Res
s=1−s(χ,w)

1

(s − s(χ,w))(s − (1 − s(χ,w))

= 2πi

1 − 2s(χ,w)

(
Re(w) >

1

2

)
.

Thus, we can rewrite the integral in the following way:

Iχ (w) =
∫

1/2+iR

E1−s,χ (zo)Es,χ − E1−s(χ,w),χ (zo)Es(χ,w),χ

λs,χ − λw

ds

+ E1−s(χ,w),χ (zo)Es(χ,w),χ · 2πi

1 − 2s(χ,w)

(
Re(w) >

1

2

)
.

We will see that when we move w across the critical line, with imaginary part
of greater magnitude than ‖tχ‖2, we pick up an Eisenstein series. Note that since
Eisenstein series do not lie in any finite-index automorphic Sobolev space, it is not
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trivial to determine where (in what function space) the (pathwise) meromorphic
continuation lies.

Consider, for a moment, the case where χ = 1, the trivial character. Then

s(χ,w) = s(1,w) = 1
2 +

√
(w − 1

2 )2 = w since Re(w) > 1
2 and s(χ,w) is de-

fined to be to the right of the critical line. Thus, the integral corresponding to the
trivial grossencharacter is as follows:

I1(w) =
∫

1/2+iR

E1−s,1(zo)Es,1 − E1−w,1(zo)Ew,1

λs,1 − λw

ds

+ E1−w,1(zo)Ew,1 · 2πi

1 − 2w

(
Re(w) >

1

2

)
.

We move w across the critical line and reverse the regularization:

I1(w)

=
∫

1/2+iR

E1−s,1(zo)Es,1

λs,1 − λw

ds

− E1−w,1(zo)Ew,1

(∫
1/2+iR

1

λs,1 − λw

ds − 2πi

1 − 2w

) (
Re(w) <

1

2

)
.

Now s = w is the pole to the left of the critical line, and we evaluate the singular
integral by residue calculus:∫

1/2+iR

ds

λs,χ − λw

= 2πi × Res
s=w

1

(s − w)(s − (1 − w))

= 2πi

2w − 1

(
Re(w) <

1

2

)
.

Thus, we have the following expression for the integral corresponding to χ = 1:

I1(w) =
∫

1/2+iR

E1−s,1(zo)Es,1

λs,1 − λw

ds

+ E1−w,1(zo)Ew,1 · 4πi

1 − 2w

(
Re(w) <

1

2

)
.

From this we see that the pathwise meromorphic continuation has an additional
term when w is left of the critical line.

The pathwise meromorphic continuation also picks up an additional term in the
case where χ is nontrivial, provided that w crosses the critical line sufficiently far
away from the real axis. As w crosses the critical line, with imaginary part greater
in magnitude than ‖tχ‖, the radicand (w − 1

2 )2 + ‖tχ‖2 in the expression for
s(χ,w) moves around the branch point of the square root, the origin. Thus, the
analytic continuation of s(χ,w) along this path is given as follows:

s(χ,w) = 1

2
−

√(
w − 1

2

)2

+ ‖tχ‖2

(
Re(w) <

1

2

)
.
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As before, regularizing, evaluating the singular integral by residues, reversing the
regularization, and again evaluating the singular integral, we obtain the meromor-
phic continuation of the χ th integral along a path γ1 where w crosses the critical
line above a height of ‖tχ‖ or below a height of −‖tχ‖:

Iχ,γ1(w) =
∫

1/2+iR

E1−s,χ (zo)Es,χ

λs,χ − λw

ds

+ E1−s(χ,w),χ (zo)Es(χ,w),χ · 4πi

1 − 2s(χ,w)

(
Re(w) <

1

2

)
.

Meromorphically continuing along a path γ2 in which w crosses the critical line
with imaginary part within a distance of ‖tχ‖ of the real axis does not result
in the additional Eisenstein series term because, in this case, the radicand (w −
1
2 )2 + ‖tχ‖2 in the expression for s(χ,w) stays strictly in the right half-plane
and thus does not travel around the origin. Thus, branching is evident: pathwise
meromorphic continuations of Iχ (w) depend nontrivially on the path, the branch
points being w = 1

2 ± i‖tχ‖. �

2.1. Additional Details: Branching of s(χ,w)

To understand better the different pathwise meromorphic continuations of Iχ (w),
the χ th integral in the spectral expansion of the automorphic fundamental solu-
tion, we explicitly parameterize w-paths crossing the critical line and show how
the height of the crossing affects the radicand in the expression for the poles of
the integrand.

For χ nontrivial, we can parameterize w as follows:

w =
(

σ + 1

2

)
+ (α‖tχ‖)i

with α �= 0. To describe w crossing the critical line on a horizontal path, we fix α,
and let σ range from positive to negative values. In terms of this parameterization,
the radicand in the expression for the poles is(

w − 1

2

)2

+ ‖tχ‖2 = (σ 2 + (1 − α2)‖tχ‖2) + (2σα‖tχ‖)i.
Let x denote the real part of the radicand and y the imaginary part.

x = σ 2 + (1 − α2)‖tχ‖2,

y = 2σα‖tχ‖.
Eliminating the parameter σ , we can see that the curve is a right-facing parabola:

x = 1

4α2‖tχ‖2
(y2 + 4α2(1 − α2)‖tχ‖4).

The direction that the radicand travels along this curve as σ varies will depend on
the sign of α, that is, it depends on whether w is crossing below or above the real
axis. What is critical is whether the radicand travels around the origin, the branch
point of the square root. When |α| < 1 (i.e., w crosses the critical line between
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1
2 ± i‖tχ‖), the radicand does not travel around the origin, but when |α| > 1, the
radicand does travel around the origin.

When χ is trivial, parameterize w as w = (σ + 1
2 ) + ito. Fixing to �= 0 and let-

ting σ range from positive to negative values describe w crossing the critical line
along a horizontal curve of height to. In terms of these parameters, the radicand is(

w − 1

2

)2

+ ‖tχ‖2 = (σ 2 − t2
o ) + (2σ to)i.

Again denoting the real and imaginary parts of the radicand by x and y, respec-
tively, we can see that the curve along which the radicand travels is

x = 1

4t2
o

(y − 2t2
o )(y + 2t2

o ).

This is a right-facing parabola, going around the origin.
The poles of the integrand of the χ th term of the spectral expansion of uw are

at

s = 1

2
±

√(
w − 1

2

)2

+ ‖tχ‖2.

For fixed w to the right of the critical line, we let s(χ,w) denote the pole to the
right of the critical line. We may choose a branch of the square root such that the
following holds:

s(χ,w) = 1

2
+

√(
w − 1

2

)2

+ ‖tχ‖2

(
Re(w) >

1

2

)
.

As w crosses the critical line, we analytically continue s(χ,w), and if the radicand
travels around the origin, we have a sign change:

s(χ,w) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 +

√
(w − 1

2 )2 + ‖tχ‖2

(w-path crosses sufficiently close to the real axis),
1
2 −

√
(w − 1

2 )2 + ‖tχ‖2

(w-path crosses sufficiently far from the real axis).

3. Branching of GL3 Automorphic Fundamental Solution

Let G = SL3(R), K = SO(3), and � = SL3(Z). For simplicity, we consider spher-
ical automorphic forms.

Functions in global automorphic Sobolev spaces have spectral expansions, in
terms of a spectral family of automorphic forms, consisting of cusp forms, Eisen-
stein series, and residues of Eisenstein series. For GL3(R), it suffices to take an
orthonormal basis {F } of spherical cusp forms, the continuous family of minimal
parabolic Eisenstein series E1,1,1

χ where χ = exp(μ), for some μ ∈ ρ + ia∗, and

the family of P 2,1-Eisenstein series, E
2,1
f,s , with cuspidal data f in an orthonor-

mal basis of GL2 cusp forms and complex parameter s ∈ 1
2 + iR, along with the
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constant automorphic form (residue of minimal parabolic Eisenstein series). In
particular, for � in a GL3 automorphic Sobolev space,

� =
∑

cfm F

〈F,�〉 · F + 〈�,1〉
〈1,1〉 + 1

|W |
∫

ρ+ia∗
〈�,E1,1,1

χμ
〉 · E1,1,1

χμ
dμ

+
∑

GL2 cfms f

∫
1/2+iR

〈�,E
2,1
f,s 〉 · E2,1

f,s ds,

where convergence is in a global Sobolev topology. From now on, we drop the
superscripts denoting the relevant parabolic for the Eisenstein series.

Fix a basepoint x0 ∈ G/K ≈ H3. Then the automorphic delta distribution δ at
x0 has the spectral expansion

δ =
∑

cfm F

F (x0) · F + 1

〈1,1〉 + 1

|W |
∫

ρ+ia∗
Eχ̄μ(x0) · Eχμ dμ

+
∑

GL2 cfms f

∫
1/2+iR

Ef̄ ,1−s(x0) · Ef,s ds,

converging in a negatively indexed automorphic Sobolev space. For Re(w) > 1
2 ,

there is a unique solution uw to the automorphic differential equation (� −
λw)νuw = δ, and its spectral expansion, converging in an automorphic Sobolev
space, is

uw =
∑

cfm F

F (x0)

(λF − λw)ν
· F + 1

〈1,1〉(λ1 − λw)ν

+ 1

|W |
∫

ρ+ia∗

Eχ̄μ(x0)

(λχ − λw)ν
· Eχμ dμ

+
∑

GL2 cfms f

∫
1/2+iR

Ef̄ ,1−s(x0)

(λf,s − λw)ν
· Ef,s ds,

where λF , λ1, λχ , and λf,s denote the �-eigenvalues of the waveforms F , 1, Eχ ,
and Ef,s occurring in the spectral expansion. For simplicity, we choose ν to be the
smallest integer, namely ν = 2, that will ensure (using an automorphic Sobolev
embedding theorem) uniform pointwise convergence of the spectral expansion.

Since the eigenvalues corresponding to the cuspidal and residual spectrum are
discrete, elementary estimates ensure the meromorphic continuation in w of the
cuspidal and residual part of the spectral expansion, as a Sobolev-space-valued
function. The part of the expansion corresponding to minimal parabolic Eisenstein
series also admits a meromorphic continuation, as in the GL2 case, but the part of
the expansion corresponding to cuspidal data Eisenstein series exhibits branching:
for each GL2 cusp form f in the chosen orthonormal basis, the corresponding
integral has two branch points on the critical line.
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3.1. Pathwise Meromorphic Continuations of Minimal Parabolic Eisenstein
Series Component

Let Iχ (w) denote the most continuous part of the spectral expansion of the auto-
morphic fundamental solution uw:

Iχ (w) =
∫

ρ+ia∗

Eχ̄μ(x0)

(λχ − λw)2
· Eχμ dμ (Re(w) > 0).

Then Iχ (w) is a Sobolev-space-valued integral defined for Re(w) > 0. We show
that Iχ (w) does not exhibit branching in w.

Let μ = ρ + iη, where η ∈ a∗. Let λw = w2 − ‖ρ‖2, where w is a complex
number with Re(w) > 0. Since the eigenvalue λχ is

〈μ,μ〉 − 2〈μ,ρ〉 = −(〈η,η〉 + 〈ρ,ρ〉) = −(‖η‖2 + ‖ρ‖2),

the denominator of the integrand is −(‖η‖2+w2). We rewrite the integral with
these normalizations:∫

ρ+ia∗

Eχ̄μ(x0)

(λχ − λw)2
· Eχμ dμ = −

∫
a∗

Eρ−iη(x0)

(‖η‖2 + w2)2
· Eρ+iη dη.

Thus, the integrand is undefined when w is purely imaginary and η lies on the
circle ‖η‖ = |w| in a∗ ≈ R2. Let Jw be the function-valued integral

Jw =
∫

‖η‖=|w|
Eρ−iη(x0)Eρ+iη dη.

Then we regularize:∫
a∗

Eρ−iη(x0)

(‖η‖ + w2)2
· Eρ+iη dη =

∫
a∗

Eρ−iη(x0) · Eρ+iη −Jw

(‖η‖2 + w2)2
dη

+Jw ·
∫
a∗

1

(‖η‖2 + w2)2
dη.

We evaluate the singular integral:∫
a∗

1

(‖η‖2 + w2)2
dη =

∫
R2

1

(‖η‖2 + w2)2
dη = 2π ·

∫ ∞

0

r dr

(r2 + w2)2
= π

w2
.

So we have the following:∫
a∗

Eρ−iη(x0)

(‖η‖ + w2)2
· Eρ+iη dη =

∫
a∗

Eρ−iη(x0) · Eρ+iη −Jw

(‖η‖2 + w2)2
dη

+ πJw

w2
(Re(w) > 0).

Now we may move w across the imaginary axis and undo the regularization.
Since the value of the singular integral is again π/w2, the extra terms cancel as
follows:∫

a∗
Eρ−iη(x0) · Eρ+iη

(‖η‖ + w2)2
dη

=
∫
a∗

Eρ−iη(x0) · Eρ+iη

(‖η‖2 + w2)2
dη −Jw ·

∫
a∗

1

(‖η‖2 + w2)2
dη
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+ πJw

w2
(Re(w) < 0)

=
∫
a∗

Eρ−iη(x0) · Eρ+iη

(‖η‖2 + w2)2
dη − πJw

w2
+ πJw

w2
(Re(w) < 0).

3.2. Pathwise Meromorphic Continuations of Cuspidal Eisenstein Series
Component

Let f be a GL2 cusp form occurring in the orthonormal basis chosen above, and
let sf (sf − 1) be its eigenvalue with sf ∈ [0,1] ∪ 1

2 + iR. If we let sf = 1
2 + itf ,

then tf ∈ −i[0, 1
2 ] ∪ R with tf = −i/2 corresponding to sf = 0,1. Let If (w)

denote the integral corresponding to f in the spectral expansion of uw:

If (w) =
∫

1/2+iR

Ef̄ ,1−s(xo)Ef,s

(λf,s − λw)2
ds

(
Re(w) >

1

2

)
.

This is a Sobolev-space-valued integral defined in a right half-plane.
The cuspidal data Eisenstein series Ef,s generates a principal series, induced

from character on the minimal parabolic P = MN , which is determined by its
action on M : ⎛

⎝a1
a2

a3

⎞
⎠ �→ |a1|sf +s |a2|−sf +s |a3|−2s .

As derived in the Appendix, the eigenvalue of Casimir on a minimal parabolic
Eisenstein series Eχ is

λχ = 2(s2
1 +s1s2 +s2

2 −2s1 −s2), where χ

⎛
⎝a1

a2
a3

⎞
⎠ = |a1|s1 |a2|s2 |a3|s3 .

Thus, the eigenvalue of Casimir on Ef,s is

λf,s = 2(sf (sf − 1) + 3s(s − 1)).

Letting λw = 6w(w − 1), we can see that the integrand has poles when the fol-
lowing is satisfied:

2(sf (sf − 1) + 3s(s − 1)) = 6w(w − 1),((
sf − 1

2

)2

− 1

4

)
+ 3

((
s − 1

2

)2

− 1

4

)
= 3

((
w − 1

2

)2

− 1

4

)
,

(
sf − 1

2

)2

− 1

4
+ 3

(
s − 1

2

)2

= 3

(
w − 1

2

)2

,

(
s − 1

2

)2

=
(

w − 1

2

)2

− 1

3

((
sf − 1

2

)2

− 1

4

)
,

(
s − 1

2

)2

=
(

w − 1

2

)2

+ 1

3

(
t2
f + 1

4

)
.
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Thus, the integrand has poles at

s = 1

2
±

√(
w − 1

2

)2

+ 1

3

(
t2
f + 1

4

)
.

Theorem 2. Let f be a spherical cusp form in the chosen basis of GL2 cusp
forms, and If (w) be the corresponding integral in the automorphic spectral de-
composition of the fundamental solution uw , as defined before. Let γ1 and γ2 be
w-paths in C, each originating at a point w0 in the right half-plane Re(w) > 1

2 ,
crossing the critical line once, and terminating at a point w′

0 in the left half-plane
Re(w) < 1

2 , with γ1 crossing the critical line at a height greater in magnitude than√
1
3 (t2

f + 1
4 ) and γ2 crossing at a height less in magnitude than

√
1
3 (t2

f + 1
4 ). Then

pathwise meromorphic continuations If,γ1(w) and If,γ2(w) of If (w) along the
paths γ1 and γ2, respectively, differ by a term of moderate growth, namely by

If,γ1(w) − If,γ2(w) = 8πi · Ef̄ ,1−s(f,w)(xo) · Ef,s(f,w)

(1 − 2s(f,w))3
,

where s(f,w) is defined as follows. For fixed w in Re(s) > 1
2 , s(f,w) is the pole

of the integrand of If (w) in Re(s) > 1
2 . As w crosses the critical line, s(f,w) is

defined by analytic continuation.

Proof. We meromorphically continue If (w) along two different paths. For fixed
w to the right of the critical line, let s(f,w) denote the pole of the integrand lying
to the right of the critical line. Since the numerator of the integrand is invariant
under s → 1 − s, we regularize as follows:

If (w) =
∫

1/2+iR

Ef̄ ,1−s(x0)Ef,s − Ef̄ ,1−s(f,w)(x0)Ef,s(f,w)

(λf,s − λw)2
ds

+ Ef̄ ,1−s(f,w)(x0)Ef,s(f,w) ·
∫

1/2+iR

ds

(λf,s − λw)2

(
Re(w) >

1

2

)
.

By design the integrand of the first integral on the right side is continuous. The
second integral can be evaluated by residues:∫

1/2+iR

ds

(λf,s − λw)2
= 2πi Res

s=1−s(f,w)

1

(s − s(f,w))2(s − (1 − s(f,w))2

= 4πi

(2s(f,w) − 1)3

(
Re(w) >

1

2

)
.

Thus, we can rewrite If (w):

If (w) =
∫

1/2+iR

Ef̄ ,1−s(x0)Ef,s − Ef̄ ,1−s(f,w)(x0)Ef,s(f,w)

(λf,s − λw)2
ds

+ Ef̄ ,1−s(f,w)(x0)Ef,s(f,w) · 4πi

(2s(f,w) − 1)3

(
Re(w) >

1

2

)
.
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As w crosses the critical line, with imaginary part greater in magnitude than√
1
3 (t2

f + 1
4 ), the radicand (w − 1

2 )2 + 1
3 (t2

f + 1
4 ) in the expression for s(f,w)

moves around the branch point of the square root, the origin. Thus, the analytic
continuation of s(f,w) along this path is as follows:

s(f,w) = 1

2
−

√(
w − 1

2

)2

+ 1

3

(
t2
f + 1

4

) (
Re(w) <

1

2

)
.

Regularizing, evaluating the singular integral by residues, reversing the regular-
ization, and again evaluating the singular integral, we obtain the meromorphic
continuation of If (w) along a path γ1 where w crosses the critical line above a

height of
√

1
3 (t2

f + 1
4 ) or below a height of −

√
1
3 (t2

f + 1
4 ):

If,γ1(w) =
∫

1/2+iR

Ef̄ ,1−s(x0)Ef,s

λf,s − λw

ds

+ Ef̄ ,1−s(f,w)(x0)Ef,s(f,w) · 8πi

(1 − 2s(f,w))3

(
Re(w) <

1

2

)
.

Meromorphically continuing along a path γ2 in which w crosses the critical line

with imaginary part within a distance of
√

1
3 (t2

f + 1
4 ) of the real axis does not

result in the additional Eisenstein series term because, in this case, the radicand
(w − 1

2 )2 + 1
3 (t2

f + 1
4 ) in the expression for s(f,w) stays strictly in the right

half-plane and thus does not travel around the origin. Thus, branching is evident:
pathwise meromorphic continuations of If (w) depend nontrivially on the path,

the branch points being 1
2 ± i

√
1
3 (t2

f + 1
4 ). �

Appendix: Eigenvalue of Casimir on Minimal Parabolic
Eisenstein Series

The eigenvalue of Casimir on a minimal parabolic Eisenstein series with character
eμ, μ = ρ + iη, where ρ is half the sum of positive roots and η ∈ a∗, is

〈μ,μ〉 − 2〈μ,ρ〉 = −(〈η,η〉 + 〈ρ,ρ〉).
Consider μ ∈ a∗

C
as a linear combination of positive roots with coefficients sα , sβ ,

and sα+β :

μ = sαα + sββ + sα+β(α + β) = (sα + sα+β)α + (sβ + sα+β)β.

Then

eμ

⎛
⎝a1

a2
a3

⎞
⎠ =

∣∣∣∣a1

a2

∣∣∣∣
sα

·
∣∣∣∣a2

a3

∣∣∣∣
sβ

·
∣∣∣∣a1

a3

∣∣∣∣
sα+β

=
∣∣∣∣a1

a2

∣∣∣∣
sα+sα+β

·
∣∣∣∣a2

a3

∣∣∣∣
sβ+sα+β

,

and the eigenvalue is

2(s2
α + s2

β − sαsβ + sαsα+β + sβsα+β − sα − sβ − 2sα+β).
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On the other hand, it is also common to parameterize the character as

eμ

⎛
⎝a1

a2
a3

⎞
⎠ = |a1|s1 · |a2|s2 · |a3|s3, where s1 + s2 + s3 = 0.

In this case, μ = s1α + (s1 + s2)β , so the eigenvalue is

2(s2
1 + s1s2 + s2

2 − 2s1 − s2).

Acknowledgments. The author thanks Paul Garrett for posing this problem,
Jeffrey Lagarias for suggesting further work on the problem, and both of them for
helpful questions and conversations.
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