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1. Introduction

This paper deals with the interplay of two generalizations of classical complete
intersection linkage, namely Gorenstein linkage and residual intersection. Recall
that two proper ideals I and J in a Cohen–Macaulay ring R are said to be linked
or linked with respect to a, written I ∼ J, if J = a : I and I = a : J for some
complete intersection ideal a. The link is called geometric in case I +J has height
at least g + 1, where g = ht a. As is well known, two linked ideals are automati-
cally unmixed of height g, and conversely, whenever a � I are ideals of height g
in a Gorenstein ring with a a complete intersection and I unmixed, then I ∼ a : I
is a link [32] (see also [15]). A sequence of two links I ∼ J ∼ K is referred to as
a double link. In a similar manner we define the (even, odd ) linkage class of an
ideal I, which is the set of all ideals obtained from I by a finite (even, odd) num-
ber of links. Finally, one says that an ideal is licci if it belongs to the linkage class
of a complete intersection. Licci ideals have been studied extensively. They are
known to be perfect for instance, and hence define Cohen–Macaulay rings [32].
In addition they share more subtle homological properties of complete intersec-
tions: Licci ideals are strongly nonobstructed (provided R is Gorenstein) [5], are
strongly Cohen–Macaulay [21], and the shifts in their homogeneous minimal free
resolution grow “sufficiently fast” (provided R is a polynomial ring over a field
and the ideal is homogeneous) [24].

These more refined properties have often been used to verify that a given ideal
fails to be licci, but they also suggest that the classification provided by complete
intersection linkage might be too fine for some purposes. Hence in recent years
the emphasis has shifted to the more inclusive notion of Gorenstein linkage, where
the complete intersection ideal a in the definition of linkage is replaced by an un-
mixed Gorenstein ideal a, meaning an unmixed ideal such that R/a is Gorenstein.
The first systematic study of this notion can be found in [34]. Again one talks
about Gorenstein double linkage, the (even, odd ) Gorenstein linkage class of an
ideal, and the property of being glicci, which means that an ideal belongs to the
Gorenstein linkage class of a complete intersection. The same remarks as above
apply to Gorenstein linkage, except that glicci ideals no longer have the more
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refined homological properties of licci ideals. In fact, Cohen–Macaulayness and
unmixedness are the only known features of glicci ideals [32]. This has prompted
the question of whether every unmixed ideal I in a regular ring R such that R/I is
Cohen–Macaulay is glicci. An affirmative answer has been given for many classes
of homogeneous ideals (see, e.g., [8; 9; 30; 16; 6; 7; 27; 12; 13]), including ideals
of minors of maximal size [28] and, recently, of arbitrary size [14].

The origin of the present paper was the observation that ideals of maximal mi-
nors can be realized as residual intersections of perfect ideals of height 2, a result
proved in [22]. As perfect ideals of height 2 are licci, we wish to extend the result
that ideals of maximal minors are glicci to say that residual intersections of licci
ideals are glicci, the main result of this paper.

Residual intersection is a generalization of complete intersection linkage in
a different direction, maintaining a condition on the number of generators of the
“linking” ideal a but allowing the “linked” ideals I and J to have different heights,
thus breaking the symmetry. Residual intersections are ubiquitous and play an im-
portant role, for instance, in intersection theory. Let I be a proper ideal of height g
in a Noetherian ring R and let s ≥ g be an integer. A proper ideal J is called
an s-residual intersection of I if J has height at least s and J = a : I for some
s-generated ideal a contained in I [3]. The residual intersection is said to be geo-
metric in case I + J has height at least s + 1. When referring to an “s-residual
intersection J = a : I of I ”, we always imply that a is an s-generated ideal con-
tained in I. Whereas linkage or Gorenstein linkage in Gorenstein rings preserves
the Cohen–Macaulay property [32], this is no longer true for residual intersection;
nor are s-residual intersections necessarily unmixed, and they may not have the
“expected” height s. However, these properties hold under suitable assumptions
[22; 20; 26; 36], one of which is the condition Gs : An ideal I in a Noetherian
ring R satisfies Gs if the number of generators µ(Ip) is at most dimRp for every
prime p ∈V(I ) with dimRp ≤ s − 1 [3].

Our main result says that in a local Gorenstein ring R with infinite residue field,
every residual intersection of a licci ideal is strictly glicci. We call an ideal I
strictly glicci if, for every t ≥ 0 and every R-sequence y = y1, . . . , yt regular on
R/I, the ideal IR is glicci in the ring R = R/(y). Whereas the licci property is
known to pass from I to IR [24; 35], it is an open question whether glicci ideals
are necessarily strictly glicci. This a priori stronger property is helpful in showing
that classes of ideals are glicci, as it allows us to deform to the “generic case”.

The proof of the main theorem proceeds as follows. Let J be an s-residual inter-
section of a licci ideal I in a local Gorenstein ring R with infinite residue field,
and let y be an R-sequence that is regular on R/J. We show that without chang-
ing the residual intersection J, one can modify I within its linkage class until I
satisfies Gs and y forms a regular sequence modulo I (Theorem 3.4). Once the Gs

property holds, we can replace J by any other s-residual intersection of I without
leaving the even Gorenstein linkage class of J (Theorem 4.3). Finally, we prove
that a suitable s-residual intersection J of I remains constant as we link I two steps
closer to a complete intersection, preserving the Gs property of I (Theorem 3.5).
The main theorem then follows by induction on the number of double links leading
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to a complete intersection. The double linkage we use is known as tight double
linkage (in algebra) or basic double linkage (in geometry). This means that all but
one element in the two regular sequences giving the double link coincide. If fur-
thermore these elements are contained in a fixed subideal a ⊂ I, we talk about a
tight double link of I along a (Definition 2.1). This notion allows one to control
the behavior of residual intersections under linkage of I. To assure that properties
of the ideal I can only improve as it is linked closer to a complete intersection,
we introduce a “canonical” version of tight double linkage, dubbed universal tight
double linkage along a subideal (Definition 2.4). The construction, which requires
a purely transcendental extension of the residue field, is modeled after the notion
of universal linkage developed in [24] and [25]. The basic material about univer-
sal tight double linkage can be found in Section 2 of the present paper; Section 3
contains the proofs of Theorems 3.4 and 3.5, which make use of universal tight
double linkage. In Section 4 we prove our main result, Theorem 4.6. Applica-
tions can be found in Section 5, where we prove that certain classes of ideals are
glicci, including residual intersections of complete intersections (Corollary 5.1),
of height-2 perfect ideals (Corollary 5.2), and of height-3 perfect Gorenstein ideals
(Corollary 5.3); more generally, we consider specializations and deformations of
such residual intersections.

In this paper, we mostly work in the local case. There are also the notions of
homogeneous linkage, homogeneous Gorenstein linkage, and homogeneous resid-
ual intersection of homogeneous ideals in graded rings, where the “linking ideal” a
is required to be homogeneous. It includes the corresponding concepts for sub-
schemes of projective space, used in projective geometry. Most of the work on
Gorenstein linkage has been done in the projective setting. While quite often,
statements about graded rings or homogeneous ideals are special cases of the cor-
responding local results, this is not true for linkage, because of the additional re-
quirement on the “linking ideal”. Indeed, since our technique of universal tight
double linkage involves taking generic linear combinations of generators, it will in
general fail to produce homogeneous links and does not imply that homogeneous
s-residual intersections of homogeneously licci ideals are homogeneously glicci.
Nevertheless, we do have affirmative results in the graded setting for the classes
of ideals of Section 5 or if s exceeds the height g of I by at most 1 (Theorem 6.1).
Prompted by the difficulties in passing between local and homogeneous linkage,
we compare the two theories more broadly in Section 7. We provide an example
showing that local and homogeneous linkage do not define the same equivalence
relation (Example 7.5) and otherwise mainly highlight how poorly the interplay
of the two theories is understood.

2. Universal Tight Double Linkage

Definition 2.1. Let R be a Cohen–Macaulay ring and let a ⊂ I be R-ideals
with ht I = g > 0. We say that a sequence of links I ∼ I ′ ∼ I ′′ is a tight dou-
ble link of I along a if there are elements a1, . . . , ag−1 in a such that the first link
is defined by a regular sequence a1, . . . , ag−1, a and the second one by a regular



678 Robin Hartshorne, Craig Huneke, & Bernd Ulrich

sequence of the form a1, . . . , ag−1, b. When a and I are homogeneous ideals and R
is graded, we call the tight double link homogeneous if the elements ai, a, b are ho-
mogeneous. A double link is said to be minimal in case R is local and a1, . . . , ag−1

form part of a minimal generating set of a. It is called s-minimal, for s an inte-
ger, if a/(a1, . . . , ag−1) can be generated by s − g + 1 elements. When a = I we
simply speak of a tight double link of I.

Definition and Discussion 2.2. (1) With notation as in Definition 2.1 write
for images in the ringR = R/(a1, . . . , ag−1). Since a and b areR-regular elements,
it follows that

bI = (ab) : I ′ = aI ′′.

In other words, I ∼= a−1bI = I ′′ as R-modules. Let a′′ be the unique R-ideal con-
taining a1, . . . , ag−1 so that

ba = aa′′.

It is also the preimage in R of a−1ba ⊂ I ′′, which shows that a′′ ⊂ I ′′. Since
a : I = (a−1ba) : (a−1bI ) = a′′ : I ′′, we obtain

a : I = a′′ : I ′′.

We call a′′ the ideal derived from a.
Notice that a ∼= a′′. In particular, µ(a′′) ≤ µ(a) if the tight double link along

a is minimal, and a′′ is generated by s elements if it is s-minimal. Thus whenever
the tight double link is s-minimal and J = a : I is an s-residual intersection of I,
then J = a′′ : I ′′ is an s-residual intersection of I ′′.

(2) Let R be a Cohen–Macaulay ring and let a ⊂ I be R-ideals with ht I =
g > 0. A sequence of n tight double links of I along a is a sequence of tight dou-
ble links I = I0 ∼ I1 ∼ I2 ∼ · · · ∼ I2n−2 ∼ I2n−1 ∼ I2n together with ideals
a2i ⊂ I2i such that a0 = a, and for 1 ≤ i ≤ n, I2i−2 ∼ I2i−1 ∼ I2i is a tight dou-
ble link of I2i−2 along a2i−2 and a2i is the ideal derived from a2i−2. We call a2i

the ith ideal derived from a. Notice that a : I = a2n : I2n. In case all the tight
double links occurring in the sequence are minimal, we obtain µ(a2n) ≤ µ(a).
If they are s-minimal, then a2n is s-generated, and if in addition J = a : I is an
s-residual intersection of I, then J = a2n : I2n is an s-residual intersection of I2n.

Whenever a = I we have a2i = I2i for every i and we speak of a sequence of
n tight double links of I.

Remark 2.3. Quite generally, any sequence of double links can be replaced by
a (possibly longer) sequence of tight double links. Indeed, if R is a local Goren-
stein ring and I,K are two R-ideals of height g > 0 that are doubly linked, then
there exists a sequence of g tight double links joining I and K; see, for instance,
[3, proof of 1.1 and 1.2], [21, proof 1.11], or Lemma 4.2 in this paper.

We are now going to define the “generic” and “universal” versions of tight double
links, modeled after the notions of generic and universal linkage that were intro-
duced in [24].
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Definition and Discussion 2.4. (1) Let R be a Gorenstein ring, let a ⊂ I be
proper R-ideals with 1 + ht a ≥ ht I = g > 0, and assume that I is unmixed.
Choose generating sequences a1, . . . , as and f1, . . . , f� of the ideals a and I, re-
spectively, and let xij and yk be variables, where 1 ≤ i ≤ g−1, 1 ≤ j ≤ s, and 1 ≤
k ≤ �. In the ring R ′ = R[{xij , yk}] consider the elements αi = ∑s

j=1 xij aj of
aR ′ and α = ∑�

k=1 ykfk of IR ′. Together they form an R ′-regular sequence. De-
fine theR ′-ideal I ′ = (α1, . . . ,αg−1,α) : IR ′. For a generating sequence h1, . . . ,hm
of I ′ and new variables z1, . . . , zm we consider the element β = ∑m

k=1 zkhk in the
ring R ′′ = R ′[z1, . . . , zm]. Now α1, . . . ,αg−1,β form an R ′′-regular sequence con-
tained in I ′R ′′. Finally, we define the R ′′-ideal I ′′ = (α1, . . . ,αg−1,β) : I ′R ′′.

(2) The ideal I ′′ so defined is a tight double link of IR ′′ along aR ′′. Thus we
may consider the first derived ideal a′′. We write T0(I ; a) = I and T1(I ; a) = I ′′,
and for n > 1 we define inductively Tn(I ; a) = Tn−1(I

′′; a′′). We call Tn(I ; a) an
nth generic tight double link of I along a. This ideal is defined in a polynomial
ring over R in a finite set of variables, which we usually denote by a single cap-
ital letter, say X. Notice that Tn(I ; a) is an nth tight double link of IR[X] along
aR[X]. If a = I we simply write Tn(I ) = Tn(I ; a) and talk about an nth generic
tight double link of I.

(3) Now assume in addition that (R, m) is local. If a ⊂ I are as above, we can
perform the same construction as in (1), replacing the rings R ′ and R ′′ by their lo-
calizations R ′

mR ′ and R ′′
mR ′′ . We denote the resulting ideal by T 1(I ; a). It is either

the unit ideal or else a tight double link of IR ′′
mR ′′ along aR ′′

mR ′′ . We also allow I

to be the unit ideal and a to be any ideal, in which case we set T 1(I ; a) = R. In
either case we can repeat the construction and inductively define an nth universal
tight double link of I along a, which we denote by T n(I ; a). This ideal is defined
in a ring of the form R(Z) = R[Z]mR[Z]; it is either the unit ideal or else an nth
minimal tight double link of IR(Z) �= R(Z) along aR(Z). Whenever a = I we
write T n(I ) = T n(I ; a) and call this ideal an nth universal tight double link of I.

In order to work with these notions we need the following definitions from [24].

Definition 2.5. Let (R, I ) and (S, J ) be pairs, where R, S are Noetherian alge-
bras over some ring and I, J are ideals of R and S, respectively. For items (c) and
(e) assume that R and S are local.

(a) We say that (R, I ) and (S, J ) are isomorphic and write (R, I ) ∼= (S, J ) if
there is an isomorphism of algebras φ : R → S with φ(I ) = J.

(b) We say that (R, I ) and (S, J ) are equivalent and write (R, I ) ≡ (S, J ) if there
are finite sets of variables X over R and Z over S such that (R[X], IR[X]) ∼=
(S [Z], JS [Z]).

(c) We say that (R, I ) and (S, J ) are generically equivalent and write (R, I ) ∼∼∼
(S, J ) if there are finite sets of variables X over R and Z over S such that
(R(X), IR(X)) ∼= (S(Z), JS(Z)).

(d) We say that (S, J ) is a deformation of (R, I ), or (R, I ) is a specialization of
(S, J ), if there is a sequence of elements y = y1, . . . , yt in S that is regular on
S and on S/J such that (S/(y), (J, y)/(y)) ∼= (R, I ).
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(e) We say that (S, J ) is essentially a deformation of (R, I ) if there is a finite
sequence of pairs of local algebras and ideals (Si, Ji), 0 ≤ i ≤ n, such that
(S0, J0) = (R, I ), (Sn, Jn) = (S, J ), and for every 0 ≤ i ≤ n − 1 one of the
following conditions holds:

(i) (Si+1, Ji+1) is a deformation of (Si, Ji);
(ii) (Si+1, Ji+1) = ((Si)p, (Ji)p) for some prime ideal p of Si;

(iii) (Si+1, Ji+1) ∼∼∼ (Si, Ji).

A priori, the definitions of generic and universal tight double linkage depend on
the generating sequences chosen at the various steps of the construction. The next
result shows that this dependence can be neglected.

Remark 2.6. (a) In the setting of 2.4(2), the pair (R[X], Tn(I ; a)) is uniquely
determined up to equivalence, where all rings are considered as R-algebras.

(b) In the setting of 2.4(3), the pair (R(Z), T n(I ; a)) is uniquely determined up
to generic equivalence, where all rings are considered as R-algebras.

We do not include proofs of these facts because they proceed along the lines of
[24, proof of 2.11]. The same applies to the next result, which is an analogue of
[24, 2.13].

Remark 2.7. (a) In the setting of 2.4(2), let Tn(I ; a) ⊂ R[X] and letp be a prime
ideal of R containing I. One has (Rp[X], Tn(I ; a)Rp[X]) ≡ (Rp[X], Tn(Ip; ap)),
considering all rings as Rp-algebras.

(b) In the setting of 2.4(2), assume that (R, m) is local and let Tn(I ; a) ⊂ R[X]
and T n(I ; a) ⊂ R(Z). One has (R[X]mR[X], Tn(I ; a)mR[X]) ∼∼∼ (R(Z), T n(I ; a)),
considering all rings as R-algebras.

(c) In the setting of 2.4(3), let T 1(I ; a) ⊂ R(Z). One has T 1(I ; a) = R(Z) if
and only if either I = R or else I is a complete intersection and I/a is cyclic.

The next three results address the important question of how specialization affects
linkage and tight double linkage.

Proposition 2.8. Let R be a local Gorenstein ring, let I ∼ J be a Gorenstein
link in R defined by a Gorenstein ideal b of height g, and assume that R/I is
Cohen–Macaulay. Let y1, . . . , yt be an R-regular sequence and write for images
in the ring R = R/(y1, . . . , yt ). If ht b ≥ g then I ∼ J is a Gorenstein link in R

defined by the Gorenstein ideal b, and y1, . . . , yt form a regular sequence on R/b,
on R/I, and on R/J.

Proof. Clearly y1, . . . , yt form a regular sequence on R/b, because ht b ≥ ht b and
R as well as R/b are Cohen–Macaulay. Now, replacing R by R/b we may assume
that b = 0, and inducting on t we may further suppose that t = 1. But then the
assertion is a special case of [23, 2.12].

Corollary 2.9. Let R be a local Gorenstein ring, let a ⊂ I be R-ideals with
ht I > 0, and assume thatR/I is Cohen–Macaulay. Let y1, . . . , yt be anR-regular
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sequence and write for images in R = R/(y1, . . . , yt ). Let I = I0 ∼ I1 ∼ I2 ∼
· · · ∼ I2n be a sequence of tight double links of I along a with derived ideals a2i .

If the images in R of the regular sequences defining these links are regular on R,
then they define a sequence I = I0 ∼ I1 ∼ I2 ∼ · · · ∼ I2n of tight double links of
I along a with derived ideals a2i , and y1, . . . , yt form a regular sequence modulo
Ij for every j.

Proof. Notice that the ringsR/Ij are all Cohen–Macaulay by [32, 1.3] or by Propo-
sition 2.8. The assertion of the corollary now follows from Proposition 2.8 and the
construction of the derived ideals a2i as described in Definition 2.2(1).

Corollary 2.10. LetR be a local Gorenstein ring, let a ⊂ I be properR-ideals
with ht I > 0, and assume that R/I is Cohen–Macaulay. Let y1, . . . , yt be a se-
quence of elements in R that is regular on R and on R/I, write for images
modulo the ideal generated by y1, . . . , yt in any appropriate ring, and suppose that
1+ ht a ≥ ht I . If Tn(I ; a) ⊂ R[X] is any nth generic tight double link of I along
a, then Tn(I ; a) ⊂ R[X] is an nth generic tight double link of I along a, and
y1, . . . , yt form a regular sequence modulo Tn(I ; a).

Proof. By induction on n it suffices to prove that the assertion holds for n = 1 and
that the first derived ideal a′′ ⊂ T1(I ; a) still satisfies the inequality 1 + ht a′′ ≥
ht T1(I ; a). The Cohen–Macaulay assumption is preserved as we pass from I to
T1(I ; a), again by [32, 1.3] or by Proposition 2.8. Thus, consider the generic tight
double link IR[X] ∼ I ′ ∼ I ′′ = T1(I ; a) along a. As 1 + ht a ≥ ht I = ht I it
follows that the regular sequences defining these links remain regular on R[X].
Hence, applying Proposition 2.9 to the localizations at the homogeneous maximal
ideal of R[X], we conclude that T1(I ; a) is a first generic tight double link of I
along a with derived ideal a′′ and that y1, . . . , yt form a regular sequence modulo
T1(I ; a). The definition of derived ideals, Definition 2.2(1), shows that ht a′′ ≥
ht T1(I ; a) − 1.

The above results about specialization, and in particular Corollary 2.9, play a cru-
cial role in proving the following analogue of [24, 2.17].

Theorem 2.11. Let (R, m) be a local Gorenstein ring, let a ⊂ I beR-ideals with
ht I > 0, and assume that R/I is Cohen–Macaulay. Let I = I0 ∼ I1 ∼ I2 ∼
· · · ∼ I2n be a sequence of tight double links of I along a. For 1 ≤ i ≤ n con-
sider successive ith generic and universal tight double links of I along a—namely,
Ti(I ; a) ⊂ Ri and T i(I ; a) ⊂ Ri, where Ri is a polynomial ring over Ri−1 and
Ri is obtained from Ri−1 by a purely transcendental extension of the residue field.
Write Rn = R[X] and Rn = R(Z), and consider all rings as R-algebras.

(a) There exists a prime idealQofR[X] containingm such that (R[X]Q, Ti(I;a)Q)
is a deformation of (R, I2i ) for every i.

(b) (R(Z), T i(I ; a)) is essentially a deformation of (R, I2i ) and of (R, I ) for
every i.
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Most ideal-theoretic properties can only improve under modifications that are
essentially a deformation; see, for instance, [24, 2.3]. Thus part (b) of this the-
orem shows that the universal sequence of tight double links of an ideal along a
subideal is indeed the “optimal model” for any sequence of such links. This gen-
eral idea is further implemented in Lemmas 2.13 and 2.15, which will be needed
in our later proofs. First, however, we have to prove an analogue for generic tight
double links of a property already known for generic links.

Lemma 2.12. Let R be a local Gorenstein ring, let I be an R-ideal with ht I > 0,
and assume thatR/I is Cohen–Macaulay. If I satisfiesGr for some integer r, then
any nth generic tight double link Tn(I ) of I satisfies Gr.

Proof. We may assume that n = 1. Set g = ht I. Let I ′ ⊂ R ′ be as in Defini-
tion 2.4(1) with a = I, so that T1(I ) ⊂ R ′[Z] is a link of I ′R ′[Z]. Let Q ∈
V(T1(I )) be such that dimR ′[Z]Q ≤ r − 1. We need to prove that µ(T1(I )Q) ≤
dimR ′[Z]Q. We may assume that I ′R ′[Z] ⊂ Q because otherwise T1(I )Q is a
complete intersection.

Since I ′R ′[Z] and T1(I ) are linked, one has

µ(T1(I )Q) ≤ r((R ′[Z]/I ′R ′[Z])Q) + g.

As I satisfies Gr , [26, 2.5] implies that the latter is bounded above by

dim(R ′[Z]/I ′R ′[Z])Q + g = dimR ′[Z]Q.

Lemma 2.13. Let R be a local Gorenstein ring, and let a ⊂ I be R-ideals with
ht I = g > 0 and ht(a : I ) ≥ r ≥ g. Assume that R/I is Cohen–Macaulay and
that I can be linked to an ideal satisfying Gr by a sequence of n tight double links.
Then any rnth universal tight double link T rn(I ; a) of I along a satisfies Gr.

Proof. Write m for the maximal ideal of R. By induction on i we prove that
any inth universal tight double link T in(I ; a) ⊂ R(Y ) of I along a satisfies Gi

for 0 ≤ i ≤ r. The case i = 0 is trivial, so we assume that i > 0. Let L =
T (i−1)n(I ; a) ⊂ R(X) be an (i − 1)nth universal tight double link of I along a,
and write b = a2(i−1)n for the (i−1)nth ideal derived from a. Notice that b : L =
(a : I )R(X) by Discussion 2.2(2), which gives ht(b : L) ≥ r. Now set (R ′,m′) =
(R(X), mR(X)) and let Tn(L; b) ⊂ R ′[U ] be an nth generic tight double link of
L along b. According to Remarks 2.6(b) and 2.7(b) we have

(R(Y ), T in(I ; a)) ∼∼∼ (R ′[U ]m′R ′[U ], Tn(L; b)m′R ′[U ]).

Because generic equivalence does not affect the Gi property, we may assume that
these generic equivalences are equalities:

(R(Y ), T in(I ; a)) = (R ′[U ]m′R ′[U ], Tn(L; b)m′R ′[U ]).

Now let Q be a prime ideal of R ′[U ] with Tn(L; b) ⊂ Q ⊂ m′R ′[U ] and
dimR ′[U ]Q ≤ i − 1. Our goal is to show that the minimal number of genera-
tors of Tn(L; b)Q ⊂ R ′[U ]Q is at most dimR ′[U ]Q. Write p for the contraction
of Q to R ′. Notice that dimR ′

p ≤ dimR ′[U ]Q ≤ i − 1, which gives in particular
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that bp = Lp as ht(b : L) ≥ r ≥ i. Now Remark 2.7(a), Remark 2.6(a), and the
equality bp = Lp imply that

(R ′
p[U ], Tn(L; b)R ′

p[U ]) ≡ (R ′
p[U ], Tn(Lp; bp)) ≡ (R ′

p[V ], Tn(Lp)),

where Tn(Lp) ⊂ R ′
p[V ] is an nth generic tight double link of Lp. Under this

equivalence, the prime ideal QR ′
p[U ] gives rise to a prime ideal P of R ′

p[V ]
via a sequence of extensions to polynomial rings, applications of R ′

p-algebra iso-
morphisms, and contractions. Notice that dimR ′

p[V ]P ≤ dimR ′[U ]Q and that
P ∩R ′

p = pR ′
p. Furthermore, by faithful flatness it suffices to prove that the mini-

mal number of generators of the ideal Tn(Lp)P ⊂ R ′
p[V ]P is at most dimR ′

p[V ]P
or, equivalently, that this ideal satisfies Gi.

We first consider the case where dimR ′
p ≤ i − 2. By our induction hypothe-

sis, the ideal Lp ⊂ R ′
p satisfies Gi−1 and hence Gi because dimR ′

p ≤ i − 2. Now
Lemma 2.12 implies that Tn(Lp) satisfies Gi, and therefore so does Tn(Lp)P .

Next we treat the case where dimR ′
p = i − 1. Now dimR ′

p = dimR ′
p[V ]P ,

which gives P = pR ′
p[V ]. Thus Tn(Lp)P ⊂ R ′

p[V ]P is an nth universal tight dou-
ble link of Lp according to Remark 2.7(b). By Theorem 2.11(b), the pair (R ′

p,Lp)

is essentially a deformation of (R, I ). Our assumption says that I can be linked
to an ideal K satisfying Gr by a sequence of n tight double links. Using [23, 2.12]
one can lift this sequence of links to obtain a sequence of n tight double links
from Lp to an R ′

p-ideal K ′, where either (R ′
p,K ′) is essentially a deformation of

(R,K) or else K ′ is a complete intersection. Again by Theorem 2.11(b), the pair
(R ′

p[V ]P , Tn(Lp)P) = (R ′
p(V ), T n(Lp)) is essentially a deformation of (R ′

p,K ′)
and hence essentially a deformation of (R,K) unless K ′ is a complete intersec-
tion. As the property Gr can be expressed in terms of lower bounds on heights of
Fitting ideals, it is preserved by any operation that is essentially a deformation in
a local Cohen–Macaulay ring. Consequently, T n(Lp)P satisfies Gr as well.

Lemma 2.14. Let R be a local Gorenstein ring and let a ⊂ I be proper R-ideals
with ht I = g > 0 and ht(a : I ) ≥ g + 1. Let y be an R-regular element. If I is
generically a complete intersection, then y is regular modulo T1(I ; a).

Proof. Consider a generic tight double link T1(I ; a) ⊂ R[X]. Let P be any as-
sociated prime of the ideal T1(I ; a) and let p be its contraction to R. Notice that
dimRp ≤ dimR[X]P = g. Thus ap = Ip because ht(a : I ) > g. It suffices to
show that y is a nonzerodivisor modulo T1(I ; a)Rp[X].

Suppose that I ⊂ p. In this case g ≤ dimRp ≤ dimR[X]P = g, showing that
P = pR[X]. Now Remarks 2.7(a) and (b) imply that T1(I ; a)P is a first universal
tight double link of Ip along ap. Such a link is the unit ideal according to Remark
2.7(c), because Ip is a complete intersection by our assumption and ap = Ip. This
contradicts the fact that P is an associated prime. Therefore I �⊂ p. But then,
since ap = Ip is the unit ideal, one easily sees that (R[X]p, T1(I ; a)Rp[X]) ≡
(Rp[Z1, . . . ,Zg], (Z1, . . . ,Zg)), where Z1, . . . ,Zg are variables and all rings are
considered asRp-algebras. The assertion of the lemma now follows because y ∈R

is a nonzerodivisor modulo (Z1, . . . ,Zg).
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Lemma 2.15. Let R be a local Gorenstein ring, a ⊂ I ideals in R with ht I =
g > 0, and y1, . . . , yt a sequence of t ≥ 0 elements that is R-regular. Assume
R/I is Cohen–Macaulay. If t > 0 further suppose ht(a : I, y1, . . . , yt−1) ≥ g + t

and I is in the even linkage class of an ideal K such that y1, . . . , yt−1 form a regu-
lar sequence on R/K and the ideal (K, y1, . . . , yt−1)/(y1, . . . , yt−1) is generically
a complete intersection. Then either T n(I ; a) is the unit ideal for n � 0 or else
y1, . . . , yt form a regular sequence modulo T n(I ; a) for n � 0.

Proof. By Definition 2.4(3) we know that if T n(I ; a) is the unit ideal for some n,
then this holds for every n � 0. Thus we may assume that none of these ideals is
the unit ideal. We proceed by induction on t ≥ 0. Since the assertion is trivial for
t = 0 and our assumptions are preserved as t is decreased, we may suppose that
t > 0 and the claim holds for t − 1.

Thus y1, . . . , yt−1 form a regular sequence modulo T n(I ; a) for large n. We
write I ′ = T n(I ; a) ⊂ R ′ = R(X) for this universal tight double link, and we let

denote reduction modulo the ideal generated by y1, . . . , yt−1 in any appropriate
ring. Notice that R ′/I ′ is Cohen–Macaulay. The ideal KR ′ is in the even link-
age class of I ′ and hence, by Remark 2.3, can be obtained from I ′ by a sequence
of, say m, tight double links. Now Theorem 2.11(b) shows that for any univer-
sal tight double link T m(I ′) ⊂ R ′(Y ) of I ′, the pair (R ′(Y ), T m(I ′)) is essentially
a deformation of (R ′,KR ′), where all rings are considered as R ′-algebras. Since
y1, . . . , yt−1 form a regular sequence onR ′ and onR ′/KR ′, the pair (R ′(Y ), T m(I ′))
is still essentially a deformation of (R ′,KR ′). Thus the property of being generi-
cally a complete intersection passes from K to T m(I ′). On the other hand, since
y1, . . . , yt−1 form a regular sequence modulo I ′, Corollary 2.10 together with Re-
marks 2.7(b) and 2.6(b) gives (R ′(Y ), T m(I ′)) ∼∼∼ (R ′(Y ),T m(I ′)). Thus T m(I ′)
is generically a complete intersection and a proper ideal. This shows that I ′R ′(Y )
can be linked, by a sequence of m tight double links, to the generic complete in-
tersection T m(I ′). In fact, since I ′R ′(Y ) is also an nth universal tight double link
of I along a, we may replace I ′R ′(Y ) by I ′; then I ′ can be linked to a generic
complete intersection by m > 0 tight double links.

Now consider T n+(g+1)m(I ; a) = T (g+1)m(I ′; a′) ⊂ R ′(Z), where a′ is the nth
derived ideal of a. Recall that a′ : I ′ = aR ′ : IR ′ according to Discussion 2.2(2).
We have ht I ′ = g because y1, . . . , yt−1 form a regular sequence on R/I ′, and
ht(a′ : I ′) ≥ ht a′ : I ′ = ht a : I ≥ g + 1 by our assumption. Since ht(a′ : I ′) ≥
g−1 and y1, . . . , yt−1 is a regular sequence on R ′/I ′, another application of Corol-
lary 2.10 shows that

(R ′(Z), T n+(g+1)m(I ; a)) = (R ′(Z), T (g+1)m(I ′; a′)) ∼∼∼ (R ′(Z),T (g+1)m(I ′; a′))

and that y1, . . . , yt−1 form a regular sequence modulo

T n+(g+1)m(I ; a) = T (g+1)m(I ′; a′).

By the foregoing, however, I ′ is linked to a generic complete intersection by a
sequence of m tight double links. As ht(a′ : I ′) ≥ g + 1, Lemma 2.13 then
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implies that T (g+1)m(I ′; a′) is generically a complete intersection, and hence
T n+(g+1)m(I ; a) is.

Changing notation once more we set I ′′ = T n+(g+1)m(I ; a) ⊂ R ′′ = R ′(Z),
recalling that I ′′ is generically a complete intersection and y1, . . . , yt−1 form a
regular sequence on R ′′/I ′′. Writing a′′ for the (g + 1)mth derived ideal of a′,
we have ht(a′′ : I ′′) ≥ ht a′′ : I ′′ = ht a : I ≥ g + 1. Consider the universal
tight double link T n+(g+1)m+1(I ; a) = T 1(I ′′; a′′) ⊂ R ′′(U). By Corollary 2.10,
(R ′′(U), T 1(I ′′; a′′)) ∼∼∼ (R ′′(U),T 1(I ′′; a′′)) and y1, . . . , yt−1 form a regular se-
quence modulo the ideal T n+(g+1)m+1(I ; a) = T 1(I ′′; a′′). Therefore it remains
to prove that y = yt is regular modulo the ideal T n+(g+1)m+1(I ; a) = T 1(I ′′; a′′)
or, equivalently, modulo T 1(I ′′; a′′). But this follows from Lemma 2.14 because
ht(a′′ : I ′′) ≥ g + 1 and I ′′ is generically a complete intersection. Thus y1, . . . , yt
do indeed form a regular sequence modulo T n+(g+1)m+1(I ; a). Finally, by Corol-
lary 2.10 this property passes to subsequent universal tight double links.

3. Applying Universal Tight Double Linkage

In this section we use universal tight double linkage to prove two crucial tech-
nical results, which allow us to “prepare” a licci ideal I along its even linkage
class without changing a given residual intersection of I. Through the first result,
Theorem 3.4, we achieve that I satisfies Gs and a given sequence of elements be-
comes regular modulo I ; the second result, Theorem 3.5, guarantees that the Gs

property persists as I is linked two steps closer to a complete intersection. How-
ever, in order to apply universal tight double linkage, we must first prove that these
links—which are defined in a suitable ring extension ofR—descend to a sequence
of links in R proper. This is the purpose of the next three lemmas. The corre-
sponding statements for universal linkage can be found in [25, 2.1–2.5].

Lemma 3.1. Let (R, m) be an equidimensional and catenary Noetherian local
ring with infinite residue field k, let S = R[x1, . . . , xm] be a polynomial ring, and
let J be an S-ideal with g = ht JmS. If (λ) = (λ1, . . . , λm) is a vector in Rm, write
(λ) for its image in km and J(λ) for the image of J under the evaluation map
sending xi to λi. There exists a dense open subset U of km such that ht J(λ) ≥ g

whenever (λ)∈U.

Proof. Write d = dimR. We first consider the case where JmS contains me for
some integer e ≥ 0. There exists a polynomial f ∈ S \ mS such that fmeS ⊂ J.

Let f be the image of f in k[x1, . . . , xm] and notice that f �= 0. Thus U = D(f )

is a dense open subset of km. If (λ) ∈Rm with (λ) ∈U, then f(λ) is a unit in R,
and the containment f(λ)me ⊂ J(λ) gives that me ⊂ J(λ). If g = ∞ we may
take e = 0 and obtain ht J(λ) = ∞. Otherwise, g = d and ht J(λ) ≥ d.

If JmS does not contain me for some e ≥ 0, then J ⊂ mS and g < d. Thus there
is a sequence of d − g elements y = y1, . . . , yd−g in m such that mS is a minimal
prime of the S-ideal (J, y)S. Hence by the above, there exists a dense open sub-
set U of km such that ht(J(λ), y) ≥ d whenever (λ) ∈ U. Since y is a sequence
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of d − g elements in m and since the ring R is local, equidimensional, and cate-
nary, we conclude that ht J(λ) ≥ g.

The next lemma is a standard fact that can be found in [25, 2.3] for instance.

Lemma 3.2. Let (R, m) be a Noetherian local ring with infinite residue field k,
S = R[x1, . . . , xm] a polynomial ring, and M a finitely generated S-module. If
(λ) = (λ1, . . . , λm) is a vector in Rm, write (λ) for its image in km. Then there
exists a dense open subsetU of km such that µ(M⊗S S(m,{xi−λi})) ≤ µ(M⊗S SmS)

whenever (λ)∈U.

Lemma 3.3. Let (R, m) be a local Gorenstein ring with infinite residue field k,
let a ⊂ I be proper R-ideals with 1 + ht a ≥ ht I > 0 and µ(a) ≤ s, and assume
that R/I is Cohen–Macaulay. For 1 ≤ i ≤ n consider successive ith generic tight
double links Ti(I ; a) ⊂ Ri of I along a. Write S = Rn = R[x1, . . . , xm] and sup-
pose that Tn(I ; a)mS �= SmS. Let IS = H0 ∼ H1 ∼ H2 ∼ · · · ∼ H2n be the
sequence of tight double links of IS along aS obtained by extending the tight dou-
ble links Ti(I ; a) to S, and write A2i for the derived ideals and Cj for the complete
intersections defining these links. If (λ) = (λ1, . . . , λm) is a vector in Rm, write
(λ) for its image in km and set Ij = Hj(λ), a2i = A2i(λ), and cj = Cj(λ).

Then there exists a dense open subset U of km such that I = I0 ∼ I1 ∼ I2 ∼
· · · ∼ I2n is a sequence of s-minimal tight double links of I along a whenever
(λ) ∈ U. The derived ideals are a2i, and the links are defined by the complete
intersections cj . One can further achieve that µ(I2i ) ≤ µ(Ti(I ; a)mRi

) for every
i and that I2i satisfies Gr for some i and r if Ti(I ; a)mRi

does.

Proof. From Remark 2.7(b) we know that Ti(I ; a)mRi
is an ith universal tight dou-

ble link of I along a. Hence Definition 2.4(3) gives Ti(I ; a)SmS �= SmS for 1 ≤
i ≤ n because Tn(I ; a)mS �= SmS. Thus, upon localizing at the prime ideal mS,
the sequence IS = H0 ∼ H1 ∼ H2 ∼ · · · ∼ H2n remains a sequence of tight
double links of the extension of I along the extension of a; in fact, it becomes
minimal and hence s-minimal according to Discussions 2.4(3) and 2.2(2). In par-
ticular, the sequence remains a sequence of tight double links of the extension of
I along the extension of a if we merely localize at maximal S-ideals of the form
Mλ = (m, {x� − λ�}).

Write g = ht I. According to Lemma 3.1, there exists a dense open subset U
of km such that ht cj ≥ g for 1 ≤ j ≤ 2n whenever (λ) ∈U. Hence the R-ideals
cj are complete intersections because they are g generated and proper. Applying
Corollary 2.9 to the links IS = H0 ∼ H1 ∼ H2 ∼ · · · ∼ H2n localized at Mλ,
we see that I = I0 ∼ I1 ∼ I2 ∼ · · · ∼ I2n is a sequence of tight double links
of I along a defined by the complete intersections cj and with derived ideals a2i .

By Lemma 3.2 we may assume that this sequence of links is s-minimal. From the
same lemma we also obtain µ(I2i ) ≤ µ(Ti(I ; a)SmS).

To prove the last assertion of the lemma, assume that Ti(I ; a)mRi
satisfies Gr.

For 1 ≤ � ≤ r −1, let F� denote the �th Fitting ideal of Ti(I ; a)S considered as an
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S-module. The Gr condition means that ht(F�)mS ≥ � + 1 for every �. Applying
Lemma 3.1 to the finitely many ideals F� reveals that, in addition, htF�(λ) ≥
� + 1 whenever (λ) belongs to a possibly smaller dense open subset U of km.
Since F�(λ) is contained in the �th Fitting ideal Fitt�(I2i ) of I2i, it follows that
ht Fitt�(I2i ) ≥ �+1 in the range 1 ≤ � ≤ r −1. Therefore I2i satisfies Gr as well.

Theorem 3.4. Let R be a local Gorenstein ring with infinite residue field, I an
R-ideal of positive height, J an s-residual intersection of I, and y1, . . . , yt a se-
quence of t ≥ 0 elements in R that is regular on R and on R/J. Assume that R/I
is Cohen–Macaulay and that I is in the even linkage class of an ideal K satisfy-
ing Gr for some r ≤ s. If t > 0, further suppose that y1, . . . , yt−1 form a regular
sequence on R/K and that the ideal (K, y1, . . . , yt−1)/(y1, . . . , yt−1) is generically
a complete intersection. Then there exists an R-ideal I ′′ in the even linkage class
of I such that J is an s-residual intersection of I ′′, the ideal I ′′ satisfies Gr , and
the sequence y1, . . . , yt is regular on R/I ′′.

Proof. Write g = ht I. If s = g then I and J are directly linked. Since

ht(J, y1, . . . , yt ) = g + t,

we can find a proper subideal (b1, . . . , bg) � J such that b1, . . . , bg , y1, . . . , yt form
an R-regular sequence. Now I ′′ = (b1, . . . , bg) : J has the desired properties.
Indeed, this ideal is directly linked to J and hence doubly linked to I, and the se-
quence y1, . . . , yt is regular modulo I ′′ by Proposition 2.8. Furthermore, the prop-
ertyGr is vacuous because r ≤ s = g. Thus we may assume from now on that s ≥
g+1. In particular, ht(J, y1, . . . , yt ) ≥ s + t ≥ g+1+ t and ht(J, y1, . . . , yt−1) ≥
g + t for t > 0.

We write the residual intersection J as J = a : I. According to Remark 2.3,
the ideal K can be obtained from I by a sequence of, say n, tight double links.
Hence Lemma 2.13 implies that an rnth universal tight double link T rn(I ; a) ⊂
R(X) of I along a satisfies Gr. We apply Lemma 2.15 to conclude that y1, . . . , yt
form a regular sequence on R(X,Z)/T rn+m(I ; a) for some m � 0, provided
T rn+m(I ; a) �= R(X,Z). But (R(X,Z), T rn+m(I ; a)) is essentially a deforma-
tion of (R(X), T rn(I ; a)) by Theorem 2.11(b). Hence the propertyGr passes from
T rn(I ; a) to T rn+m(I ; a). Changing notation sightly, we have now shown that for
some � � 0 and T �(I ; a) ⊂ R(X), either T �(I ; a) satisfies Gr and y1, . . . , yt
form a regular sequence modulo T �(I ; a) or else T �(I ; a) = R(X). In the latter
case we replace � by the largest integer so that T �(I ; a) �= R(X). In any case we
write A = A2� ⊂ T �(I ; a) for the �th derived ideal and recall that JR(X) = A :
T �(I ; a) by Discussions 2.4(3) and 2.2(2). Since T �+1(I ; a) is the unit ideal in
the second case, Remark 2.7(c) shows that T �(I ; a) is generated by a regular se-
quence α1, . . . ,αg−1,α and that α1, . . . ,αg−1 form part of a minimal generating set
of A. Writing A = (α1, . . . ,αs) and letting βi be elements of R(X) with αi ≡
βiα mod (α1, . . . ,αg−1) for g ≤ i ≤ s, we see that JR(X) is generated by the s ele-
ments α1, . . . ,αg−1,βg , . . . ,βs. Since ht JR(X) ≥ s, these elements form a regular
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sequence, and since y1, . . . , yt are a regular sequence modulo JR(X), it follows
that α1, . . . ,αg−1, y1, . . . , yt form a regular sequence. To summarize, we are in one
of two cases as follows.

Case 1: T �(I ; a) satisfies Gr , and y1, . . . , yt form a regular sequence modulo
T �(I ; a).

Case 2: α1, . . . ,αg−1, y1, . . . , yt form a regular sequence, T �(I ; a)/(α1, . . . ,αg−1)

is cyclic, and A/(α1, . . . ,αg−1) is generated by s − g + 1 elements.
Write m for the maximal ideal ofR. By Remark 2.7(b) we may choose T �(I ; a)

to be T�(I ; a)mR[X] for some generic tight double link T�(I ; a) ⊂ R[X] =
R[x1, . . . , xm] with �th derived ideal A2�. We may further suppose that A =
(A2�)mR[X]. We wish to use Lemma 3.3 and the notation introduced there, writ-
ing I ′ for the R-ideal I2� = [T�(I ; a)](λ). From the lemma we know that I ′ is
obtained from I by a sequence of � s-minimal tight double links along a with �th
derived ideal a′ = A2�(λ). In particular, a′ : I ′ = a : I = J is an s-residual inter-
section of I by Discussion 2.2(2).

Now assume we are in Case 1. According to Lemma 3.3, we may assume
that I ′ satisfies Gr. Furthermore, the image of T�(I ; a) in the polynomial ring
(R/(y1, . . . , yt ))[x1, . . . , xm] is an ideal that has height g after localizing at the ex-
tension of m. Thus, after passing to a possibly smaller dense open subset U of km,
Lemma 3.1shows that the image of I ′ in the ringR/(y1, . . . , yt ) has height at least g.
Therefore y1, . . . , yt form a regular sequence modulo I ′ because R/I ′ is Cohen–
Macaulay and ht I ′ = g. Taking I ′′ to be I ′, we have completed the proof in Case 1.

Next we consider Case 2. We may assume that the elements α1, . . . ,αg−1 are in
A2�; we write a1, . . . , ag−1 for their images in a′ = A2�(λ). Applying Lemma 3.2
to the R[x1, . . . , xm]-modules T�(I ; a)/(α1, . . . ,αg−1) and A2�/(α1, . . . ,αg−1), we
obtain a possibly smaller dense open subset U of km such that I ′/(a1, . . . , ag−1)

is cyclic and a′/(a1, . . . , ag−1) is s − g + 1 generated. By Lemma 3.1 we may
further suppose that a1, . . . , ag−1, y1, . . . , yt form an R-regular sequence. Since
dimR ≥ g + t, there exists an element b such that a1, . . . , ag−1, b, y1, . . . , yt are
an R-regular sequence. Linking I ′ = (a1, . . . , ag−1, a) with respect to the regular
sequences a1, . . . , ag−1, ab and a1, . . . , ag−1, b2 defines an s-minimal tight double
link of I ′ along a′ that produces an ideal I ′′ and a derived ideal a′′. Clearly I ′′ =
(a1, . . . , ag−1, b) is a complete intersection and y1, . . . , yt form a regular sequence
modulo I ′′. Furthermore, a′′ : I ′′ = a′ : I ′ = J is an s-residual intersection of I ′′
according to Discussion 2.2(2). This finishes the proof in Case 2.

Theorem 3.5. Let R be a local Gorenstein ring with infinite residue field, I an
R-ideal, and s an integer with ht I ≤ s ≤ dimR. Assume that I can be linked to
a complete intersection by a sequence of n tight double links and that I satisfies
Gs. Then there exist an s-residual intersection J = a : I of I and a sequence of at
most n tight double links to a complete intersection such that the first double link
I ∼ I ′ ∼ I ′′ is an s-minimal tight double link of I along a and I ′′ satisfies Gs.

Proof. Write m for the maximal ideal, k for the residue field of R, and K for a
complete intersection obtained from I by a sequence of n tight double links. Set
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g = ht I and r = min{s,µ(I ) − 1}, and notice that 0 ≤ g − 1 ≤ r ≤ s ≤ dimR.

Let f1, . . . , f� be a generating sequence of I, and let xνµ be variables for 1 ≤ ν ≤ r

and 1 ≤ µ ≤ �. In the ring R ′ = k[{xνµ}] consider elements βν = ∑�
µ=1 xνµfµ

and ideals B = (β1, . . . ,βr) and B : IR ′. The elements β1, . . . ,βg−1 can be used
to define a generic tight double link of I, which we extend to a sequence of gen-
eric tight double links Ti(I ) ⊂ Ri as in Theorem 2.11. Finally, write

S = Rn[{xνµ | ν ≥ g}] = R[x1, . . . , xm].

Notice that T1(I )S is obtained from IS by a tight double link along the ideal BS
and that BS/(β1, . . . ,βg−1) is r − g + 1 generated.

Write J = (B : IR ′)S = BS : IS. According to [26, proof of 5.1] we have
ht J ≥ r because I satisfies Gr. Hence ht JmS ≥ r. On the other hand, the ideals
Ti(I )mRi

are ith universal tight double links of I by Remark 2.7(b). Thus Theo-
rem 2.11(b) implies that (SmS , T1(I )SmS) is essentially a deformation of (R, I ) and
that (SmS , Tn(I )SmS) is essentially a deformation of (R,K). Therefore T1(I )SmS

satisfies Gs , and Tn(I )SmS is either a complete intersection or the unit ideal. In the
latter case, we replace n by the largest integer i for which Ti(I )SmS �= SmS and
then observe that this ideal is a complete intersection according to Remark 2.7(c).
Thus, in either case we may assume that Tn(I )SmS is a complete intersection. We
can further suppose that n > 0.

If (λ) is a vector inRm, write (λ) for its image in km. We use Lemma 3.3 and the
notation introduced there. If (λ) lies in a suitable dense open subset of km, then
specializing the ideals Ti(I )S via xj �→ λj yields a sequence of tight double links
I = I0 ∼ I1 ∼ I2 ∼ · · · ∼ I2n in the ring R such that I2 satisfies Gs and I2n is a
complete intersection. Observe that I = I0 ∼ I ′ = I1 ∼ I ′′ = I2 is automatically
an r-minimal tight double link along b = B(λ). On the other hand, in applying
Lemma 3.1 to the S-ideal J we may also assume that the R-ideal J (λ) has height
at least r. Since J (λ) ⊂ b : I, it follows that ht(b : I ) ≥ r. Furthermore, r <

µ(I ); hence b �= I and therefore b : I �= R. Thus if r = s then b : I is an
s-residual intersection of I. In this case we may choose a to be b and the proof is
complete. Otherwise, r = µ(I ) − 1 and, invoking Lemma 3.2, we may assume
that I/b is cyclic. Write I = (b, b) and let cr+1, . . . , cs be elements in m such that
the R-ideal (b : I, cr+1, . . . , cs) has height at least s. Set a = (b, cr+1b, . . . , csb).
Since (b : I, cr+1, . . . , cs) ⊂ a : I we have ht(a : I ) ≥ s, and since b �= I it fol-
lows that a �= I ; thus a : I �= R. Now a : I is an s-residual intersection of I.
Finally, observe that I = I0 ∼ I ′ = I1 ∼ I ′′ = I2 is an s-minimal tight double
link along a because a/b is s − r generated.

4. Residual Intersections of Licci Ideals: The Local Case

In this section we prove our main result, Theorem 4.6, which says that residual in-
tersections of licci ideals are glicci. The proof makes use of a standard technique
for producing Gorenstein links, which can be found in [18, 3.5] or [28, 5.10] for
the graded case and in [27, 4.1] for the local case. We record the version of this fact
that we will use and include a proof for the reader’s convenience. Here and in the
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next three results we think of a local ring as being trivially graded; in particular,
every element and every ideal of such a ring is homogeneous.

Proposition 4.1. Let R be a Gorenstein ring that is either local or positively
graded over a field, let H be a homogeneous R-ideal, and let denote images in
the ring R = R/H. Assume that R is Cohen–Macaulay and generically Goren-
stein. Let J and K be unmixed homogeneous R-ideals containing H, of height
one greater than the height of H. If some shifts of J and K are isomorphic as
graded R-modules, then J and K are linked in R by a homogeneous Gorenstein
double link.

Proof. Since the ring R is generically Gorenstein, it has a canonical ideal: a ho-
mogeneous ideal ω that is isomorphic to a shift of the graded canonical module
of R. Such an ideal necessarily has positive height. Multiplying ω by a homoge-
neous nonzerodivisor in R, we may assume that ω � J . Notice that K = xJ for
some quotient x of homogeneous nonzerodivisors in R. One has xω � xJ = K ,
and xω is a canonical ideal as well. Furthermore, ω :

R
J = xω :

R
K. Now con-

sider preimages L and N of ω and xω in R. Since ω and xω are proper homoge-
neous canonical ideals, it follows that both R/L ∼= R/ω and R/N ∼= R/xω are
graded Gorenstein rings, necessarily of the same dimension as R/J and R/K.

Furthermore, L � J and N � K, the ideals J and K are unmixed, and L :R J =
N :R K. Thus J and L : J = N : K are indeed linked in R by a homogeneous
Gorenstein link, and so are L : J = N : K and K.

The particular type of Gorenstein double link constructed in the proof of Prop-
osition 4.1 is called homogeneous basic Gorenstein double link. If R is local, we
simply talk about a basic Gorenstein double link.

The following lemma is essentially a standard result from basic element theory.
For lack of a precise reference, however, we include a sketch of a proof. Particular
care must be exerted in order to assure that the intermediate colon ideals cannot
become unit ideals.

Lemma 4.2. Let k be an infinite field and R a Noetherian ring that is either local
with residue field k or a standard graded k-algebra. Let I be a homogeneous
R-ideal satisfying Gs , and let a : I and b : I be homogeneous s-residual intersec-
tions of I. Then there are homogeneous generating sequences a1, . . . , as of a and
b1, . . . , bs of b such that, for ci = (a1, . . . , ai−1, bi+1, . . . , bs) and 1 ≤ i ≤ s, the
ideals ci : I are geometric (s − 1)-residual intersections (when s ≥ ht I +1) and
both (ci, ai) : I and (ci, bi) : I are s-residual intersections of I. These s-residual
intersections are geometric if a : I and b : I are.

Proof. We can assume that s > 0. We may even suppose that a �= 0; for otherwise
choose a1 = · · · = as = 0 and b1, . . . , bs any homogeneous generating sequence
of b. Write m for the homogeneous maximal ideal of R, and set n = µ(I ) and
u = µ(a). Let δs−u+1 ≥ · · · ≥ δs be the generator degrees of a. Define δ1 = · · · =
δs−u = 0 if R is local and δ1 = · · · = δs−u = δs−u+1 + 1 if R is graded. We first
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claim that there exist homogeneous elements a1, . . . , as of degrees δ1, . . . , δs gen-
erating a such that, for 0 ≤ i ≤ s, the following conditions are satisfied:

(i) [I/(a1, . . . , ai)]p = 0 for p ∈ Spec(R) with dimRp ≤ i − 1;
(ii) µ([I/(a1, . . . , ai)]p) ≤ dimRp − i for p ∈V(I ) with i ≤ dimRp ≤ s − 1;

(iii) µ([I/(a1, . . . , ai)]p) ≤ dimRp − i for p ∈ V(I ) with dimRp = s, provided
the residual intersection a : I is geometric;

(iv) a1, . . . , as−n+1 are in mI if R is local and n ≤ s.

We construct such elements a1, . . . , ai by induction on i. The case i = 0 is
obvious because I satisfies Gs. As for the induction step, assume that i > 0
and a1, . . . , ai−1 have been constructed. Consider the graded R-modules M =
[a ∩ mI ]/[(a1, . . . , ai−1) ∩ mI ] and N = a/(a1, . . . , ai−1) as well as the tensor
products M ′ = M ⊗ (R/I ) and N ′ = N ⊗ (R/I ). Let P ⊂ Spec(R) \ {m} be
the finite collection of homogeneous primes p �= m that are minimal primes in the
supports of M,N or minimal primes of any Fitting ideals of M ′,N ′. According
to a graded version of a basic element lemma (see, e.g., [36, 1.3] and its proof ),
there exists a homogeneous element ai of degree δi such that the following con-
ditions hold for every p ∈ P. For this we also recall that the kernel of the natural
map a ⊗ k → I ⊗ k has dimension at least u − n + 1 as a k-vector space.

• If R is local and i ≤ s − n+ 1, then ai ∈ a ∩ mI and the image of ai is a mini-
mal generator of each of the modules Mp, (M ′)p that are not zero; if in addition
i ≤ u − n + 1, then ai is also a minimal generator of N.

• ai ∈ a and the image of ai is a minimal generator of each of the modules
Np, (N ′)p that are not zero and if i ≥ s − u + 1 then ai is also a minimal gen-
erator of N when this module is not zero.

The elements a1, . . . , ai so constructed indeed have the desired properties. To see
this, notice that for each of the primes p occurring in items (i)–(iii), Ip = ap.
Furthermore, s ≤ dimR with s < dimR if the residual intersection a : I is geo-
metric. Thus none of the primes p in items (i)–(iii) is the maximal ideal m; in
particular, Ip = (mI )p. Finally, observe that the inequalities in items (ii) and (iii)
for i − 1 are strict except possibly for p ∈ P. For details we refer to the proof of
[36, 1.4].

We now turn to the construction of the elements b1, . . . , bs. As before, we may
assume that b �= 0. Write v = µ(b) and let ε1 ≤ · · · ≤ εv be the generator degrees
of b. Define εv+1 = · · · = εs = 0 in the local case and εv+1 = · · · = εs = εv + 1
in the graded case. We argue that there exist homogeneous generators b1, . . . , bs
of b having degrees ε1, . . . , εs such that the following statements hold for all non-
negative integers i, j with 0 ≤ i + j ≤ s:

• [I/(a1, . . . , ai, bs−j+1, . . . , bs)]p = 0 for p∈Spec(R) with dimRp ≤ i + j − 1;
• µ([I/(a1, . . . , ai, bs−j+1, . . . , bs)]p) ≤ dimRp − i−j for p ∈V(I ) with i+j ≤

dimRp ≤ s − 1;
• µ([I/(a1, . . . , ai, bs−j+1, . . . , bs]p) ≤ dimRp−i−j forp ∈V(I )with dimRp =
s, provided the residual intersections a : I and b : I are geometric;

• bn, . . . , bs are in mI if R is local and n ≤ s.
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One shows the existence of such elements bs−j+1, . . . , bs by induction on j. The
case j = 0 follows from the previous step of the proof. To obtain bs−j+1 in the
induction step we argue as before, applying the basic element lemma to the mod-
ules b/(bs−j+2, . . . , bs) as well as the modules

Mi = [(a1, . . . , ai, b) ∩ mI ]/[(a1, . . . , ai, bs−j+2, . . . , bs) ∩ mI ]

and
Ni = (a1, . . . , ai, b)/(a1, . . . , ai, bs−j+2, . . . , bs)

and their tensor products with R/I, where 0 ≤ i ≤ s − j.

Now the elements a1, . . . , as and b1, . . . , bs have the properties asserted in the
lemma. In particular we claim that (a1, . . . , ai, bi+1, . . . , bs) �= I for every i. This
holds in the local case because a1, . . . , as−n+1 and bn, . . . , bs belong to mI if n ≤ s.

In the graded case, write β = β00,β01,β02, . . . for the sequence of zeroth graded
Betti numbers. As a � I and b � I, we have β(a) < β(I ) and β(b) < β(I )

in the lexicographic order. Suppose that (a1, . . . , ai, bi+1, . . . , bs) = I for some i.
We may assume without loss of generality that δi ≤ εi+1, in which case δi is the
initial degree of I. Therefore i ≥ s − u + 1. Since a1, . . . , as−u are in ma, we
conclude that (as−u+1, . . . , ai, bi+1, . . . , bs) = I and that as−u+1, . . . , as constitute
a homogeneous minimal generating set of a. Again, since δi is the initial degree
of I, we have δi = δi+1 = · · · = δs. Also notice that δi ≤ εi+1 ≤ · · · ≤ εs.

Therefore β((as−u+1, . . . , ai, bi+1, . . . , bs)) ≤ β((as−u+1, . . . , ai, ai+1, . . . , as)) =
β(a) < β(I ), contradicting the equality (as−u+1, . . . , ai, bi+1, . . . , bs) = I.

The next theorem is another crucial ingredient in the proof of Theorem 4.6. It al-
lows to pass from one s-residual intersection of I to another without leaving the
even Gorenstein linkage class, provided I satisfies Gs and AN−

s−1. Recall that an
ideal I in a Cohen–Macaulay ring R has the Artin–Nagata property AN−

r for an
integer r ifR/K is Cohen–Macaulay for every geometric i-residual intersectionK
of I and every integer i ≤ r. This property holds for instance when I is both licci
and Gr (as follows from [21, 1.11] and [22, 3.1]) or, more generally, when I is licci
(see [26, 5.3]).

Theorem 4.3. Let k be an infinite field and R a Gorenstein ring that is either
local with residue field k or a standard graded k-algebra. Let I be a homogeneous
R-ideal satisfyingGs and AN−

s−1, and let J andK be two homogeneous s-residual
intersections of I. Then J and K are obtained from each other by a sequence of s
homogeneous basic Gorenstein double links.

Proof. We writeJ = a : I andK = b : I, and we retain the notation of Lemma 4.2.
It suffices to prove that, for every 1 ≤ i ≤ s, the homogeneous ideals (ci, ai) : I
and (ci, bi) : I are obtained from each other by a homogeneous basic Gorenstein
double link. We do so by invoking Proposition 4.1.

Write for images in the graded ring R = R/ci : I. The ideal I satisfies AN−
s−1

by our assumption and, by Lemma 4.2, ci : I is either a complete intersection or
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a geometric (s − 1)-residual intersection of I. Therefore R is a Cohen–Macaulay
ring. Furthermore, by [36, 1.7(a)] the ideal ci : I has height s − 1 (see also [22,
proof of 3.1]). Thus any of its associated primes p has height s − 1 and hence
cannot contain I, since ci : I is a geometric (s − 1)-residual intersection of I
when s ≥ ht I + 1. Therefore (ci : I )p = (ci )p is a complete intersection, show-
ing that R is generically Gorenstein. Again by Lemma 4.2, the ideals (ci, ai) : I
and (ci, bi) : I are s-residual intersections of I. Since I satisfies Gs and AN−

s−1,
it follows from [36, 1.7] that (ci, ai) : I and (ci, bi) : I are unmixed of height s
and that the homogeneous elements ai and bi are R-regular with (ci, ai) : I =
(ai) : I and (ci, bi) : I = (bi) : I (see also [22, proof of 3.1]). The last fact
gives R-isomorphisms that are homogeneous up to a degree shift, (ci, ai) : I ∼=
bi[(ci, ai) : I ] = (aibi) : I = ai[(ci, bi) : I ] ∼= (ci, bi) : I . Now an application of
Proposition 4.1 shows that (ci, ai) : I and (ci, bi) : I are obtained from each other
by a homogeneous basic Gorenstein double link.

Corollary 4.4. Let k be an infinite field and R a Gorenstein ring that is either
local with residue field k or a standard graded k-algebra. Let I be a homogeneous
complete intersectionR-ideal, and let J be a homogeneous s-residual intersection
of I. Then J can be linked to a complete intersection by a sequence of s homoge-
neous basic Gorenstein double links.

Proof. According to [22, 3.1], the complete intersection I satisfies AN−
s−1. Hence

in light of Theorem 4.3 it suffices to show that I has a homogeneous s-residual
intersection K that is a complete intersection. Write g = ht I and notice that
dimR ≥ s ≥ g > 0. Let x1, . . . , xg be a homogeneous R-regular sequence gen-
erating I and extend it to a homogeneous R-regular sequence x1, . . . , xs. For b =
(x1, . . . , xg−1)+ xg(xg , . . . , xs), take K = b : I and observe that K = (x1, . . . , xs).

Proposition 4.5. Let R be a local Gorenstein ring, I a licci R-ideal, and J =
a : I an s-residual intersection of I. Let y1, . . . , yt be a sequence of elements
in R that is regular on R and on R/I, and write for images in the ring R =
R/(y1, . . . , yt ). Then y1, . . . , yt form a regular sequence on R/J if and only if
ht(a : I ) ≥ s. In this case, J = a : I is an s-residual intersection of I .

Proof. By [26, 5.3], the ringR/J is Cohen–Macaulay and ht J = s. Thusy1, . . . , yt
form a regular sequence on R/J if and only if ht J ≥ s. On the other hand, ht J =
ht(a : I ) according to [26, 4.1], because y1, . . . , yt form a regular sequence onR/I.

If ht(a : I ) ≥ s then a : I is obviously an s-residual intersection of I . It re-
mains to show that J = a : I . According to [26, proofs of 5.1 and 5.3], there exists
a deformation (R̃, Ĩ ) of (R, I ) such that R̃ is a local Gorenstein ring, Ĩ is a licci
ideal satisfying Gs+1, and Ĩ has a geometric s-residual intersection J̃ = ã : Ĩ with
ãR = a. Since this residual intersection is geometric, applying [26, 4.7] via [26,
4.2(i) and 5.3] gives J̃R = J and J̃R = (ãR) : (ĨR). But obviously JR = J and
(ãR) : (ĨR) = a : I .
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We are now ready to prove our main result.

Theorem 4.6. In a local Gorenstein ring with infinite residue field, every resid-
ual intersection of a licci ideal is strictly glicci.

Theorem 4.6 is a consequence of the next, more precise statement. A major source
of technical complications in proving this statement stems from the fact that the
sequence y1, . . . , yt is not required to be regular modulo the ideal I. Allowing this
level of generality, though, is essential for the applications in the next section—in
particular for Example 5.4, where the sequence is contained in the ideal!

Theorem 4.7. Let R be a local Gorenstein ring with infinite residue field, I an
R-ideal, and J a residual intersection of I. Let y1, . . . , yt be a sequence of t ≥ 0
elements that is regular on R and on R/J, and write for images in the ring R =
R/(y1, . . . , yt ). If I is licci in R, then J can be linked to a complete intersection
by a sequence of basic Gorenstein double links in R.

Proof. Assume that J is an s-residual intersection of I and write g for the height
of I. Notice that g > 0. Because dimR ≥ s + t ≥ g + t, there exists a complete
intersection R-ideal H of height g such that y1, . . . , yt form a regular sequence on
R/H. Since H is directly linked to itself and in the linkage class of any other com-
plete intersection of height g, it follows that I and H are in the same even linkage
class. Thus, by Theorem 3.4, the ideal J is an s-residual intersection of a licci
ideal I ′′ such that y1, . . . , yt form a regular sequence on R/I ′′. Changing notation,
we write I = I ′′. Now the R-ideal J is again an s-residual intersection of I ac-
cording to Proposition 4.5, and I is still licci by [35, 1.6]. Thus we may replace
R by R, and it then suffices to prove the claim for J in place of J . After another
application of Theorem 3.4 we may further assume that I satisfies Gs.

Thus, for I a licci R-ideal satisfying Gs , we need to show that any s-residual
intersection J of I can be linked to a complete intersection by a sequence of basic
Gorenstein double links. As I is in the even linkage class of a complete inter-
section, it can be linked to a complete intersection by a sequence of, say n, tight
double links according to Remark 2.3. We proceed by induction on n ≥ 0. For
n = 0 the assertion follows from Corollary 4.4. If n > 0 we use Theorem 3.5.
By that theorem, there exist an s-residual intersection K = b : I of I and an
s-minimal tight double link I ∼ I ′ ∼ I ′′ of I along b such that I ′′ satisfies Gs and
is linked to a complete intersection by a sequence of at most n − 1 tight double
links. According to Discussion 2.2(1), the ideal K is also an s-residual intersec-
tion of I ′′, and it therefore has the asserted property by our induction hypothesis.
On the other hand, since I is licci and Gs , [21, 1.11] and [22, 3.1] show that I sat-
isfies AN−

s−1. Thus, by Theorem 4.3, J and K are obtained from each other via a
sequence of basic Gorenstein double links.

5. Examples

In this section we apply Theorem 4.7 to deduce that various classes of ideals are
glicci. In fact, these ideals are strictly glicci and the Gorenstein links leading to
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a complete intersection can be chosen to be basic Gorenstein double links. The
ideals we consider are obtained by specializing or deforming residual intersections
of complete intersections, of perfect ideals of height 2, or of perfect Gorenstein
ideals of height 3. We also study ideals defining associated graded rings of cer-
tain reduction ideals. In what follows, It always denotes the ideal generated by
the t × t minors of a matrix.

Corollary 5.1. Let R be a local Gorenstein ring with infinite residue field ; let
ϕ be a 1 × g matrix and ψ a g × s matrix with entries in R, where g ≥ 1 ≤ s;
and write J = I1(ϕψ) + Ig(ψ). If J is a proper ideal of height at least s, then J

is strictly glicci.

Proof. We may assume that s ≥ g, for otherwise J = I1(ϕψ) is an s-generated
ideal of height at least s and hence even a complete intersection. Write m for the
maximal ideal of R. Let = = (xi) and > = (yij ) be matrices of variables hav-
ing sizes 1 × g and g × s, respectively. Furthermore, write y for the sequence
consisting of the entries of the two matrices = − ϕ and > − ψ. In the localized
polynomial ring R̃ = R[{xi}, {yij}](m,y) consider the ideals Ĩ = I1(=) and J̃ =
I1(=>) + Ig(>). Notice that y forms a regular sequence on the local Gorenstein
ring R̃ and that we may identify R = R̃/(y). With this identification, one has
J = J̃R.

If Ĩ = R̃ then J̃ is generated by s elements. In this case J is a complete in-
tersection. We may therefore assume that Ĩ is a proper ideal and thus a complete
intersection. Now [26, proof of 3.4] shows that J̃ is an s-residual intersection of
the complete intersection Ĩ, and then [22, 3.1] or [26, 5.3] implies that R̃/J̃ is
Cohen–Macaulay with ht J̃ = s. As ht J̃R = ht J ≥ s = ht J̃, we deduce that y
forms a regular sequence on R̃/J̃. By Theorem 4.7 the ideal J̃ is strictly glicci,
hence so is J.

Corollary 5.2. Let R be a local Gorenstein ring with infinite residue field ; let
ϕ be a matrix with entries in R of size m × n, where 1 ≤ m ≤ n; and write J =
Im(ϕ). If J is a proper ideal of height at least n−m+ 1, then J is strictly glicci.

Proof. We may assume that m ≥ 2. Proceeding as in the previous proof, we write
m for the maximal ideal of R, = = (xij ) for an m × n matrix of variables, and y

for the sequence consisting of the entries of =− ϕ. In the ring R̃ = R[{xij}](m,y)

we define the ideal J̃ = Im(=). Once again identifying R = R̃/(y), we obtain
J = J̃R.

Now let > be the m× (m−1) matrix consisting of the first m−1 columns of =,
and write Ĩ = Im−1(>). If Ĩ = R̃, then J̃ is generated by n−m+1 elements and
hence J is a complete intersection. Thus we may assume that Ĩ �= R̃, in which
case this ideal is perfect of height 2 and hence licci according to [1; 2, 11] or [3,
3.2(b)]. Furthermore, [22, proof of 4.1] shows that J̃ is a residual intersection of
Ĩ. Thus J̃ is strictly glicci by Theorem 4.7.

On the other hand, R̃/J̃ is Cohen–Macaulay with ht J̃ = n−m+ 1, as is clas-
sically known by [10]. Since ht J̃R = ht J ≥ n − m + 1 = ht J̃ it now follows,
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again, that y forms a regular sequence on R̃/J̃. Thus J = J̃R is strictly glicci
as well.

Corollary 5.3. Let R be a local Gorenstein ring with infinite residue field, and
let ϕ be an alternating m×m matrix with entries in R having a zero block of size
s × s in its lower right-hand corner, where m ≥ s ≥ 1. Let J be the R-ideal gen-
erated by the Pfaffians of all sizes that involve the first m− s rows and columns of
ϕ. If J is a proper ideal of height at least s, then J is strictly glicci.

Proof. As before, we “deform to the generic case”—replacing R,ϕ, J by their
generic versions R̃,=, J̃ and making the identifications R = R̃/(y) and J = J̃R.

In addition, define t = m − s if m − s is odd and t = m − s + 1 if m − s is
even. Notice that 1 ≤ t ≤ m. Let > be the t × t submatrix appearing in the upper
left-hand corner of =, and write Ĩ for the ideal generated by the (t − 1)× (t − 1)
Pfaffians of this matrix >.

From [29, 7.3(a)] we know that R̃/J̃ is Cohen–Macaulay with ht J̃ = s. Hence
y forms a regular sequence on R̃/J̃. Furthermore, [29, 8.9(b)] gives J̃ = Ã : Ĩ
for some s-generated ideal Ã contained in Ĩ. Thus, if Ĩ = R̃ then J̃ is generated
by s elements, forcing J to be a complete intersection. We may therefore assume
that Ĩ �= R̃, in which case J̃ is an s-residual intersection of Ĩ. Furthermore, Ĩ is
a perfect Gorenstein ideal of height 3, as shown in [4, 2.1], and hence is licci by
[38, proof of Theorem]. Once again appealing to Theorem 4.7, we deduce that J̃
and hence J = J̃R are strictly glicci.

Let R be a Noetherian local ring of dimension d with infinite residue field k, and
let I be a proper R-ideal. An R-ideal H contained in I is called a reduction of I if
I n+1 = HI n for some n ≥ 0 or, equivalently, for n � 0. Any I admits a reduction
generated by d elements—in fact, a reduction with minimal number of generators
dim grI(R) ⊗R k ≤ d.

Corollary 5.4. Let R be a local Gorenstein ring with infinite residue field, I a
licci R-ideal satisfying Gs , and H a reduction of I generated by s elements. Con-
sider the polynomial ring S = R[x1, . . . , xs] with homogeneous maximal ideal M,
and let grH (R) ∼= S/J be a homogeneous presentation of the associated graded
ring of H. Then the SM-ideal JM is strictly glicci.

Proof. Let R[Ht, t−1] be the extended Rees algebra of H, considered as a graded
R-subalgebra of the Laurent polynomial ring R[t, t−1]. Notice that t−1 is a non-
zerodivisor on this algebra and grH (R) ∼= R[Ht, t−1]/(t−1). Write S̃ = S [u] =
R[x1, . . . , xs , u] for the polynomial ring in s+1 variables, where u is given degree
−1, and write M̃ for its maximal ideal (M, u). Mapping u to t−1, one can lift the
given presentation of the associated graded ring to a homogeneous presentation
R[Ht, t−1] ∼= S̃/J̃ of the extended Rees algebra. Now (SM, JM) is a specializa-
tion of (S̃M̃, J̃M̃) in the sense of Definition 2.5(d).

The ideal I, being licci, is strongly Cohen–Macaulay by [21, 2.11]. Further-
more, it has the Gs property by assumption. So according to [19, proof of 5.1],
the ideal I satisfies the depth conditions required in [37, 2.1]. The proof of the
latter result, and in particular the equality [37, 2.2], show that J̃M̃ is a residual
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intersection of the S̃M̃-ideal (I, u). As (I, u) is licci, Theorem 4.7 implies that J̃M̃
is strictly glicci, and hence so is JM.

If, in the corollary, I satisfies Gd+1 for d = dimR, then one can take H to be I
and so J becomes the ideal defining the associated graded ring of I itself. From
[21, 1.11] and [19, 9.1] it is known that SM/JM is Gorenstein in this case, but even
so the glicci property of JM is not obvious; see [7, 7.1].

6. Residual Intersections of Licci Ideals: The Graded Case

We now turn to homogeneous linkage and homogeneous residual intersection,
which include the global versions of these constructions considered in projective
geometry. Our results in the graded context are considerably weaker because we
can no longer use the work of Section 3, which allowed us to “prepare” an ideal I
along its linkage class without changing a given residual intersection. On the other
hand, this preparatory work is not needed for the more structured examples in Sec-
tion 5. Thus one obtains, for instance, a graded version of Corollary 5.2 (about
ideals of maximal minors) that recovers the theorem of Kleppe, Migliore, Miró-
Roig, Nagel, and Peterson [28, 3.6] mentioned in the Introduction. Other results
pertaining to homogeneous Gorenstein linkage are Theorem 4.3 and Corollary 4.4.
In this section we are able to treat the graded case of residual intersections whose
height exceeds the height of I by at most 1.

Theorem 6.1. Let R be a standard graded Gorenstein algebra over an infinite
field, I a homogeneousR-ideal of height g, and J a homogeneous (g+1)-residual
intersection of I. If I can be linked to a complete intersection by a sequence of
homogeneous geometric links, then J can be linked to a complete intersection by
a sequence of homogeneous basic Gorenstein double links.

Proof. We write m for the homogeneous maximal ideal of R. Lemma 4.2, for in-
stance, shows that I can be linked to a complete intersection by a sequence of, say
n, homogeneous tight double links, with all links involved geometric. We prove
the theorem by induction on n ≥ 0. For n = 0 the assertion follows from Corol-
lary 4.4. If n > 0 consider the first double link I ∼ I ′ ∼ I ′′ in the chosen sequence
of tight double links. Let b1, . . . , bg be a homogeneous regular sequence defining
the link I ∼ I ′. Since this link is geometric, there exists a homogeneous element
bg+1 in mI that is regular on R/I ′. Set b = (b1, . . . , bg+1) and K = b : I. Notice
that the idealK is proper and contains (I ′, bg+1), which has height g+1. Therefore
K is a homogeneous (g + 1)-residual intersection of I. Since I admits a geomet-
ric link, it necessarily satisfies Gg+1, and since I is licci, it has the property AN−

g .

Now we can use Theorem 4.3 to deduce that J and K are linked by a sequence of
homogeneous basic Gorenstein double links.

On the other hand, the definition of b gives that I ∼ I ′ ∼ I ′′ is a homogeneous
(g + 1)-minimal tight double link of I along b. Hence, according to Discussion
2.2(1), the ideal K = b : I is also a homogeneous (g + 1)-residual intersection
of I ′′. Thus our induction hypothesis implies that K can be linked to a complete
intersection by a sequence of homogeneous basic Gorenstein double links.
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7. Local Linkage versus Homogeneous Linkage

Algebraic geometry has seen a fruitful interplay between local and global theo-
ries. A good example is the theory of local cohomology, which was modeled after
sheaf cohomology on projective varieties and allows for a local duality theorem,
a cohomological characterization of depth and dimension, and estimates on the
arithmetic rank of ideals, for instance. When looking at linkage theory, we find
a considerable literature about linkage of projective varieties, first defined using
complete intersections and later generalized to Gorenstein linkage. There is also
an extensive literature on linkage in local rings, in particular on properties of licci
ideals. These two branches of study, the global or graded and the local, have pro-
gressed more or less independently. So we thought it timely to make a comparison
of the two theories.

There are two ways to make such a comparison. Assume that two subschemes
V and V ′ of P n

k are linked by a complete intersection subscheme or, equivalently,
that their saturated ideals IV and IV ′ are homogenously linked. First, if P is any
point of the intersection V ∩ V ′, then the ideals IV,P and IV ′,P in the local ring
OP n,P are also linked. Thus a global linkage gives rise to local linkages at each
point of the intersection. Second, one can also consider the cones over V and V ′
in An+1

k and then localize at the origin. The localizations of the ideals IV and IV ′

will be linked in the local ring OAn+1,0 of An+1
k at the origin. In this case, the global

linkage induces a local linkage of the cones at the vertex.
In what follows we assume that k is an algebraically closed field.

Example 7.1. The first comparison already allows for an interesting example.
One knows from Rao’s work that any curve (meaning a 1-dimensional generic
complete intersection subscheme with no associated points) in P3

k is in the same
linkage class as a smooth irreducible curve [33, 2.6 and 2.8]. However, in P 4

k we
can give an example of an integral curve that is not in the linkage class of a smooth
curve. Indeed, take any integral curve C ⊂ P 4

k having a 4-fold ordinary multiple
point with linearly independent tangent directions. This can be achieved, for ex-
ample, by a suitable morphism from P1

k to P 4
k collapsing four distinct points into

one. The curve C cannot be linked by any sequence of links to a smooth curve—in
fact, not even to a curve that is locally a complete intersection—for otherwise C
would have to be licci locally at its singularities. But this is not the case according
to [24, 6.18], for instance.

We now come to our main questions, asking about a converse to the second local–
global comparison.

Question 7.2. Let V and V ′ be subschemes of P n
k , and assume that the local-

izations of the ideals IV and IV ′ belong to the same linkage class in the local ring
OAn+1,0. Does it follow that V and V ′ are in the same linkage class in P n

k ?

Question 7.3. LetV be a subscheme of P n
k , and suppose that the localization of

the ideal IV is licci in OAn+1,0. Does this imply that V is licci in P n
k ?
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Clearly Question 7.3 is a special case of Question 7.2. We will give a negative
answer to Question 7.2, even in codimension 2. Our counterexample is based on
a well-known theorem by Rao and a local analogue thereof. On the other hand,
Question 7.3 has an affirmative answer in codimension 2, where the licci property
is equivalent to arithmetic Cohen–Macaulayness; see [32, 3.2]. But this question
remains open in codimension ≥ 3. Our method of answering Question 7.2 does
not apply here because Rao’s theorem is not available beyond codimension 2.

We begin by stating a local version of Rao’s theorem. We only sketch the proof,
since the result is essentially known.

Theorem 7.4. Let (R, m) be a regular local ring of dimension 4 containing an
infinite field, and let I and K be two unmixed R-ideals of height 2. Then I and
K are in the same even linkage class if and only if the local cohomology modules
H1

m(R/I ) and H1
m(R/K) are R-isomorphic, and I and K are in the same odd

linkage class if and only if the R-modules H1
m(R/I ) and H1

m(R/K) are Matlis
dual to each other.

Proof. To prove the forward implication it suffices to show that, if I and K are di-
rectly linked, then H1

m(R/I ) and H1
m(R/K) are Matlis dual to each other. But this

follows from [34, proof of 3.3], for instance. Alternatively, let a, b be a regular se-
quence defining the link I ∼ K and let denote images in the ring R = R/(a).

Now I = (b) :
R
K ∼= Hom

R
(K ,R). But then [15, 1.13] implies that H1

m(R/I )
∼=

H 2
m
(I ) and H1

m(R/K) ∼= H 2
m
(K) are Matlis dual to each other as modules over R

and hence over R.
To show the reverse implication, we need only prove that if H1

m(R/I )
∼=

H1
m(R/K) then I and K are in the same even linkage class. Let E and G be

first syzygy modules of I and K, respectively. We have H 3
m(E) ∼= H 3

m(G). Now
it follows as in [17, proof of 4.2] thatE andG are stably isomorphic. Indeed, com-
pleting (using local duality) and then descending to R, one sees that Ext1R(E,R) ∼=
Ext1R(G,R). On the other hand, since E and G have projective dimension ≤ 1,
it follows that HomR(E,R) and HomR(G,R) are second syzygy modules of
Ext1R(E,R) ∼= Ext1R(G,R). Therefore HomR(E,R) and HomR(G,R) are stably
isomorphic, and hence the modules E and G are because they are reflexive.

Finally, since E and G are stably isomorphic, it follows (as shown in [31, 6.8])
that I and K are in the same even linkage class.

We are now ready to give our counterexample to Question 7.2, two suitable curves
in P3

k . The example is based on Rao’s theorem, which states that two such curves
are in the same linkage class if and only if their Rao modules are isomorphic up
to shifts and k-duals [33, 2.3 and 2.8]. Here the Rao module of a curve C ⊂ P n

k is
the graded module

⊕
i H

1(P n
k , IC(i)) regarded as a module over the polynomial

ring k[x0, . . . , xn].

Example 7.5. Consider the two graded modulesM = k⊕k andM ′ = k⊕k(−1)
over the polynomial ring S = k[x0, . . . , x3]. By [33, 2.6] there exist smooth irre-
ducible curves C and C ′ in P3

k whose Rao modules are suitable shifts of M and M ′,
respectively. These two Rao modules cannot be isomorphic as graded S-modules,
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even after shifting or dualizing into k. Thus [33, 2.3] shows that C and C ′ belong
to different linkage classes in P3

k .

On the other hand, writing I and I ′ for the defining ideals of the cones over C
and C ′, localized at the vertex, we obtain two unmixed ideals of height 2 in the
regular local ring R = OA4,0 = k[x0, . . . , x3](x0,...,x3). One has isomorphisms
H1

m(R/I )
∼= k⊕k ∼= H1

m(R/I
′) as modules over the local ring (R, m). Thus The-

orem 7.4 implies that indeed I and I ′ are in the same (even) linkage class in R.
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