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Shunsuke Takagi , & Kei- ichi Watanabe

Dedicated to Professor Mel Hochster
on the occasion of his sixty-fifth birthday

Introduction

Let R be a Noetherian ring of positive characteristic p. For every ideal a in R,
and for every ideal J whose radical contains a, one can define asymptotic invari-
ants that measure the containment of the powers of a in the Frobenius powers of
J. These invariants were introduced in the case of a regular local F-finite ring in
[MTW], where it was shown that they coincide with the jumping exponents for
the generalized test ideals of Hara and Yoshida [HaY]. In this paper we work in a
general setting and show that the F-thresholds still capture interesting and subtle
information. In particular, we relate them to tight closure and integral closure and
also to multiplicities.

Given a and J as just described, we define for every positive integer e

νJa(p
e) := max{r | ar �⊆ J [pe]},

where J [q] is the ideal generated by the pe-powers of the elements of J. We put

cJ+(a) := lim sup
e→∞

νJa(p
e)

pe
and cJ−(a) := lim inf

e→∞
νJa(p

e)

pe
,

and if these two limits coincide then we denote their common value by cJ(a) and
call it the F-threshold of a with respect to J.

Our first application of this notion is to the description of the tight closure and
of the integral closure of parameter ideals. Suppose that (R, m) is a d-dimensional
Noetherian local ring of positive characteristic and that J is an ideal inR generated
by a full system of parameters. We show that, under mild conditions, for every
ideal I ⊇ J we have I ⊆ J ∗ if and only if cI+(J ) = d (and in this case cI−(J ) =
d, too). We similarly show that, under suitable mild hypotheses, if I ⊇ J, then
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I ⊆ J̄ if and only if cJ+(I ) = d. For the precise statements, see Corollary 3.2 and
Theorem 3.3.

As we have mentioned, for R regular and F-finite it was shown in [MTW] that
the F-thresholds of an ideal a coincide with the jumping exponents for the gen-
eralized test ideals of [HaY]. In order to recover such a result in a more general
setting, we develop a notion of F-threshold for the ideal a corresponding to a sub-
module N of a moduleM and such that anN = 0 for some n. We then show that,
under suitable hypotheses on a local ring R, one can again recover the jumping
exponents for the generalized test ideals of an ideal a in R from the F-thresholds
of a with respect to pairs (E,N), where N is a submodule of the injective hull E
of the residue field (see Corollary 4.4).

We study the connection between F-thresholds and multiplicity and then formu-
late the following conjecture: If (R, m) is a d-dimensional Noetherian local ring
of characteristic p > 0 and if a and J are m-primary ideals in R, with J generated
by a system of parameters, then

e(a) ≥ dd

cJ−(a)d
e(J ).

The case J = m (whenR is in fact regular) was proved in [TW]. We mention that,
in this case, cm(a) is related via reduction modulo p to a fundamental invariant
in birational geometry, the log canonical threshold lct(a) (see [TW] for the pre-
cise relation between these two invariants). The corresponding inequality between
the multiplicity and the log canonical threshold of a was proved in [dFEM2] and
plays a key role in proving that, for small values of n, no smooth hypersurface of
degree n in P n is rational (see [Co; dFEM1]).

We prove our conjecture when both a and J are generated by homogeneous
systems of parameters in a graded Cohen–Macaulay k-algebra (cf. Corollary 5.9).
Moreover, we prove it also when R is regular and J = (x

a1
1 , . . . , xann ) for a regu-

lar system of parameters x1, . . . , xn. The proof of this latter case follows the ideas
in [TW] and [dFEM2], reducing to the case of a monomial ideal a and then using
the explicit interpretation of the invariants involved in terms of the Newton poly-
hedron of a.

On the other hand, the proof of the homogeneous case is based on new ideas that
we expect to be useful also in attacking the general case of the conjecture. In fact,
we prove the following stronger statement: Suppose that a and J are ideals gener-
ated by homogeneous systems of parameters in a d-dimensional graded Cohen–
Macaulay k-algebra, where k is a field of arbitrary characteristic; if aN ⊆ J for
some N, then

e(a) ≥
(

d

d +N − 1

)d
e(J ).

The paper is structured as follows. In Section 1, we recall some basic notions
of tight closure theory and review the definition of generalized test ideals from
[HaY]. In Section 2 we introduce the F-thresholds and discuss some basic proper-
ties. Section 3 is devoted to the connections with tight closure and integral closure.
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We introduce the F-thresholds with respect to pairs of modules in Section 4 and
relate them to the jumping exponents for the generalized test ideals. In Section 5,
we discuss inequalities involving F-thresholds and multiplicities; in particular, we
state our conjecture and prove the aforementioned special cases.

1. Preliminaries

In this section we review some definitions and notation that will be used through-
out the paper. All rings are Noetherian commutative rings with unity. For a ring
R, we denote by R◦ the set of elements of R that are not contained in any mini-
mal prime ideal. Elements x1, . . . , xr in R are called parameters if they generate
an ideal of height r. The integral closure of an ideal a is denoted by ā. The order
of a nonzero element f in a Noetherian local ring (R, m) is the largest r such that
f ∈mr. For a real number u, we denote by �u� the largest integer ≤ u and by �u�
the smallest integer ≥ u.

Let R be a ring of characteristic p > 0, and let F :R → R denote the Frobe-
nius map that sends x ∈R to xp ∈R. The ring R viewed as an R-module via the
e-times iterated Frobenius map F e:R → R is denoted by eR. We say that R is
F-finite if 1R is a finitely generated R-module. We also say that R is F-pure if the
Frobenius map is pure; that is, FM = 1M ⊗F :M = M⊗R R → M⊗R 1R is injec-
tive for any R-moduleM. For every ideal I in R and for every q = pe, we denote
by I [q] the ideal generated by the qth powers of all elements of I.

If M is an R-module then we put F e(M) := eR ⊗R M. Hence, in F e(M) we
have u⊗ (ay) = uape ⊗ y for every a ∈R. Note that the e-times iterated Frobe-
nius map F eM :M → F e(M) is an R-linear map. The image of z∈M via this map
is denoted by zq := F eM(z). IfN is a submodule ofM, then we denote byN [q]

M (or
simply by N [q]) the image of the canonical map F e(N ) → F e(M) (note that, if
N = I is a submodule of M = R, then this is consistent with our previous nota-
tion for I [q]).

First, we recall the definitions of classical tight closure and related notions. Our
references for classical tight closure theory and for F-rational rings are [HHu]
and[FW], respectively; see also the book [HuH].

Definition 1.1. Let I be an ideal in a ring R of characteristic p > 0.

(i) The Frobenius closure IF of I is defined as the ideal of R consisting of all
elements x ∈ R such that xq ∈ I [q] for some q = pe. If R is F-pure, then
J = JF for all ideals J ⊆ R. The tight closure I ∗ of I is defined to be the
ideal of R consisting of all elements x ∈ R for which there exists a c ∈ R◦
such that cxq ∈ I [q] for all large q = pe.

(ii) We say that c ∈ R◦ is a test element if, for all ideals J ⊆ R and all x ∈ J ∗,
we have cxq ∈ I [q] for all q = pe ≥ 1. Every excellent and reduced ring R
has a test element.

(iii) If N ⊆ M are R-modules, then the tight closure N ∗
M of N in M is defined

to be the submodule of M consisting of all elements z ∈M for which there
exists a c ∈ R◦ such that czq ∈ N [q]

M for all large q = pe. The test ideal
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τ(R) of R is defined to be τ(R) = ⋂
M AnnR(0∗

M), where M runs over all
finitely generated R-modules. If M = R/I, then AnnR(0∗

M) = (I : I ∗). In
other words, τ(R)J ∗ ⊆ J for all ideals J ⊆ R. We say that R is F-regular
if τ(RP) = RP for all prime ideals P of R.

(iv) R is called F-rational if J ∗ = J for every ideal J ⊆ R generated by param-
eters. If R is an excellent equidimensional local ring, then R is F-rational if
and only if I = I ∗ for some ideal I generated by a full system of parameters
for R.

We now recall the definition of at -tight closure and of the generalized test ideal
τ(at ). The reader is referred to [HaY] for details.

Definition 1.2. Let a be a fixed ideal in a reduced ring R of characteristic p >
0 such that a ∩ R◦ �= ∅, and let I be an arbitrary ideal in R.

(i) Let N ⊆ M be R-modules. Given a rational number t ≥ 0, the at -tight clo-
sure N ∗at

M of N in M is defined to be the submodule of M consisting of all
elements z∈M for which there exists a c ∈R◦ such that czqa�tq� ⊆ N [q]

M for
all large q = pe.

(ii) The generalized test ideal τ(at ) is defined to be τ(at ) = ⋂
M AnnR(0∗at

M ),
where M runs through all finitely generated R-modules. If a = R, then the
generalized test ideal τ(at ) is nothing but the test ideal τ(R).

(iii) Assume that R is an F-regular ring and that J is an ideal containing a in its
radical. The F-jumping exponent of a with respect to J is defined by

ξJ(a) = sup{c ∈R≥0 | τ(ac) �⊆ J }.
If (R, m) is local, then we call the smallest F-jumping exponent ξm(a) the
F-pure threshold of a and denote it by fpt(a).

In characteristic 0, one defines multiplier ideals and their jumping exponents
using resolution of singularities (see [La, Chap. 9]). It is known that, for a given
ideal in characteristic 0 and for a given t, the reduction modulo p � 0 of the mul-
tiplier ideal J (at ) coincides with the generalized test ideal τ(atp) of the reduction
ap of a. Therefore, the F-jumping exponent ξJ(a) is a characteristic p analogue
of jumping exponent of multiplier ideals. See [BMS2; HaMo; HaY; MTW; TW]
for further discussions.

2. Basic Properties of F-Thresholds

The F-thresholds are invariants of singularities of a given ideal a in positive charac-
teristic that are obtained by comparing the powers of a with the Frobenius powers
of other ideals. They were introduced and studied in [MTW] for the case of an
ambient regular ring. In this section, we recall the definition of F-thresholds and
study their basic properties when the ring is not necessarily regular.

Let R be a Noetherian ring of dimension d and of characteristic p > 0. Let a
be a fixed proper ideal of R such that a ∩ R◦ �= ∅. To each ideal J of R such that
a ⊆ √

J , we associate an F-threshold as follows. For every q = pe, let
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νJa(q) := max{r ∈N | ar �⊆ J [q]}.
Since a ⊆ √

J , this is a nonnegative integer (if a ⊆ J [q], then we put νJa(q) = 0).
We put

cJ+(a) = lim sup
q→∞

νJa(q)

q
, cJ−(a) = lim inf

q→∞
νJa(q)

q
.

When cJ+(a) = cJ−(a), we call this limit the F-threshold of the pair (R, a) (or sim-
ply of a) with respect to J, and we denote it by cJ(a).

Remarks 2.1. (a) (cf. [MTW, Rem. 1.2]) One has

0 ≤ cJ−(a) ≤ cJ+(a) <∞.
In fact, if a is generated by l elements and if aN ⊆ J, then

aN(l(p
e−1)+1) ⊆ (a[pe])N = (aN)[pe] ⊆ J [pe].

Therefore, νJa(p
e) ≤ N(l(pe − 1) + 1) − 1. Dividing by pe and taking the limit

gives cJ+(a) ≤ Nl.
(b) Question 1.4 in [MTW] asked whether the F-threshold cJ(a) is a rational

number (when it exists). A positive answer was given in [BMS1; BMS2] for a reg-
ular F-finite ring that is essentially of finite type over a field as well as for every
regular F-finite ring when the ideal a is principal. For a proof in the case of a prin-
cipal ideal in a complete regular ring (that is not necessarily F-finite), see [KLZ].
However, this question remains open in general.

Recall that a ring extension R ↪→ S is cyclic pure if, for every ideal I in R, we
have IS ∩ R = I.
Proposition 2.2 (cf. [MTW, Prop. 1.7]). Let a and J be ideals as described
previously.

(i) If I ⊇ J then cI±(a) ≤ cJ±(a).
(ii) If b ⊆ a then cJ±(b) ≤ cJ±(a); moreover, if a ⊆ b̄ then cJ±(b) = cJ±(a).

(iii) cJ±(ar ) = 1
r

cJ±(a) for every integer r ≥ 1.

(iv) cJ
[q]

± (a) = q cJ±(a) for every q = pe.
(v) If R ↪→ S is a cyclic pure extension, then

cJ±(a) = cJS± (aS).

(vi) Let R ↪→ S be an integral extension. If the conductor ideal c(S/R) :=
AnnR(S/R) contains the ideal a in its radical, then

cJ±(a) = cJS± (aS).

(vii) cJ+(a) ≤ c (resp. cJ−(a) ≥ c) if and only if, for every power q0 of p, we have
a�cq�+q/q0 ⊆ J [q] (resp. a�cq�−q/q0 �⊆ J [q]) for all q = pe � q0.

Proof. For (i)–(iv), see [MTW] (the proofs therein do not use the fact that R is
regular). If R ↪→ S is cyclic pure, then νJSaS (q) = νJa(q) for every q, and this
yields (v).
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For (vi), we fix a positive integer m such that am ⊆ c(S/R). By the definition
of the conductor ideal c(S/R), if (aS)n ⊆ (JS)[q] for some n ∈ N and some q =
pe then am+n ⊆ J [q]. This implies that

νJSaS (q) ≤ νJa(q) ≤ νJSaS (q)+m,

and these inequalities imply (vi).
In order to prove (vii), suppose first that cJ+(a) ≤ c. It follows from the defini-

tion of cJ+(a) that, for every power q0 of p, we can find a q1 such that νJa(q)/q <
c + 1/q0 for all q = pe ≥ q1. Thus, νJa(q) < �cq� + q/q0; that is,

a�cq�+q/q0 ⊆ J [q] (1)

for all q = pe ≥ q1. Conversely, suppose that (1) holds for every q ≥ q1. This
implies that νJa(q) ≤ �cq� + q/q0 − 1. Dividing by q and taking the limit gives
cJ+(a) ≤ c+1/q0. If this holds for every q0, we conclude that cJ+(a) ≤ c. The as-
sertion regarding cJ−(a) follows from a similar argument.

We now give a variant of the definition of F-threshold. If a and J are ideals in R
such that a ∩ R◦ �= ∅ and a ⊆ √

J , then we put

ν̃ Ja(q) := max{r ∈N | ar �⊆ (J [q])F }.
It follows from the definition of Frobenius closure that, if u /∈ (J [q])F, then up /∈
(J [pq])F . This means that

ν̃ Ja(pq)

pq
≥ ν̃ Ja(q)

q

for all q = pe. Therefore,

lim
q→∞

ν̃ Ja(q)

q
= sup
q=pe

ν̃ Ja(q)

q
.

We denote this limit by c̃J(a). Observe that c̃J(a) ≤ cJ−(a).
The F-threshold cJ(a) exists in many cases.

Lemma 2.3. Let a and J be as before.

(i) If J [q] = (J [q])F for all large q = pe, then the F-threshold cJ(a) exists; that
is, cJ+(a) = cJ−(a). In particular, if R is F-pure, then cJ(a) exists.

(ii) If the test ideal τ(R) contains a in its radical, then the F-threshold cJ(a)
exists and cJ(a) = cJ

∗
(a).

(iii) If a is principal, then cJ(a) exists.

Proof. Part (i) follows from the previous discussion, since in that case we have
ν̃ Ja(q) = νJa(q) for all q � 0.

In order to prove (ii), we take an integer m ≥ 1 such that am ⊆ τ(R). Then, by
the definition of τ(R), one has a2m((J ∗)[q])F ⊆ am(J ∗)[q] ⊆ J [q] for all q = pe.
This means that

ν̃ J
∗

a (q) ≤ νJ
∗

a (q) ≤ νJa(q) ≤ ν̃ J
∗

a (q)+ 2m.
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Because c̃J
∗
(a) always exists, cJ(a) and cJ

∗
(a) also exist and these three limits are

all equal.
For part (iii), note that if a is principal and ar ⊆ J [q], then apr ⊆ J [pq]. Hence,

we have
νJa(pq)+ 1

pq
≤ νJa(q)+ 1

q

for every q = pe. This implies that

lim
q→∞

νJa(q)

q
= lim
q→∞

νJa(q)+ 1

q
= inf
q=pe

νJa(q)

q
.

As shown in [MTW, Prop. 2.7], the F-threshold cJ(a) coincides with the F-jumping
exponent ξJ(a)when the ring is F-finite and regular. The statement in [MTW] re-
quires the ring to be local; however, the proof easily generalizes to the nonlocal
case (see [BMS1]). More precisely, we have the following statement.

Proposition 2.4. Let R be an F-finite regular ring of characteristic p > 0. If a

is a nonzero ideal contained in the radical of J, then τ(acJ(a)) ⊆ J. Going the other
way, if α ∈R+ , then a is contained in the radical of τ(aα) and cτ(a

α)(a) ≤ α. In
particular, the F-threshold cJ(a) coincides with the F-jumping exponent ξJ(a).

Remark 2.5. The F-threshold cJ(a) sometimes coincides with the F-jumping
exponent ξJ(a) even when R is singular. For example, let R = k[[X,Y,Z,W ]]/
(XY − ZW ), and let m be the maximal ideal of R. Then the F-threshold cm(m)
of m with respect to m and the F-pure threshold (i.e., the smallest F-jumping ex-
ponent) fpt(m) of m are both equal to 2.

However, cJ(a) does not agree with ξJ(a) in general. For example, let R =
k[[X,Y,Z]]/(XY − Z2) be a rational double point of type A1 over a field k of
characteristic p > 2, and let m be the maximal ideal of R. Then fpt(m) = 1 (see
[TW, Ex. 2.5]) whereas cm(m) = 3/2.

Remark 2.6. Suppose that m is a maximal ideal in any Noetherian ring R and
that J is an m-primary ideal. For every q = pe we have J [q]Rm∩R = J [q], so for
every ideal a ⊆ m we have νJa(q) = νJRm

aRm
(q). In particular, cJ±(a) = cJRm± (aRm).

Example 2.7. (i) Let R be a Noetherian local ring of characteristic p > 0, and
let J = (x1, . . . , xd), where the sequence x1, . . . , xd forms a full system of param-
eters in R. It follows from the monomial conjecture (which is a theorem in this
setting; see [H, Prop. 3]) that (x1 · · · xd)q−1 /∈ J [q] for every q. Hence νJJ (q) ≥
d(q − 1) for every q and therefore cJ−(J ) ≥ d. On the other hand, cJ+(J ) ≤ d by
Remark 2.1(a), and we conclude that cJ(J ) = d.

(ii) Let R = k[x1, . . . , xd ] be a d-dimensional polynomial ring over a field k of
characteristic p > 0, and let a, J ⊆ R be zero-dimensional ideals generated by
monomials. In order to compute cJ(a), we may assume that k is perfect; hence we
may use Proposition 2.4.
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Let P(a) ⊆ Rd≥0 denote the Newton polyhedron of a. That is, P(a) is the con-
vex hull of those u = (u1, . . . , ud) ∈Nd such that xu = xu1

1 · · · xudd ∈ a. It follows
from [HaY, Thm. 6.10] that

τ(ac) = (xu | u+ e ∈ Int(c · Pa)),

where e = (1,1, . . . ,1). We deduce that, if λ(u) is defined by the condition u+ e ∈
∂(λ(u) · P(a)), then

cJ(a) = max{λ(u) | u∈Nd, xu /∈ J }
(note that, since J is zero-dimensional, this maximum is over a finite set). In
particular, we see that if J = (x

a1
1 , . . . , xadd ) then cJ(a) is characterized by a =

(a1, . . . , ad)∈ ∂(cJ(a) · P(a)).
(iii) Let (R, m) be a d-dimensional regular local ring of characteristic p > 0,

and let J ⊂ R be an m-primary ideal. We claim that

cJ(m) = max{r ∈Z≥0 | mr �⊆ J } + d. (2)

In particular, cJ(m) is an integer ≥ d.
Indeed, if u /∈ J then (J : u) ⊆ m; hence J [q] : uq = (J : u)[q] ⊆ m[q] and

therefore uqmd(q−1) �⊆ J [q]. If u∈mr, then νJm(q) ≥ rq + d(q − 1). Dividing by
q and passing to the limit yields cJ(m) ≥ r + d, so we have “≥” in (2). For the
reverse inequality, note that if mr+1 ⊆ J then

m(r+d )q ⊆ (mr+1)[q] ⊆ J [q]

for every q = pe. Hence νJm(q) ≤ (r + d)q − 1 for all q, and we obtain cJ(m) ≤
r + d.

3. Connections with Tight Closure and Integral Closure

Theorem 3.1. Let (R, m) be an excellent analytically irreducible Noetherian
local domain of positive characteristic p. Set d = dim(R), let J = (x1, . . . , xd)
be an ideal generated by a full system of parameters in R, and let I ⊇ J be an-
other ideal. Then I is not contained in the tight closure J ∗ of J if and only if there
exists a q0 = pe0 such that xq0−1∈ I [q0 ], where x = x1x2 · · · xd.
Proof. After passing to completion, we may assume thatR is a complete local do-
main. Suppose first that xq0−1∈ I [q0 ] and, by way of contradiction, suppose also
that I ⊆ J ∗. Let c ∈R◦ be a test element. Then, for all q = pe, one has cxq(q0−1)∈
cI [qq0 ] ⊂ J [qq0 ] and so c ∈ J [qq0 ] : xq(q0−1) ⊆ (J [q])∗ by colon-capturing [HHu,
Thm. 7.15a]. Therefore, c2 lies in

⋂
q=pe J [q] = (0)—a contradiction.

Conversely, suppose that I � J ∗, and choose an element f ∈ I \J ∗. We choose
a coefficient field k and let B = k[[x1, . . . , xd , f ]] be the complete subring of R
generated by x1, . . . , xd , f. Note that B is a hypersurface singularity and hence is
Gorenstein. Furthermore, by persistence of tight closure [HHu, Lemma 4.11a],
f /∈ ((x1, . . . , xd)B)∗. If we prove that there exists a q0 = pe0 such that xq0−1 ∈
((x1, . . . , xd , f )B)[q0 ], then clearly xq0−1 is also in I [q0 ]. Hence we can reduce
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to the case in which R is Gorenstein. Since I �⊆ J ∗, it follows from a result
of Aberbach [A] that J [q] : I [q] ⊆ mn(q), where n(q) is a positive integer with
limq→∞ n(q) = ∞. In particular, we can find q0 = pe0 such that J [q0 ] : I [q0 ] ⊆
J. As a result, xq0−1 ∈ J [q0 ] : J ⊆ J [q0 ] : (J [q0 ] : I [q0 ]) = I [q0 ], where the last
equality follows from the fact that R is Gorenstein.

Corollary 3.2. Let (R, m) be a d-dimensional excellent analytically irreduc-
ible Noetherian local domain of characteristic p > 0, and let J = (x1, . . . , xd)
be an ideal generated by a full system of parameters in R. Given an ideal I ⊇
J, we have I ⊆ J ∗ if and only if cI+(J ) = d (and in this case cI(J ) exists). In
particular, R is F-rational if and only if cI+(J ) < d for every ideal I � J.

Proof. Note first that, by Remark 2.1(a), for every I ⊇ J we have cJ+(I ) ≤ d.

Suppose now that I ⊆ J ∗. It follows from Theorem 3.1 that J d(q−1) �⊆ I [q] for
every q = pe. This gives νIJ(q) ≥ d(q − 1) for all q, and therefore cI−(J ) ≥ d.

We conclude that, in this case, cI+(J ) = cI−(J ) = d.
Conversely, suppose that I �⊆ J ∗. By Theorem 3.1, we can find a q0 = pe0

such that
b := (x q0

1 , . . . , xq0
d , (x1 · · · xd)q0−1) ⊆ I [q0 ].

If (x1, . . . , xd)r �⊆ b[q], then

r ≤ (qq0 − 1)(d − 1)+ q(q0 − 1)− 1 = qq0d − q − d.
Hence νb

J (q) ≤ qq0d − q − d for every q, which implies cb(J ) ≤ q0d − 1.
Because q0 is a fixed power of p, we deduce that

cI+(J ) =
1

q0
cI

[q0 ]

+ (J ) ≤ 1

q0
cb(J ) ≤ d − 1

q0
< d.

Theorem 3.3. Let (R, m) be a d-dimensional formally equidimensional Noe-
therian local ring of characteristic p > 0. If I and J are ideals in R, with J
generated by a full system of parameters, then the following statements hold.

(i) cJ+(I ) ≤ d if and only if I ⊆ J̄.
(ii) If, in addition, J ⊆ I, then I ⊆ J̄ if and only if cJ+(I ) = d. Moreover, if

these equivalent conditions hold then cJ(I ) = d.
Proof. Observe that, by Example 2.7(i), if J ⊆ I then cJ−(I ) ≥ cJ−(J ) = cJ(J ) =
d. Hence both assertions in Theorem 3.3(ii) follow from the assertion in (i).

One implication in (i) is easy: if I ⊆ J̄ then, by Proposition 2.2(ii), cJ+(I ) ≤
cJ+(J̄ ) = cJ(J ) = d. Conversely, suppose that cJ+(I ) ≤ d. In order to show that
I ⊆ J̄, we may assume that R is complete and reduced. Indeed, first note that

the inverse image of JR̂ red in R is contained in J̄ ; hence it is enough to show that

IR̂ red ⊆ JR̂ red. Since JR̂ red is again generated by a full system of parameters and
since we (trivially) have

cJR̂ red(IR̂ red) ≤ cJ(I ) ≤ d,

we may replace R by R̂ red.
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Since R is complete and reduced, we can find a test element c for R. By Propo-
sition 2.2(vii), the assumption cJ+(I ) ≤ d implies that, for all q0 = pe0 and for
all large q = pe,

I q(d+(1/q0)) ⊆ J [q].

Hence I qJ q(d−1+(1/q0)) ⊆ J [q] and thus

I q ⊆ J [q] : J q(d−1+(1/q0)) ⊆ (J q−d+1−(q/q0))∗,

where the last containment follows from the colon-capturing property of tight
closure [HHu, Thm. 7.15a]. By the Artin–Rees lemma we then obtain cI q ⊆
cR ∩ J q−d+1−(q/q0) ⊆ cJ q−d+1−(q/q0)−l for some fixed integer l that is indepen-
dent of q. Since c is a nonzero divisor in R, it follows that

I q ⊆ J q−d+1−(q/q0)−l. (3)

If ν is a discrete valuation with center in m, then we may apply ν to (3) and so
deduce qν(I ) ≥ (q−d+1−q/q0 − l )ν(J ). Dividing by q and letting q go to in-
finity yields ν(I ) ≥ (1−1/q0)ν(J ). We now let q0 go to infinity to obtain ν(I ) ≥
ν(J ). Since this holds for every ν, we have I ⊆ J̄.
Example 3.4. Let (R, m) be a regular local ring of characteristic p > 0 with
dim(R) = d, and let J be an ideal of R generated by a full system of parame-
ters. We define a to be the maximal integer n such that mn �⊆ J. Then ms ⊆ J̄ if
and only if s ≥ a

d
+ 1 because cJ(ms ) = a+d

s
by Example 2.7(iii) and Proposi-

tion 2.2(iii).

Questions 3.5. Does this statement hold in a more general setting? Can we re-
place “regular” by “Cohen–Macaulay”?

4. F-Thresholds of Modules

In this section we give a generalization of the notion of F-thresholds in which we
replace the auxiliary ideal in the definition by a submodule of a given module. We
have seen in Proposition 2.4 that, in a regular F-finite ring, the F-thresholds of an
ideal a coincide with the F-jumping exponents of a. This might fail in nonregular
rings; in fact, it is often the case that fpt(a) < cJ(a) for every ideal J. However,
as Corollary 4.4 shows, we can remedy this situation if we consider the following
more general notion of F-thresholds.

Suppose now that a is a fixed ideal in a Noetherian ring R of characteristic p >
0. LetM be an R-module, and let N ⊆ M be a submodule such that anN = 0 for
some n > 0.

• For q = pe, let νNM,a(q) = max{r ∈ N | arN
[q]
M �= 0} (we put νNM,a(q) = 0 if

aN
[q]
M = 0).

• We define

cNM,+(a) = lim sup
q→∞

νNM,a(q)

q
and cNM,−(a) = lim inf

q→∞
νNM,a(q)

q
.
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When cNM,+(a) = cNM,−(a), we call this limit the F-threshold of a with respect
to (N,M) and denote it by cNM(a).

Remark 4.1. If J is an ideal of R with a ⊆ √
J , then clearly νA/Ja,A/J(q) = νJa(q)

and so cA/JA/J,±(a) = cJ±(a). Thus the notion of F-threshold with respect to modules
extends our previous definition of F-thresholds with respect to ideals.

Lemma 4.2. Let R, a,M, and N be as defined previously.

(i) If b ⊆ a is an ideal, then cNM,±(b) ≤ cNM,±(a).
(ii) If N ′ ⊆ N, then cN

′
M,±(a) ≤ cNM,±(a).

(iii) If φ:M → M ′ is a homomorphism of R-modules and if N ′ = φ(N ), then
cN

′
M ′,±(a) ≤ cNM,±(a). If R is regular and φ is injective, then cN

′
M ′,±(a) =

cNM,±(a).
(iv) If R is F-pure, then νNM,a(q)/q ≤ νNM,a(qq

′)/qq ′ for every q, q ′. Hence, in
this case the limit cNM(a) exists and is equal to supq(νNM,a(q)/q).

Proof. The assertions in (i) and (ii) follow by definition. For (iii), note that φ in-
duces a surjection N [q] → N ′ [q], which gives the first statement. Moreover, if R
is regular and φ is injective, then the flatness of the Frobenius morphism implies
N [q] # N ′ [q], and we have equality.

Suppose now that R is F-pure; hence M ⊗R eR is a submodule of M ⊗R ee ′R.
If q = pe and q ′ = pe ′ and if arN [q] �= 0, then aq

′rN [qq ′ ] ⊇ (ar )[q ′ ]N [qq ′ ] �= 0.
Therefore, νNM,a(qq

′) ≥ q ′ · νNM,a(q).

Our next proposition gives an analogue of Proposition 2.4 for the nonregular case.

Proposition 4.3. Let a be a proper nonzero ideal in a local normal Q-Gorenstein
ring (R, m). Suppose that R is F-finite and F-pure and that the test ideal τ(R) is
m-primary. We denote by E the injective hull of R/m.

(i) If N is a submodule of E such that a ⊆ √
AnnR(N ) and if α = cNE(a), then

N ⊆ (0)∗aα

E .

(ii) If α is a nonnegative real number and if N = (0)∗aα

E , then cNE(a) ≤ α.
(iii) There is an order-reversing bijection between the F-thresholds of a with re-

spect to the submodules of E and the ideals of the form τ(aα).

Proof. For (i), observe that since R is F-pure, we have νNE(q) ≤ αq for every q =
pe. This implies

a�αq�+1N
[q]
E = 0;

hence, for every nonzero d ∈ a, we have da�αq�N [q]
E = 0 for all q. By definition,

N ⊆ (0)∗aα

E .

Suppose now that α ≥ 0 and that N = (0)∗aα

E . By hypothesis, we can find an
m such that am ⊆ τ(R). It follows from [HaT, Cor. 2.4] that every element in
τ(R) is an aα-test element. Therefore, am+�αq�N [q]

E = 0 and so νNE,a(q) < m+αq
for all q � 0. Dividing by q and then taking the limit as q goes to infinity yields
cNE(a) ≤ α.
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We assume that R is F-finite, normal, and Q-Gorenstein; hence for every non-
negative t we have τ(at ) = AnnR(0∗at

E ). Note also that, by [HaT, Prop. 3.2],
taking the generalized test ideal commutes with completion. This shows that the
set of ideals of the form τ(aα) is in bijection with the set of submodules of E of
the form (0)∗aα

E . Hence in order to prove (iii) it is enough to show that the map

{(0)∗aα

E | α ≥ 0} → {
cNE(a) | N ⊆ E, a ⊆

√
AnnR(N )

}
taking N to cNE(a) is bijective, with the inverse map taking α to (0)∗aα

E .

Suppose first that N = (0)∗aα

E and let β = cNE(a). It follows from (ii) that β ≤
α, hence (0)∗aβ

E ⊆ N. On the other hand, (i) gives N ⊆ (0)∗aβ

E and so we have
equality.

Let us now start with α = cNE(a) and let N ′ = (0)∗aα

E . We deduce from (i) that
N ⊆ N ′, so cN

′
E (a) ≥ α. Since (ii) implies cN

′
E (a) ≤ α it follows that α = cN

′
E (a),

which completes the proof of (iii).

Corollary 4.4. Let a be a proper nonzero ideal in a local normal Q-Gorenstein
ring (R, m). If R is F-finite and F-regular then, for every ideal J in R,

ξJ(a) = cNE(a),

whereE is the injective hull of R/m andN = AnnE(J ). In particular, the F-pure
threshold fpt(a) is equal to cZE(a), where Z = (0 :E m) is the socle of E.

Proof. Let β := cNE(a). Given α ≥ 0, Matlis duality implies that τ(aα) ⊆ J if
and only if N ⊆ (0)∗aα

E . If this holds, then part (ii) of the proposition gives

α ≥ c
(0)∗aα

E

E (a) ≥ cNE(a) = β.
Conversely, if α ≥ β then

(0)∗aα

E ⊇ (0)∗aβ

E ⊇ N
by part (i) of the proposition. This shows that cNE(a) = ξJ(a), and the last asser-
tion in the corollary follows by taking J = m.

Remark 4.5. Let a be an ideal in the local ring (R, m).We have seen that cI(a) ≥
cm(a) for every proper ideal I. Note also that applying Proposition 4.2(iii) to
the embedding R/m # Z ↪→ E = ER(R/m) yields cm(a) = cR/mR/m(a) ≥
cZE(a) = fpt(a). Thus we always have fpt(a) ≤ cI(a), and equality is possible
only if fpt(a) = cm(a). Although this equality holds in some nonregular examples
(see Remark 2.5), this seems to happen rather rarely.

5. Connections between F-Thresholds and Multiplicity

For an m-primary ideal a in a regular local ring (R, m) that is essentially of fi-
nite type over a field of characteristic 0, an inequality involving the log canon-
ical threshold lct(a) and the multiplicity e(a) was proved in [dFEM2]. Later, a
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characteristic p analogue of this result—replacing the log canonical threshold
lct(a) by the F-pure threshold fpt(a)—was proved in [TW]. We propose to gen-
eralize this inequality via the following conjecture.

Conjecture 5.1. Let (R, m) be a d-dimensional Noetherian local ring of char-
acteristic p > 0. If J ⊆ m is an ideal generated by a full system of parameters
and if a ⊆ m is an m-primary ideal, then

e(a) ≥
(

d

cJ−(a)

)d
e(J ).

Remarks 5.2. (a) When R is regular and J = m, Conjecture 5.1 is precisely the
inequality in [TW, Prop. 4.5].

(b) WhenR is a d-dimensional regular local ring that is essentially of finite type
over a field of characteristic 0, we can consider an analogous conjecture: Let a, J
be m-primary ideals in R such that J is generated by a full system of parameters;
then

e(a) ≥
(
d

λJ(a)

)d
e(J ),

where λJ(a) := max{c > 0 | J (ac) �⊆ J }. This would generalize the inequality
in [dFEM2], which is the special case J = m. However, this version is also open
in general.

(c) The condition in Conjecture 5.1 that J be generated by a system of parame-
ters is crucial, since otherwise there are plenty of counterexamples. Suppose, for
example, that (R, m) is a regular local ring of dimension d ≥ 2 and of characteris-
tic p > 0. Let a = mk and J = m1 for integers k ≥ 1 and 1 ≥ 2. It follows from
Example 2.7(iii) that cJ(a) = (d + 1 − 1)/k. Moreover, we have e(a) = kd and
e(J ) = 1d; thus

e(a) = kd < (dk1/(d + 1− 1))d =
(
d

cJ(a)

)d
e(J ).

Example 5.3. Let R = k[[X,Y,Z]]/(X2 +Y 3 +Z5) be a rational double point
of type E8, with k a field of characteristic p > 0. Let a = (x, z) and J = (y, z).
Then e(a) = 3 and e(J ) = 2. It is easy to check that cJ(a) = 5/3 and ca(J ) =
5/2. Thus:

e(a) = 3 >
72

25
=

(
2

cJ(a)

)2

e(J );

e(J ) = 2 >
48

25
=

(
2

ca(J )

)2

e(a).

See Corollary 5.9 for a general statement in the homogeneous case.

We now show that Conjecture 5.1 implies an effective estimate of the multiplicity
of complete intersection F-rational rings.
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Proposition 5.4. Let (R, m) be a d-dimensional F-rational local ring of char-
acteristic p > 0 with infinite residue field (resp., a rational singularity over a
field of characteristic 0) that is a complete intersection. If Conjecture 5.1 (resp.,
Remark 5.2(a)) holds true for the regular case, then e(R) ≤ 2d−1.

Proof. Let J ⊆ m be a minimal reduction of m. Observe that J is generated by
a full system of parameters for R. The Briançon–Skoda theorem for F-rational
rings (or for rational singularities; see [AHu] or [HyV], respectively) gives md ⊆
J. Taking the quotient of R by J, we reduce the assertion in the proposition to the
following claim.

Claim. Let (A, m) be a complete intersection Artinian local ring of character-
istic p > 0 (resp., essentially of finite type over a field of characteristic 0). If s is
the largest integer s such that ms �= 0, then e(A) ≤ 2s.

We now show that the regular case of Conjecture 5.1 implies the claim in positive
characteristic (the argument in characteristic 0 is entirely analogous). Write A =
S/I, where (S, n) is an n-dimensional regular local ring and I ⊆ S is an ideal gen-
erated by a full system of parameters f1, . . . , fn for S. For every i, we denote by
αi the order of fi. We may assume that αi ≥ 2 for all i.

Let n = (y1, . . . , yn), and let us write fi = ∑
j aijyj . A standard argument re-

lating the Koszul complexes on the fi and (respectively) the yi shows that det(aij )
generates the socle of A. In particular, if

s := max{r ∈N | nr �⊆ I },
then s ≥ ∑n

i=1(ai − 1) ≥ n. On the other hand, it follows from Example 2.7(iii)
that cI(m) = s + n (the corresponding formula in characteristic 0 is an immedi-
ate consequence of the description of the multiplier ideals of the ideal of a point).
Applying Conjecture 5.1 to S, we obtain

1 = e(n) ≥
(

n

cI(m)

)n
e(I ) =

(
n

s + n
)n
e(I ).

Note that (n/(s + n))n ≥ (s/(s + s))s = (1/2)s because s ≥ n. Thus, we have
e(A) = e(I ) ≤ 2s.

Proposition 5.5. If (R, m) is a one-dimensional analytically irreducible local
domain of characteristic p > 0 and if a, J are m-primary ideals in R, then

cJ(a) = e(J )

e(a)
.

In particular, Conjecture 5.1 holds in R.

Proof. By Proposition 2.2(v), we may assume that R is a complete local domain.
SinceR is one-dimensional, the integral closure R̄ is a discrete valuation ring. We
thus have

cJR̄(aR̄) = ordR̄(JR̄)/ordR̄(aR̄).
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On the other hand, e(JR̄) = ordR̄(JR̄) and e(aR̄) = ordR̄(aR̄). Hence, by Propo-
sition 2.2(vi),

cJ(a) = cJR̄(aR̄) = e(JR̄)

e(aR̄)
= e(J )

e(a)
.

Theorem 5.6. If (R, m) is a regular local ring of characteristic p > 0, and if
J = (x

a1
1 , . . . , xadd ) with x1, . . . , xd a full regular system of parameters for R and

with a1, . . . , ad positive integers, then the inequality given by Conjecture 5.1 holds.

Proof. The proof follows the idea in [dFEM2] and [TW], reducing the assertion
to the case when a is a monomial ideal and then using the explicit description of
the invariants involved. By definition we have e(a) = limn→∞(d! ·1R(R/an)/nd);
hence it is enough to show that, for every m-primary ideal a of R,

1R(R/a) ≥ 1

d!

(
d

cJ(a)

)d
e(J ). (4)

After passing to completion and then using Proposition 2.2(v) and Remark 2.6, we
see that it is enough to prove the inequality (4) in the case whenR = k[x1, . . . , xd ],
m = (x1, . . . , xd), a is m-primary, and J = (xa1

1 , . . . , xadd ).
Observe that e(J ) = a1 · · · ad. We fix a monomial order λ on the monomials

in the polynomial ring and then use λ to take a Gröbner deformation of a (see [Ei,
Chap. 15]). This is a flat family {as}s∈k such that R/as ∼= R/a for all s �= 0 and
such that a0 = inλ(a), the initial ideal of a.

For I an ideal generated by monomials, we denote by P(I ) the Newton poly-
hedron of I (see Example 2.7(ii) for definition). We also use Vol(P ) to denote the
volume of a region P in Rd with the Euclidean metric. Since the deformation we
consider is flat, it follows that inλ(a) is also m-primary and that

1R(R/a) = 1R(R/inλ(a)) ≥ Vol
(
Rd≥0 \ P(inλ(a))

)
,

where the inequality follows from [dFEM2, Lemma 1.3].
On the other hand, by [dF, Prop. 5.3] we have τ(inλ(a)t ) ⊆ inλ(τ (at )) for all

t > 0. This implies that cJ(a) ≥ cinλ(J )(inλ(a)). Note also that, since J is gener-
ated by monomials, inλ(J ) = J. We can therefore reduce to the case when a is
generated by monomials in x1, . . . , xd. That is, it is enough to show that, for every
m-primary monomial ideal a ⊆ R,

Vol(Rd≥0 \ P(a)) ≥
1

d!

(
d

cJ(a)

)d
a1 · · · ad.

It follows from the description of cJ(a) in Example 2.7(ii) that (a1, . . . , ad) ∈
∂(cJ(a) ·P(a)). We can find a hyperplaneHq := u1/b1+· · ·+ud/bd = 1 passing
through the point (a1, . . . , ad) such that

H + :=
{
(u1, . . . , ud)∈Rd≥0

∣∣ u1

b1
+ · · · + ud

bd
≥ 1

}
⊇ cJ(a) · P(a).

We thus have
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Vol(Rd≥0 \ P(a)) ≥ Vol

(
Rd≥0

∖ 1

cJ(a)
H +

)
= b1 · · · bd
d! · cJ(a)d

.

On the other hand, since H passes through (a1, . . . , ad), it follows that a1/b1 +
· · · + ad/bd = 1. Comparing the arithmetic and geometric means of {ai/bi}i, we
see that

b1 · · · bd ≥ dd · a1 · · · ad.
We can therefore combine these two inequalities to obtain

Vol(Rd≥0 \ P(a)) ≥
b1 · · · bd
d! · cJ(a)d

≥ 1

d!

(
d

cJ(a)

)d
a1 · · · ad ,

as required.

Remark 5.7. It might seem that this proves a stronger assertion than the one in
Conjecture 5.1, one that involves the length instead of the multiplicity. However,
the two assertions are equivalent; this follows from [Mu Cor. 3.8], which states
that, for every zero-dimensional ideal a in a d-dimensional regular local ring R,

1R(R/a) ≥ e(a)

d!
.

We can prove a graded version of Conjecture 5.1. In fact, we prove a more precise
statement that is valid independently of the characteristic.

Theorem 5.8. LetR = ⊕
d≥0 Rd be ann-dimensional graded Cohen–Macaulay

ring with R0 a field of arbitrary characteristic. If a and J are ideals generated by
full homogeneous systems of parameters for R and if aN ⊆ J, then

e(a) ≥
(

n

n+N − 1

)n
e(J ).

Corollary 5.9. Let R be as in the theorem, with char(R0) = p > 0. If a and
J are ideals generated by full homogeneous systems of parameters for R, then

e(a) ≥
(

n

cJ−(a)

)n
e(J ).

Proof. Note that each J [q] is again generated by a full homogeneous system of
parameters. It follows from the theorem and from the definition of νJa(q) that, for
every q = pe,

e(a) ≥
(

n

n+ νJa(q)
)n
e(J [q]) =

(
qn

n+ νJa(q)
)n
e(J ).

On the right-hand side we can take a subsequence converging to (n/cJ−(a))ne(J ),
and this yields the inequality of the corollary.

Proof of Theorem 5.8. Suppose that a is generated by a full homogeneous sys-
tem of parameters x1, . . . , xn of degrees a1 ≤ · · · ≤ an and that J is generated by
another homogeneous system of parameters f1, . . . , fn of degrees d1 ≤ · · · ≤ dn.
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Define nonnegative integers t1, . . . , tn−1 inductively as follows: t1 is the smallest
integer t such that x t1 ∈ J ; if 2 ≤ i ≤ n − 1, then ti is the smallest integer t such
that x t1−1

1 · · · x ti−1−1
i−1 x ti ∈ J. Note that N ≥ t1 + · · · + tn−1 − n+ 1 by assumption.

We first show the following inequality for every i = 1, . . . , n− 1:

t1a1 + · · · + ti ai ≥ d1 + · · · + di. (5)

Let Ii be the ideal of R generated by x t11 , x t1−1
1 x

t2
2 , . . . , x t1−1

1 · · · x ti−1−1
i−1 x

ti
i , and note

that the definition of the integers tj implies that Ii ⊆ J. The natural surjec-
tion of R/Ii onto R/J induces a comparison map between their free resolu-
tions (we resolve R/J by the Koszul complex and R/Ii by a Taylor-type com-
plex). We remark that the ith step in the Taylor complex for the monomials
X
t1

1 ,Xt1−1
1 X

t2
2 , . . . ,Xt1−1

1 · · ·Xti−1−1
i−1 X

ti
i in a polynomial ring with variables X1, . . . ,

Xn, is a free module of rank 1 and with a generator corresponding to the monomial

lcm(Xt11 ,Xt1−1
1 X

t2
2 , . . . ,Xt1−1

1 · · ·Xti−1
i−1X

ti
i ) = Xt11 · · ·Xti−1

i−1X
ti
i

(see [Ei, Exer. 17.11]). It follows that the map between the ith steps in the resolu-
tions of R/Ii and R/J is of the form

R(−t1a1 − · · · − ti ai)→
⊕

1≤v1<···<vi≤n
R(−dv1 − · · · − dvi ).

In particular, unless this map is zero we have

t1a1 + · · · + ti ai ≥ min
1≤v1<···<vi≤n

(dv1 + · · · + dvi ) = d1 + · · · + di.
We now show that this map cannot be zero. If it is zero, then also the induced map

TorRi (R/Ii,R/bi )→ TorRi (R/J,R/bi ) (6)

is zero, where bi is the ideal generated by x1, . . . , xi. On the other hand, using the
Koszul complex on x1, . . . , xi to compute the preceding Tor modules, we see that
the map (6) can be identified with the natural map

(Ii : bi )/Ii → (J : bi )/J.

Since x t1−1
1 · · · x ti−1

i ∈ (Ii : bi ), it follows that x t1−1
1 · · · x ti−1

i lies in J—a contra-
diction. This proves (5).

We next prove the following inequality:

t1a1 + · · · + tn−1an−1+ (N − t1 − · · · − tn−1 + n− 1)an ≥ d1 + · · · + dn. (7)

Since aN ⊆ J, we have

(xN1 , . . . , xNn ) : J ⊆ (xN1 , . . . , xNn ) : aN = (xN1 , . . . , xNn )+ a(n−1)(N−1). (8)

On the other hand, the ideal (xN1 , . . . , xNn ) : J can be described as follows. After
writing xNi = ∑n

j=1 bijfj and then using the Koszul resolutions of R/J and
R/(xN1 , . . . , xNn ), it is clear that multiplication by D = det(bij ) gives an injec-
tion R/J ↪→ R/(xN1 , . . . , xNn ) and hence J = (xN1 , . . . , xNn ) : D. Moreover, we
also have
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(xN1 , . . . , xNn ) : J = (xN1 , . . . , xNn ,D)

(see e.g. [PS, Prop. 2.6]; note that the statement therein requires R to be regular,
but this condition is not used). It follows from the foregoing description that D is
homogeneous and that deg(D) = N(a1 + · · · + an)− (d1 + · · · + dn).

It follows from (8) that, after possibly adding to D an element in (xN1 , . . . , xNn ),
we may write

D =
∑

m1+···+mn=(n−1)(N−1)

cm1,...,mn x
m1
1 · · · xmnn ,

where all cm1,...,mn are homogeneous. Since x t1−1
1 · · · x tn−1−1

n−1 /∈ J = (xN1 , . . . , xNn ) :
D, we see that

D /∈ (xN1 , . . . , xNn ) : x t1−1
1 · · · x tn−1−1

n−1 = (xN−t1+1
1 , . . . , xN−tn−1+1

n−1 , xNn ).

Hence there is some (m1, . . . ,mn), with
∑
j mj = (n − 1)(N − 1) and mj ≤

N − tj for all j ≤ n−1, such that cm1,...,mm �= 0. We deduce that the degree ofD
is at least as large as the smallest degree of such a monomial xm1

1 · · · xmnn and so

degD = N(a1 + · · · + an)− (d1 + · · · + dn)
≥ (N − t1)a1 + · · · + (N − tn−1)an−1+ (t1 + · · · + tn−1− n+ 1)an,

which implies the inequality (7).
To finish the proof, we will use the following claim.

Claim. Let αi,βi, γi be real numbers for 1 ≤ i ≤ n. If 1 = γ1 ≤ γ2 ≤
· · · ≤ γn and if γ1α1 + · · · + γiαi ≥ γ1β1 + · · · + γiβi for all i = 1, . . . , n, then
α1 + · · · + αn ≥ β1 + · · · + βn.

Proof of Claim. Let λi = αi − βi for 1 ≤ i ≤ n, so that γ1λ1 + · · · + γiλi ≥ 0
for all i = 1, . . . , n. We prove that λ1 + · · · + λn ≥ 0 by induction on n (the case
n = 1 is trivial). Suppose that n > 1 and that there is an i such that λi < 0 (other-
wise, the assertion to prove is clear). We must have i ≥ 2, and since γi ≥ γi−1 it
follows that γiλi ≤ γi−1λi. Let us put γ ′

j = γj for 1 ≤ j ≤ i − 1 and γ ′
j = γj+1

for i ≤ j ≤ n − 1. Define also λ′j = λj for 1 ≤ j ≤ i − 2 and define λ′i−1 =
λi−1 + λi and λ′j = λj+1 for i ≤ j ≤ n − 1. It is straightforward to check that
γ ′

1λ
′
1 + · · · + γ ′

j λ
′
j ≥ 0 for all j = 1, . . . , n − 1; hence the induction hypothesis

implies λ1 + · · · + λn = λ′1 + · · · + λ′n−1 ≥ 0.

We now set αi = ti for 1 ≤ i ≤ n−1 and set αn = N − t1−· · ·− tn−1+n−1. We
put βi = di/ai and γi = ai/a1 for 1 ≤ i ≤ n. Since a1 ≤ · · · ≤ an, we deduce that
1 = γ1 ≤ · · · ≤ γn. Moreover, (5) together with (7) yields γ1α1 + · · · + γiαi ≥
γ1β1 + · · · + γiβi for 1 ≤ i ≤ n. Using the claim just proved, we conclude that

N + n− 1 = α1 + · · · + αn ≥ β1 + · · · + βn =
(
d1

a1
+ · · · + dn

an

)
.

Comparing the arithmetic and geometric means of {di/ai}i, we see that

(N + n− 1)na1 · · · an ≥ nnd1 · · · dn.
Because e(a) = a1 · · · an and e(J ) = d1 · · · dn, this concludes the proof.



F-Thresholds, Tight Closure, Integral Closure, and Multiplicity Bounds 481

When J is not necessarily a parameter ideal, we can prove another inequality in-
volving the F-threshold cJ(a) that generalizes the results in [dFEM2] and [TW].

Proposition 5.10. If (R, m) is a d-dimensional regular local ring of character-
istic p > 0 and if a, J are m-primary ideals in R, then

e(a) ≥
(
d

cJ(a)

)d
(cJ(m)− d + 1).

Proof. As in the proof of Theorem 5.6, we do a reduction to the monomial case.
We first see that it is enough to show that—ifR is the polynomial ring k[x1, . . . , xd ],
if m = (x1, . . . , xd), and if a and J are m-primary ideals—then

1(R/a) ≥ 1

d!

(
d

cJ(a)

)d
(cJ(m)− d + 1). (9)

Claim. We can find monomial ideals a1 and J1 such that

1R(R/a) = 1R(R/a1), cJ(a) ≥ cJ1(a1), cJ(m) = cJ1(m). (10)

This reduces the proof of (9) to the case when both a and J are monomial ideals.

Proof of Claim. We do a two-step deformation to monomial ideals. We con-
sider first a flat deformation of a and J to a′ and J ′ (respectively) where, for an
ideal I ⊆ R, we denote by I ′ the ideal defining the respective tangent cone at the
origin. We then fix a monomial order λ and consider a Gröbner deformation of a′
and J ′ to a1 := inλ(a′) and J1 := inλ(J ′), respectively. It follows as in the proof
of Theorem 5.6 that the first two conditions in (10) are satisfied. For the third con-
dition, in light of Example 2.7(iii) it is enough to show that

mr ⊆ J ⇐⇒ mr ⊆ J1.

It is clear that if mr ⊆ J then mr ⊆ J ′ and mr ⊆ J1. For the converse,
suppose that mr ⊆ J1. Since J ′ and J1 are both homogeneous ideals and since
dimk(R/J1)r = dimk(R/J

′)r (see [Ei, Chap. 15]), it follows that mr ⊆ J ′. (Note
that if I is a homogeneous ideal in R, then mr ⊆ I if and only if (R/I )r = 0.)
We know that ms ⊆ J for some s; hence, in order to prove that mr ⊆ J, it is
enough to show that if mt ⊆ J ′ and mt+1 ⊆ J then mt ⊆ J. It is easy to check that
(J ∩ mt )′ = J ′ ∩ mt, and since mt+1 ⊆ J it follows that J ∩ mt is homogeneous.
Therefore,

mt ⊆ J ′ ∩ mt = (J ∩ mt )′ = J ∩ mt.

Proof of Proposition 5.10 (cont.). From now on we assume that a and J are
m-primary monomial ideals. Arguing as in the proof of Theorem 5.6 and using
Example 2.7(iii), we see that it is enough to show

Vol(Rd≥0 \ P(a)) ≥
1

d!

(
d

cJ(a)

)d
(r + 1),

where r := max{s ∈ Z≥0 | ms �⊆ J }. By definition, we can choose a mono-
mial xr11 · · · xrdd of degree r that is not contained in J. Because τ(acJ(a)) ⊆ J by
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Proposition 2.4, this monomial cannot belong to τ(acJ(a)). Using the description
of generalized test ideals of monomial ideals (see [HaY, Thm. 4.8]), this trans-
lates as

(r1 + 1, . . . , rd + 1) /∈ Int(cJ(a) · P(a)).
Hence we can find a hyperplaneH : u1/a1+· · ·+ud/ad = cJ(a) passing through
the point (r1 + 1, . . . , rd + 1) such that

H + :=
{
(u1, . . . , ud)∈Rd≥0

∣∣ u1

a1
+ · · · + ud

ad
≥ cJ(a)

}
⊇ cJ(a) · P(a). (11)

Note that we have cJ(a) = (1+ r1)/a1 + · · · + (1+ rd)/ad . Comparing the arith-
metic and geometric means of {(1+ ri)/ai}i, we see that(

cJ(a)

d

)d
=

(
1+ r1
da1

+ · · · + 1+ rd
dad

)d
≥ (1+ r1) · · · (1+ rd)

a1 · · · ad ≥ 1+ r
a1 · · · ad .

On the other hand, (11) implies

Vol(Rd≥0 \ P(a)) ≥ Vol
(
Rd≥0 \ (1/cJ(a))H + )

= a1 · · · ad
d!

≥ 1

d!

(
d

cJ(a)

)d
(r + 1).
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